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Abstract

Background

Numerous predictive models in the literature stratify patients by risk of mortality and read-

mission. Few prediction models have been developed to optimize impact while sustaining

sufficient performance.

Objective

We aimed to derive models for hospital mortality, 180-day mortality and 30-day readmission,

implement these models within our electronic health record and prospectively validate these

models for use across an entire health system.

Materials & methods

We developed, integrated into our electronic health record and prospectively validated three

predictive models using logistic regression from data collected from patients 18 to 99 years

old who had an inpatient or observation admission at NorthShore University HealthSystem,

a four-hospital integrated system in the United States, from January 2012 to September

2018. We analyzed the area under the receiver operating characteristic curve (AUC) for

model performance.

Results

Models were derived and validated at three time points: retrospective, prospective at dis-

charge, and prospective at 4 hours after presentation. AUCs of hospital mortality were 0.91,

0.89 and 0.77, respectively. AUCs for 30-day readmission were 0.71, 0.71 and 0.69, respec-

tively. 180-day mortality models were only retrospectively validated with an AUC of 0.85.
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Discussion

We were able to retain good model performance while optimizing potential model impact by

also valuing model derivation efficiency, usability, sensitivity, generalizability and ability to

prescribe timely interventions to reduce underlying risk. Measuring model impact by tying

prediction models to interventions that are then rapidly tested will establish a path for mean-

ingful clinical improvement and implementation.

Introduction

Health care providers and policymakers have identified periods of high clinical intensity and

cost of care as important opportunities to improve health care value. Over 25% of all Medicare

dollars are spent in the last year of life [1] and roughly 19.8% of Americans die in hospitals [2].

Another period with high clinical intensity and cost is the 30 days after hospital discharge.

Each year, approximately 18% of Medicare patients who were discharged were readmitted

within 30 days [3], resulting in costs of $15 to 17 billion for unplanned rehospitalizations [4].

Given the increasing trend towards value-based care and penalties for adverse outcomes, hos-

pitals and health systems are actively looking for ways to improve these linked and important

outcomes.

Improving care value during these time periods may be based on identification of the high-

est risk patients. These patients account for a disproportionately high number of adverse out-

comes, and are likely to benefit from additional support. Predictive modeling is a commonly

used risk stratification strategy. The vast majority of mortality and readmission predictive

models focus on maximizing performance of the models rather than real-world impact on care

delivery. In doing so, model developers may use predictors that require data collection from

additional workflows [5–6], use variables that may not be fully available or have to mature dur-

ing the hospitalization [6–9], or may not integrate the model into their electronic health record

(EHR) either for real-time prospective validation or for calculation to support clinical work-

flows [6, 10–12].

Furthermore, current predictive models are frequently focused on highly specific segments

of the population, such as the elderly [13–14], or on specific disease states, such as pneumonia

[11, 15], chronic obstructive pulmonary disease[16, 17] or heart failure [11, 18–21]. While this

approach can lead to improved model performance, it tends to cover only a subset of the popu-

lation, and may not fully recognize that complex patients have multiple, often related, diagno-

ses that are together driving their clinical risk. By focusing on a narrow patient subset, these

types of predictive models are also less likely to improve overall hospital or health system-wide

quality or patient safety metrics and are less likely to support broad care transformation that

improves outcomes at a population level.

We undertook to design a population health framework, the Clinical Analytics Prediction

Engine (CAPE,) for care transformation and to maximize impact across our entire patient

population. The initial steps in this development were derivation, retrospective validation,

integration of models into our EHR, and prospective validation of three models (hospital mor-

tality, 180-day mortality and 30-day readmission).

