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The direct functionalization of inert C–H bonds is regarded as one of the most powerful
strategies to form various chemical bonds and construct complex structures. Although
significant advancements have been witnessed in the area of transition metal-catalyzed
functionalization of inert C–H bonds, several challenges, such as the utilization and removal
of expensive transition metal complexes, limited substrate scope and large-scale capacity,
and poor atom economy in removing guiding groups coordinated to the transition metal,
cannot fully fulfill the high standard of modern green chemistry nowadays. Over the past
decades, due to its inherent advantage compared with a transition metal-catalyzed
strategy, the hydride shift activation that applies “tert-amino effect” into the direct
functionalization of the common and omnipresent C(sp3)–H bonds adjacent to tert-
amines has attracted much attention from the chemists. In particular, the
intramolecular [1,5]-hydride shift activation, as the most common hydride shift mode,
enables the rapid and effective production of multifunctionally complex frameworks,
especially the spiro-tetrahydroquinoline derivatives, which are widely found in
biologically active natural products and pharmaceuticals. Although great
accomplishments have been achieved in this promising field, rarely an updated review
has systematically summarized these important progresses despite scattered reports
documented in several reviews. Hence, in this review, we will summarize the significant
advances in the cascade [1,5]-hydride shift/intramolecular C(sp3)-H functionalization from
the perspective of “tert-amino effect” to build a spiro-tetrahydroquinoline skeleton, and the
content is categorized by structure type of final spiro-tetrahydroquinoline products
containing various pharmaceutical units. Besides, current limitations as well as future
directions in this field are also pointed out. We hope our review could provide a quick look
into and offer some inspiration for the research on hydride shift strategy in the future.
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INTRODUCTION

Undoubtedly, the functionalization of inert C–H bonds is one
of the most effective and powerful tools for the formation of
various chemical bonds in modern organic synthesis (Su et al.,
2015; Qin et al., 2017; Karimov and Hartwig, 2018; Sauermann
et al., 2018). Over the past decades, tremendous advancements
have been witnessed in this dynamic field, especially in the
direct functionalization of unreactive C–H bonds (Hartwig,
2012; Mousseau and Charette, 2013; Yang, 2015; Hartwig,
2016; He et al., 2019). Compared to classic transition metal-
catalyzed coupling reactions, the direct modification of
ubiquitous C–H bonds of simple organic compounds,
without pre-activation and generation of a large number of
wastes such as halides and tedious synthetic procedures, has
attracted intense interest from the academic and industrial
community (Peng and Maulide, 2013; Zheng and You, 2014;
Qin et al., 2017; Sauermann et al., 2018). Owing to its intrinsic
advantages, numerous innovative and efficient synthetic
methodologies have been successfully explored, offering a
straightforward access to rapidly synthesize structurally
complex molecules (Hazelard et al., 2017; Karimov and
Hartwig, 2018; Hong et al., 2020; Junrong et al., 2021).
Among these powerful strategies, the transition metal-
catalyzed C–H bond activation has long dominated the top
topic in this field (Cho et al., 2011; Kuhl et al., 2012; Chen et al.,
2015; Gensch et al., 2016). However, in the view of green and
sustainable chemistry, (1) the utilization and removal of
expensive transition metals like Rh and Pd, (2) the addition
of extra oxidizing agents and additives, (3) the limitation of
substrate scope and large-scale capacity, and (4) the relatively
poor atom economy in removing guiding groups coordinated
to the transition metal have further restrained its applications
nowadays. Therefore, the development of novel strategies to
address these aforementioned challenges in the
functionalization of inert C–H bonds, especially the
common and omnipresent C(sp3)–H bonds, is increasingly
significant.

With the continuing motivation towards green chemistry,
the hydride shift-involved C(sp3)–H activation via a redox-
neutral process, known as an ancient but effective
methodology, provides new solutions to address those
synthetic challenges (Wang and Xiao, 2016). In 1895, the
phenomenon of redox-neutral C–H functionalization was
first observed and then termed “tert-amino effect” by Meth-
Cohn and Suschitzky in 1972 (Meth-Cohn and Suschitzky,
1972; Pinnow, 1895). Recognizing its great potential of
selective activation and direct functionalization of
unreactive C(sp3)-H bonds, enormous attention from the
chemists has been paid to this magic effect, especially the
most common migration mode of intramolecular [1,5]-
hydride shift (Haibach and Seidel, 2014; Wang and Xiao,
2014; Kwon and Kim, 2016). Basically, both hydride donors
and hydride acceptors are required in the hydride shift process
(Figure 1B). The type of hydride donor involves C(sp3)–H
bonds adjacent to tert-amines, ethereal oxygen and sulfur,
benzylic C(sp3)–H bonds, and non-benzylic C(sp3)–H bonds,