The contributions of this work include showing

1. The importance and implications of prospective model validation directly in the EHR.

2. The implications of timing, model performance and patient scoring when predictive mod-

els are directly integrated within an EHR.
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Materials and methods

Settings and participants

Hospital mortality, 180-day mortality and 30-day readmission models were derived and

then retrospectively and prospectively validated on data available from patients admitted to

NorthShore University HealthSystem (NUHS), Evanston, IL from January 1, 2012, to Sep-

tember 30, 2018. At that time, NUHS was a four-hospital integrated tertiary care health care

system. The models were trained on patient data for those admitted on or after January 1,

2012, and discharged before December 31, 2012 (training dataset). The models were also val-

idated on patients admitted on or after December 31, 2012, and discharged on or before

April 30, 2017 (retrospective testing dataset) and separately validated with data from May

25, 2018, to September 30, 2018 (prospective testing cohort). Retrospective testing for the

180-day mortality model was restricted to patients discharged before December 30, 2016, to

ensure adequate time to capture the outcome. We were unable to prospectively validate the

180-day mortality model due to the lack of mortality data at the time of manuscript

preparation.

Definitions

The primary outcomes were mortality during the index admission, mortality within 180 days

after discharge from index hospitalization, and all-cause readmission to a NUHS hospital

within 30 days after discharge from the index hospitalization. Patients were included in all

three models if admission type was inpatient or observation and age was 18 to 99 years old (Fig

1). We excluded psychiatric, rehabilitation and elective pregnancy admissions, as well as

patients who had a subsequent hospice admission directly after the index admission. Patients

who died during the index hospitalization or left against medical advice were excluded from

the 30-day readmission model. We used the same exclusion criteria for the training, retrospec-

tive testing and prospective validation datasets.

Data collection and model derivation

We collected data on demographics, past medical history (PMH), diagnoses present on admis-

sion (POA) and labs for all eligible patients for the training, testing and prospective validation

datasets from our Enterprise Data Warehouse (EDW). The EDW captures clinical and admin-

istrative data during inpatient encounters and also incorporates external data from the Social

Security Death Index. All data were collected at the encounter level. Variables were considered

for inclusion based on whether they had been previously studied, were consistently reported in

the EHR and were collected in real time for risk score computation within the EHR for pro-

spective validation and implementation. Our models did not include social history or social

determinants (tobacco and alcohol use, employment, education, living situation and marital

status) as these were not consistently reported in our EHR. We identified PMH and POA vari-

ables from administrative ICD-9-CM and ICD-10-CM codes associated with the index

encounters. We used Clinical Classification Software (CCS) categories to group diagnosis

codes to the variables of interest (https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp).

Labs were used as continuous variables. Models were derived in R (R Foundation for Statistical

Computing, Vienna, Austria; http://www.R-project.org) as logistic regressions for each out-

come [22].

X ¼ argmax LðβÞ; ð1Þ
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LðβÞ ¼ ln½lðβÞÞ ¼
XN

i¼0
fyi ln½πðXiÞ� þ ð1 � yiÞln½1 � πðXiÞ�g; ð2Þ

π Xið Þ ¼
1

1þ e�
PM

j¼0
βjxij

; i ¼ 1; . . . ;N; ð3Þ

where M is the dimensionality of the problem, including the intercept as the 0-th term, xi0,

N is the number of observations, β = [β0 = 1, β1, . . ., βM]T is a vector of variable coefficients, yi

is the i-th observed outcomes and Xi = [xi0, . . ., xiM]T is a vector of observed predictor values

Fig 1. Inclusion and exclusion criteria for derivation and retrospective validation cohorts.

https://doi.org/10.1371/journal.pone.0238065.g001
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in the resulting likelihood equations.

XN

i¼1
½yi � πðXiÞ� ¼ 0; ð4Þ

XN

i¼1
Xi½yi � πðXiÞ� ¼ 0: ð5Þ

We constructed our variable set by compiling a list of clinically plausible candidate predic-

tors. We imputed sparsely populated binary indicator variables, such as PMH and POA as neg-

atives, e.g., a patient with a missing heart failure indicator would be treated as not having heart

failure. We excluded lab variables that were less than 80% populated. Following a common

practice of avoiding potential multicollinearity [23], we retained one variable from each pair of

variables correlated at 0.6 or higher. While the threshold for such removal is somewhat arbi-

trary and some practitioners recommend 0.5 or 0.7 as a cutoff [24, 25]; 0.6 has proven more

consistent with our experience. We estimated odds ratios and their 95% confidence intervals

(CI) for each variable and removed indicator variables whose 95% CI for the univariate odds

ratio included 1. For the sake of parsimony, we also excluded indicator variables whose

weighted contribution was less than 0.1 and then retrained the models.

Implementation and validation

In order to partition the datasets for model construction and validation, we opted to reverse

the traditional 80% / 20% training and testing split. This was done because available 180-day

mortality data from external sources was incomplete after December 31, 2012. Consequently,

we opted to derive the model on the data from 2012. Model performance was initially evalu-

ated on the training dataset via 10-fold cross-validation [26]. and retrospectively tested on the

data from 2013–2017, treating the absence of information about a death event as a negative

outcome. We chose to follow this pattern for other models for the sake of uniformity. We

tested our three models retrospectively through the EDW and we validated hospital mortality

and 30-day readmission prospectively after direct implementation of our model into our EPIC

electronic health record, (EPIC Systems Corporation, Verona, Wisconsin). We intentionally

separated the testing dataset where data availability was robust from the prospective validation

dataset in order to assess the performance of the models under real-world conditions that mir-

rored the actual environment in which these models would be deployed.

Integration of our models into the EHR was conducted via Predictive Model Markup Lan-

guage [27]. Depending on the availability of relevant real-time variables in the EHR, we re-

evaluated the models, recalibrated them as necessary using the best available historical proxies

for the missing variables and re-implemented the models in the EHR. Non-crucial missing

numeric lab values in real-time were zero-imputed in order to differentiate missing values

from those that were present. Performance differences between zero- and mean-imputed ver-

sions of the same model were trivial for the hospital mortality model, and, based on this find-

ing and operational considerations, we adopted zero imputation for all three predictive

models. Prospective validation was performed at two distinct time points, four hours after pre-

sentation to the emergency room or hospital floor (Door + 4) and prior to discharge.

Statistical analysis

All analysis was performed using R. We used Kruskal-Wallis rank sum test on continuous vari-

ables and χ2 on categorical variables to verify the similarity of populations among the training,

testing and prospective validation datasets. We evaluated the performance of the regression

models using the AUC and assessed calibration with the Hosmer-Lemeshow statistic. This
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work was deemed quality improvement after review by our institutional review board (IRB).

As such this dataset was coded and not fully anonymized and written consent was not obtained

from patients.

Results

There were 186,603 patient encounters for an inpatient visit between January 1, 2012, and

April 30, 2017 (Table 1).

When initial exclusion criteria were applied to this population, we had 157,958 patient

encounters that met the requirements for the hospital mortality dataset. After additional exclu-

sion criteria were applied, 147,731 encounters remained in the 180-day mortality dataset and

152,192 encounters in the 30-day readmission dataset. These three populations were split into

training and testing datasets as detailed in Fig 1. There were 11,807 patients in the prospective

validation cohort.

In comparing training, testing and prospective validation datasets for the hospital mortality

model, we found that, aside from median age, body mass index (BMI), and length of stay

(LOS), the patients in the three populations were statistically significantly different in the pro-

portion of all other risk factors and outcomes. Patients in the traing dataset were on average

70.6 years of age, 56.8% female and 73.8% Caucasian. In the training dataset, hospital mortality

was 1.9%, 180-day mortality was 11.6% and 30-day readmission was 11.5%. The prospective

validation dataset reflects a population where variables were collected at Door + 4. As a result,

POA variables for the prospective validation dataset were significantly more sparsely popu-

lated than in the training and testing datasets where those variables were collected retrospec-

tively after maturation.