while the type of hydride acceptor contains electro-deficient
alkenes, aldehydes, ketones, enals, enones, imines, alkynes, and
allene derivatives. As for the specific mechanism of the hydride
shift process, the scientific community has not been able to
reach a consensus due to the two possible routes (Figure 1C).
On the one hand (mechanism 1), the hydride shift process
could undergo an intramolecular 6-endo-trig cyclization (or
nucleophilic attack) to deliver the heterocycle after the
generation of zwitterion A, which is formed by a [1,5]-
suprafacial hydrogen shift from the α-position of carbon
adjacent to heteroatom of substrate 1 to the electrophilic
hydrogen acceptor in the form of a hydride (Nijhuis et al.,
1987; Nijhuis et al., 1989; Meth-Cohn, 1996). On the other
hand (mechanism 2), this transformation could be conducted
through two sequential zwitterion B (the resonance form of
substrate 1) and A (as a result of the sequent [1,5]-suprafacial
hydrogen shift in the form of a sigmatropic hydride shift from
zwitterion B) to provide the target product (Datta et al., 2005;
Odedra et al., 2007; Shu et al., 2008). To date, a series of critical
reviews from reputable groups have summarized such great
progress (Haibach and Seidel, 2014; Wang and Xiao, 2014;
Kwon and Kim, 2016; An and Xiao, 2021). These reviews focus
mainly on the application of hydride shift-involved C(sp3)–H
activation to construct five-, six-, seven-, or other-membered
hetero, spiro, or fused cycles, as well as acyclic multifunctional
compounds. Among them, the intramolecular cascade [1,5]-
hydride shift/cyclization sequence, as the most common and
useful sequential reaction, is highly effective for C(sp3)–H
bond activation/C–C and C–Heteroatom formation, and
proves to be a versatile method to construct six-membered
cyclic compounds, especially including spirocyclic molecules
like spiro-tetrahydroquinolines (Rios, 2012; Mao et al., 2013;
Wang et al., 2013; Zhu et al., 2017; Xu et al., 2019).

The spiro-tetrahydroquinoline skeleton as a privileged motif
widely exists in biologically active natural products and
pharmaceuticals (Figure 1A). For example, antitumoral agent
(I), known as a novel synthetic molecule, exhibited antitumoral
and antiplasmodial activities (Kouznetsov et al., 2010).
Antitumoral agent (II) possessed good bioactivity to inhibit
against the HeLa and MCF-7 cell lines at micromolar
concentrations (Damerla et al., 2012). Antitumoral agent (III)
showed obvious in vitro immunocompetence and cytotoxicity
against Hela and Eca-109 cells (Liu et al., 2005). As a synthetic
compound, cell growth inhibitor (IV) displayed significant
wound-healing activities (Liou et al., 2021). Compound (V)
was known as a potent inhibitor against acetylcholinesterase
(Toth et al., 2018). Xa inhibitor (VI) demonstrated promising
inhibitory activity in the micromolar concentration against serine
protease (Medvedeva et al., 2018). Antitumoral agent (VII)
showed potent activity against methicillin-resistant
Staphylococcus aureus (MRSA) and fluoroquinoline-resistant
bacterial strains (Ruble et al., 2009). The synthetic antibacterial
agent (VIII) exhibited good antibacterial activity against
microorganisms (Ramesh et al., 2009). During the past years,
impressive advancements have been achieved in the synthesis of
these molecules through organic or metal synthesis (Han et al.,
2012; Shi et al., 2013; Wang et al., 2013; Yang and Du, 2013; Li
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and Du, 2014; Dong et al., 2021). However, severe challenges, like
the utilization and removal of expensive transition metal,
addition of extra oxidizing agents and additives, and poor
atom economy, still exist in this field. Therefore, the
development of a novel strategy to construct these valuable
spirocyclic frameworks through direct functionalization of
inert chemical groups or bonds is still highly demanded. As
one of the most common and effective C(sp3)-H
functionalization methodologies, the cascade [1,5]-hydride

shift/cyclization strategy possessed an inherent advantage in
the transformation of unreactive functional groups or bonds to
various chemical structures. However, building structurally
complex spiro-tetrahydroquinoline via the cascade [1,5]-
hydride shift/cyclization strategy has rarely been established
before the limited but significant works (Pastine and Sames,
2005; Kang et al., 2010; Cao et al., 2011; Wang, 2013; Mori
et al., 2015; Zhu et al., 2017; Lv et al., 2019). More importantly,
rarely an updated review has systematically summarized these

FIGURE 1 | Selected bioactive natural products and pharmaceuticals with spiro-tetrahydroquinoline skeletons (A), advancement of intramolecular (B) and two
plausible mechanisms (C) of [1,5]-hydride shift mode, and construction of spiro-tetrahydroquinoline framework (D).
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important progresses despite scattered reports documented in
several reviews (Wang and Xiao, 2014; Wang and Xiao, 2016;
Xiao Mingyan et al., 2018; An and Xiao, 2021).

In this review, we will summarize the significant advances in
the cascade [1,5]-hydride shift/intramolecular C(sp3)-H
functionalization from the perspective of tert-amino effect to
build a spiro-tetrahydroquinoline skeleton due to its great
potential in the discovery of new drugs, and also point out its
current limitations as well as future directions in this field. This
review is categorized by the structure type of final spirocyclic
products as follows (Figure 1D): Construction of a spiro-
tetrahydroquinoline skeleton containing (1) (oxo)indole, (2)
(iso)coumaranone, (3) pyrazolone and imidazole, (4)
isoxazolone, (5) coumarin, and (6) other units.

THE CONSTRUCTION OF A
SPIRO-TETRAHYDROQUINOLINE
SKELETON CONTAINING VARIOUS
PHARMACEUTICAL CORES

The spiro-tetrahydroquinoline skeleton as a privileged structure
motif is quite frequently seen in a range of biologically active
natural products and pharmaceuticals. In the process of
constructing a spirocyclic tetrahydroquinoline framework via
the [1,5]-hydride shift/cyclization strategy, the cyclic or acyclic
tert-amino moiety of substrates always serves as a hydride donor,
while electro-deficient alkenes containing various pharmaceutical
cores (such as oxindole, indolenine, pyrazolone, coumarin,
indanone, and coumaranone/isocoumaranone) and reactive
imines function as a hydride acceptor, which fulfill the
structural diversity of spirocyclic tetrahydroquinoline derivatives.

The Construction of a
Spiro-Tetrahydroquinoline or
Tetrahydroquinoxaline Skeleton Containing
an (oxo)Indole Unit
In 2015, Feng’s group developed an asymmetric tandem [1,5]-
hydride shift/cyclization reaction to produce chiral spirooxindole
tetrahydroquinolines using chiral N, N′-dioxide/Sc(OTf)3 as a
catalytic system (Scheme 1) (Cao et al., 2015). As far as we know,
this is the only report for the asymmetric version of tandem [1,5]-
hydride shift/cyclization. The oxindole derivative 1 as a suitable
hydride acceptor triggered the intramolecular tandem [1,5]-
hydride shift/ring closure reaction. With the assistance of the
chiral complex ofN,N′-dioxide/Sc(OTf)3, all reactions proceeded
smoothly in dichloroethane (DCE) at 35°C, offering a wide range
of optically active spirooxindole tetrahydroquinolines 2with high
yields of up to 97% and excellent stereoselectivies of up to 94% ee
and >20:1 dr. Moreover, a gram-scale investigation of this
strategy was smoothly operated with excellent reaction
performance, which demonstrated the robustness of this
tandem sequence toward spirocyclic tetrahydroquinolines. The
author proposed a possible mechanism of chiral memory effect
dominating a helical chirality in a cationic intermediate to explain
the chiral information observed in optically active products.

In 2017, Tunge’s group revealed a Lewis acid-catalyzed
synthesis of spiro tetrahydroquinoxalines from diamines 6 and
isatins 7 (Scheme 2) (Ramakumar et al., 2017). The condensation
of diamine 6 with the α-dicarbonyl substrate generated an imine
intermediate 11 that is responsible for the [1,5]-hydride shift to
nitrogen. Using FeCl3 as a promoter, various substituents at
different positions of both substrates were all tolerated,
yielding corresponding spirocyclic compounds X with accepted
to outstanding yields (55%–90%) and moderate to excellent

SCHEME 1 | Asymmetric catalytic synthesis of chiral spirocyclic tetrahydroquinolines.
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SCHEME 2 | Construction of spiro tetrahydroquinoxalines via hydride shift/cyclization sequence.

SCHEME 3 | Efficient construction of tetrahydroquinolines via HFIP-mediated cascade [1,5]-hydride shift/cyclization.
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diastereoselectivities (1.4:1 to 25:1). A hypothetical mechanism
for the key step of cyclocondensation is depicted in Scheme 2.

One year later, Li’s group uncovered a fluorinated alcohol-
mediated cascade [1,5]-hydride shift/cyclization reaction to
prepare spiro-tetrahydroquinolines bearing oxindole moiety
(Scheme 3) (Chen et al., 2018). Research indicated that
hexafluoroisopropanol (HFIP) demonstrated a significant
influence on the efficacy of the transformation. The
Knoevenagel condensation of 2-(pyrrolidin-1-yl)benzaldehyde
13 and indolin-2-one 14 triggered a [1,5]-hydride shift/
cyclization sequence to generate structurally diverse
spirooxindole-fused tetrahydroquinolines. With the help of
HFIP as a solvent, this strategy showed good tolerance of a
variety of substrates, resulting in the corresponding products
having moderate to good yields (32%–89% yield) with good to
high diastereoselectivities (61:39 to >20:1 dr). A plausible
mechanism displaying dual hydrogen bonds of HFIP with the
enol moiety of intermediate TS1/2 was proposed in their study,
which is depicted in Scheme 3.