Model coefficients and CI for the three predictive models are displayed in Fig 2. Full

numerical results of coefficients, CI and odds ratios are included in S1 Table. The variables

were grouped into four categories (demographics, labs, POA and PMH) and most of the vari-

ables are relevant across all three models. Increasing age was a risk factor for both mortality

models but was not significant for 30-day readmission. Female gender is protective in the

180-day mortality model but was not included as a covariate in the final hospital mortality or

readmission models. Increasing number of prior admissions increases the risk of 180-day mor-

tality and 30-day readmission but is not significant for the hospital mortality model. Surgery

during the index hospitalization is protective for all models. For the hospital mortality model,

the variables most predictive of death within the POA domain were stroke and respiratory fail-

ure; respiratory failure dominated the risk for the PMH domain. For 180-day mortality, the

variable most predictive of death within the POA domain was cancer; within the PMH

domain, it was metastatic cancer. Admission to the hospital from the emergency room and a

POA cancer diagnosis were the most predictive factors of 30-day readmission within the POA

domain. The 30-day readmission model had fewer POA covariates present in the model as

compared to the mortality models.

Coefficients in the plot are not standardized for interpretability. Pregnancy on admission

was an outlier in the 180-day Mortality model (-10.9993 [95% CI -241.7027: 219.7041], p-value

0.9255) due to the rarity of the condition and while it was a covariate in the model it was not

included in Fig 2. Pregnancy on admission was not a covariate for Hospital Mortality and

30-day Readmission models.

Using 10-fold cross validation within the training dataset, the AUC of the hospital mortality

model was 0.90 (95% CI 0.87–0.93), 180-day mortality model was 0.85 (95% CI 0.84–0.87) and

30-day readmission was 0.71 (95% CI 0.69–0.73). In all three models, the CI of the cross-vali-

dated performance was tight, and the coefficients were stable.
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Performance of the models was measured on the testing dataset by the AUC at three time

points: retrospective, prospective at discharge, and prospective at Door + 4 (Figs 3 and 4).

AUCs of the hospital mortality prediction model were 0.91, 0.89 and 0.77, respectively. The

180-day mortality model yielded the AUC of 0.85 retrospectively; accurate prospective

180-day mortality data was not available at time of manuscript preparation and, as a result,

Table 1. Patient characteristics in training, testing and prospective validation datasets for hospital mortality model.

Characteristic Retrospective Training Retrospective Testing Prospective Validation P-value

N (%) or Median N = 31,268 N = 126,690 N = 11,807

Age in years 70.6 71.4 71.2 0.8468

Female 17,754 (56.8%) 68,764 (54.3%) 6,436 (54.5%) 0.0000

Male 13,514 (43.2%) 57,926 (45.7%) 5,371 (45.5%) 0.0000

Body Mass Index (kg/m2) 25.82 26.58 26.57 0.8296

Pregnant 143 (0.5%) 845 (0.7%) 136 (1.2%) 0.0000

Ethnicity

Hispanic/Latino 1,090 (3.5%) 4,543 (3.6%) 618 (5.2%) 0.0000

Non-Hispanic 30,173 (96.5%) 121,936 (96.2%) 11,145 (94.4%) 0.0000

Race

African American 2,255 (7.2%) 8558 (6.8%) 951 (8.1%) 0.0000

Asian 1,086 (3.5%) 4,661 (3.7%) 555 (4.7%) 0.0000

Caucasian 23,086 (73.8%) 94,880 (74.9%) 8,253 (69.9%) 0.0000

Other 4,841 (15.5%) 18,591 (14.7%) 2,048 (17.3%) 0.0000

Admission Type

Inpatient 23,705 (75.8%) 99,454 (78.5%) 8,541 (72.3%) 0.0000

Observation 7,563 (24.2%) 27,236 (21.5%) 3,266 (27.7%) 0.0000

Present On Admission

Atrial Fibrillation 6,664 (21.3%) 30,292 (23.9%) 365 (3.1%) 0.0000

Chronic Obstructive Pulmonary Disease 3,753 (12.0%) 15,725 (12.4%) 107 (0.9%) 0.0000

Cancer 3,508 (11.2%) 13,604 (10.7%) 72 (0.6%) 0.0000

Injury 2,956 (9.5%) 13,747 (10.9%) 437 (3.7%) 0.0000

Cognitive Disorder 2,932 (9.4%) 11,512 (9.1%) 37 (0.3%) 0.0000

Ventricular Heart Disease 2,904 (9.3%) 11,500 (9.1%) 29 (0.2%) 0.0000

Medical History

Atrial Fibrillation 13,348 (42.7%) 62,169 (49.1%) 6,918 (58.6%) 0.0000

Cancer 11,707 (37.4%) 53,375 (42.1%) 4,611 (39.1%) 0.0000

Pnemonia 8,643 (27.6%) 39,817 (31.4%) 3,457 (29.3%) 0.0000

Ventricular Heart Disease 7,500 (24.0%) 37,308 (29.4%) 3,101 (26.3%) 0.0000

Chronic Obstructive Pulmonary Disease 7,274 (23.3%) 34,615 (27.3%) 3,126 (26.5%) 0.0000

Peripheral Vascular Disease 6,684 (21.4%) 34,717 (27.4%) 3,186 (27.0%) 0.0000

Neurological Condition 6,478 (20.7%) 31,261 (24.7%) 3,140 (26.6%) 0.0000

Syncope 5,055 (16.2%) 22,208 (17.5%) 2,702 (22.9%) 0.0000

Coagulation 4,854 (15.5%) 24,685 (19.5%) 1,529 (12.9%) 0.0000

Cognitive Disorder 4,192 (13.4%) 19,007 (15.0%) 1,507 (12.8%) 0.0000

>3 Comorbid Medical Conditions 16,202 (51.8%) 76,105 (60.1%) 6,762 (57.3%) 0.0000

Prevalence of outcomes

Hospital mortality 590 (1.9%) 2,477 (2.0%) 145 (1.2%) 0.0000

180 day mortality 3,618 (11.6%) 10,097 (8.0%) - -

30 day readmission 3,609 (11.5%) 14,034 (11.1%) 1,207 (10.2%) 0.0004

Length of Stay, days 3 3 3 0.5180

https://doi.org/10.1371/journal.pone.0238065.t001

PLOS ONE CAPE: Development, EHR integration and prospective validation of mortality and readmission prediction models

PLOS ONE | https://doi.org/10.1371/journal.pone.0238065 August 27, 2020 7 / 15

https://doi.org/10.1371/journal.pone.0238065.t001
https://doi.org/10.1371/journal.pone.0238065


prospective validation was not performed on this model. The AUC of the 30-day readmission

model was 0.71 retrospectively and prospectively prior to discharge and 0.69 at Door + 4. Per-

formance degradation occured from the retrospective to prospective period for both hospital

mortality and 30-day readmission models, but performance improved from Door + 4 to the

Fig 2. Coefficients and confidence intervals for hospital mortality, 180-day mortality and 30-day readmission prediction models.

Abbreviations: WBC, white blood cell; NA, sodium; K, potassium; BUN, blood urea nitrogen; COPD, chronic obstructive pulmonary disease.

https://doi.org/10.1371/journal.pone.0238065.g002
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time of discharge. The hospital mortality model showed satisfactory calibration (Hosmer

Lemeshow p = 0.0418) as did the 30-day readmission model (Hosmer Lemeshow p<0.001)

with the prospective dataset. Matthew’s correlation coefficient and F1 accuracy measures are

included in S1 and S2 Figs.

We calculated the risk of hospital mortality, 180-day mortality and 30-day readmission at

two different time points within our prospective validation dataset in order to understand how

patient risk scores may change throughout their hospital stay (Tables 2–4). We designated

patients as high risk if their scores were in the top 10% for hospital mortality, top 25% for

180-day mortality, or top 25% for 30-day readmission. We used this threshold designation pri-

marily for operational purposes (not discussed in this work) to evaluate a combined high risk

state. The vast majority of patients retained their risk categorization from Door + 4 to the time

at discharge. with fewer than 10% of the population migrating between risk groups. Patient

risk was more likely to increase than to decrease throughout hospital stay.

Discussion

We describe the development of three health care system-wide predictive models (hospital

mortality, 180-day mortality and 30-day all-cause readmission), their retrospective testing and

integration directly into our electronic health record, and the subsequent prospective valida-

tion of two of these models at different time points within a patient’s hospitalization. Our

EHR-embedded models were tested both retrospectively and prospectively, so that knowledge

of subsequent history could not contaminate the results. All exhibit good performance in ret-

rospective and real-time prospective validation and are able to provide risk scores for patients

at different time points throughout their hospital stay.

Fig 3. Hospital mortality model performance for retrospective and prospective validation.

https://doi.org/10.1371/journal.pone.0238065.g003
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Fig 4. 30-day readmission model performance for retrospective and prospective validation.

https://doi.org/10.1371/journal.pone.0238065.g004

Table 2. Hospital mortality risk scoring at Door + 4 and prior to discharge.

Hospital Mortality (N = 11,807) Prior to Discharge

High Low

Door + 4 High 1,857 (15.73%) 274 (2.32%)

Low 592 (5.01%) 9,084 (76.94%)

https://doi.org/10.1371/journal.pone.0238065.t002

Table 3. 180-day mortality risk scoring at Door + 4 and prior to discharge.

180 Day Mortality (N = 11,807) Prior to Discharge

High Low

Door + 4 High 3425 (29.01%) 325(2.75%)

Low 616 (5.22%) 7441 (63.02%)

https://doi.org/10.1371/journal.pone.0238065.t003

Table 4. 30-day readmission risk scoring at Door + 4 and prior to discharge.

30 Day Readmission (N = 11,807)) Prior to Discharge

High Low

Door + 4 High 3,771 (31.94%) 323 (2.74%)

Low 854 (7.23%) 6,859 (58.09%)

https://doi.org/10.1371/journal.pone.0238065.t004
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In an effort to operationalize the models, we adopted the score calculated as close as possi-

ble to the 4-hour mark after the initial presentation into the emergency department or directly

to the hospital floor. This timing would allow us to provide the care team with an actionable

risk assessment of the patient’s state at the expense of sacrificing some model accuracy. Atten-

tion to the requirement of usability and actionability of the model for care providers out-

weighed small improvements in model performance. The resulting drop in model AUC,

compared to the best available post hoc data, was trivial for the readmission model and

acceptable for the hospital mortality model. Data availability through the course of the hospi-

talization (primarily labs and refinement of diagnostic documentation) is responsible for

changes in performance. These changes represent a very practical challenge in using predictive

models: the true performance of a model should be judged when the output is being used to

impact care in real time. Despite the emphasis on actionability and usability, our hospital mor-

tality and readmission models performed as well as similar models in the literature (AUC

range 0.7–0.88) [6–7, 11, 28], where, in general, direct EHR model implementations are lim-

ited (see S2 Table in online supplement)Compared to some studies using deep learning on

large rich datasets [10], we have traded a small reduction in performance for responsive devel-

opment of effective parsimonious models, noting that current EHR systems are limited in the

types of advanced modeling that can be implemented, in particular with PMML.

One exception of direct EHR model implementation is included in a recent study from the

Netherlands, where investigators present a model developed and prospectively validated to

determine the likelihood of admission from the emergency department. This was subsequently

integrated into the EHR to assist with future work in triage [29]. Our work differs with the

novel feature that we integrated our models into the EHR and undertook prospective valida-

tion, so that the entire system, EHR and model together, were evaluated.

This work shares with models in the existing literature an efficient process of predictive

model development that allows for risk stratification and patient segmentation for three simul-

taneous key outcomes applicable to the vast majority of patients in a health care system [10].

This integrated approach is potentially more impactful than the traditional approach com-

monly found in the literature that focuses on targeting outcomes for specific clinical condi-

tions or populations. While this singular method improves model performance it considerably

limits the population on which one would like to make an impact. In future work, we are

working towards integrated and holistic set of interventions tied to these models which will

allow for determination of full model impact.

Our models and corresponding findings add to the current literature in two novel ways.

First, we integrated our models directly into the EHR and performed prospective validation

without a significant degradation in performance. This latter step is crucial in assuring ade-

quate model performance at the point of care, which is an absolute necessity when applying

these models to improve population health outcomes. It is imperative that scores be based on

real-time variables that evolve as the admission progresses, not only on historical inputs that

may have been derived from fully collected and mature data obtained on or after discharge.

Furthermore, the variables chosen were readily available within our EHR and did not require

additional workflow for capture, which allows this approach to be replicated by other health

systems. The latter requirement provided a feedback loop into another iteration of model

development since a real-time version of the model could only include stable high quality data

available as early as possible after admission for the initial score. This requirement dictated the

need to discard potential predictors that only fully matured at a much later point during the

patient’s stay. We prioritized the inclusion of a more limited but timely set of inputs to a full

set of candidate variables so that the model could be deployed in clinical care delivery. Despite

this tradeoff, it was able to perform as well as similar models in the literature.
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Second, we were able to demonstrate how model performance and risk scoring vary based

on the time at which risk is calculated during the index hospitalization. Variable model perfor-

mance over time has significant implications on the timing of workflows and the aligning of

resources to perform prescribed interventions in order to achieve an impact on the predicted

outcome We are currently working towards an integrated and holistic set of interventions tied

to these models. This will allow further calibration of the model as well as a more accurate

determination of model impact. By evaluating model performance at different times, we intro-

duce new considerations when evaluating hospital-initiated population health initiatives that

prescribe interventions based on predictive modeling. Risk scoring, like model performance,

may also vary at different time points during a hospitalization. Risk can be reclassified when

modifiable clinical factors (covariates), such as laboratory values, changes in and new data,

such as revised diagnoses, become available. For a small subset of patients where risk scoring is

reclassified, improving early data availability may be impactful in reducing misclassification.

The implications of timing, model performance, risk scoring and misclassification are impor-

tant considerations and warrant further study.

There were limitations to this work. The data were collected from a single health system,

which may limit generalizability. This shortcoming is mitigated by the fact that our health sys-

tem consists of four distinct hospitals. The models retained good performance in retrospective

testing and prospective validation, even though most patient characteristics in the training,

testing and prospective (Door + 4) validation datasets were statistically significantly different

from each other (Table 1), speaking to the potential generalizability of the models and the abil-

ity of our model to perform well during the early stages of a hospitalization when some data

elements are not yet mature. Our prospective validation period was just over four months,

which may not have provided adequate time to capture the outcomes of interest in sufficient

numbers or fully account for seasonality, potentially resulting in the degradation of prospective

performance. Additionally, we excluded patients who were discharged to hospice from the

models. We excluded this patient population in part because it was not clear when during the

hospitalization they were enrolled into hospice, but in any case we tolerated this approach

since this population represented 0.46% of the training set.

Conclusions

Model performance has received significant attention in the literature without adequate con-

sideration of meaningful and timely model impact. Consequently, we propose that it is impor-

tant to consider model impact and model performance together. If the goal is model

implementation to improve clinical outcomes, then it is important to prioritize model impact

even if there are modest consequences for model performance. Model impact involves opti-

mizing model derivation efficiency, performance, usability, sensitivity, generalizability and

ability to prescribe timely interventions to reduce underlying risk. Future work will involve

measuring model impact by tying scoring of these three prediction models directly to pre-

scribed interventions and rapidly testing out whether these interventions improve outcomes.
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