Soon after, Xiao’s group uncovered the scandium-catalyzed
redox-neutral cascade [1,5]-hydride shift/cyclization of C4-
amine-substituted isatins 24 and 1,3-dicarbonyl compounds
25 (Scheme 4) (Zhu et al., 2019). In this process, the α,β-
unsaturated 1,3-dicarbonyl intermediate 29 acted as a hydride
acceptor. The optimized condition proved to be using
dichloroethane (DCE) as solvent, 5-Å molecular sieves as
additive, and Sc(OTf)3 as catalyst, delivering diverse
product 26 with acceptable to good yields (48%–99% yield)
and acceptable to excellent diastereoselectivities (1:1 to >20:1
dr). Intriguingly, the substrates containing asymmetrical
acyclic N-benzyl-N-methylamine were also tolerated in this
reaction, which has never been achieved before in most
hydride shift sequences. Besides, the chiral control of the
reaction was also investigated using chiral phosphoric acid
as catalyst; however, only poor enantioselectivity was observed

in this process. The plausible reaction mechanism is described
in Scheme 4.

Instead of the oxindole unit, indole substrates could also
participate in the [1,5]-hydride shift/cyclization sequence. In
2015, Sun and Xu’s group revealed a concise approach to
construct a spiro-tetrahydroquinolines incorporated indolenine
moiety 34 via the [1,5]-hydride shift/cyclization sequence
(Scheme 5) (Wang P.-F. et al., 2015). The hydride acceptor
iminium 38, formed through dehydration of substrates,
induced the hydride shift/cyclization process under acidic
conditions. Employing 2-substituted indoles 32 and 2-
(pyrrolidin-1-yl)benzaldehydes 33 as substrates, p-TsOH·H2O
as catalyst, and DCE as solvent, a wide range of desired target
products 34 were successfully obtained with good to excellent
yields and moderate diastereoselectivities. Interestingly, when the
inseparable mixture of diastereoisomers was washed with
isopropyl ether after rapid chromatography, the isolated
products 35 could be obtained in up to >20:1 dr. An
asymmetric version utilizing chiral BINOL-derived phosphoric
acid was also conducted under the same condition, but only
delivering the corresponding compound with low
enantioselectivity. A plausible mechanism of this methodology
is proposed in Scheme 5.

Recently, Xiao’s group reported the first regioselective
dearomatization between 4-hydroxindoles 43 or 4-
hydroxycarbazole 45 and 2-aminobenzaldehydes 42 to
construct spiro-tetrahydroquinolines via an aromatization-
driven hydride shift strategy (Scheme 6) (Duan et al., 2020b).
Under the catalysis of scandium complex and HFIP, a variety of
spirocyclic molecules incorporating indoles and carbazole
moieties were provided with moderate to high yields,
respectively. Meanwhile, the author found that the protection
of the OH group of 4-hydroxyindole with formic ester was
preferred to the generation of the spiroindolenine in HFIP. To
further explore the switchable dearomatization of indoles in the

SCHEME 4 | Cascade [1,5]-hydride shift/cyclization for synthesis of oxindole-fused tetrahydroquinolines.
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SCHEME 5 | Concise approach to spiroindolenine tetrahydroquinolines.

SCHEME 6 | The regioselective dearomatization/hydride shift sequence to build spiro-tetrahydroquinolines.
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carbocyclic ring and pyrrole ring, a variety of 2-
aminobenzaldehydes 42 reacting with ethyl (1H-indol-4-yl)
carbonate 47 were examined, giving the corresponding

spiroindolenines 48 a 62%–81% yield with up to >20:1 dr. A
plausible mechanism indicated that the protection of the
hydroxyl group of 47 shifted the direction to another reaction

SCHEME 7 | Divergent synthesis of tetrahydroquinoline-fused spiroindolenines.
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site and guaranteed the conduction of this reaction at the
electron-rich C-3 position of indole. Undoubtedly, this strategy
provided an answer to the limitation of switchable
dearomatization of fused bicyclic aromatic compounds.

The divergent synthesis of tetrahydroquinoline-fused
spiroindolenines through cascade dearomatization of indoles
with ortho-aminobenzaldehydes driven by the dearomatization
force was also achieved by the same group (Scheme 7) (Shen et al.,
2019). The type of substrate and catalyst was a critical factor in the
regulation of divergent synthesis of the final spirocyclic products.
Under the catalysis of HFIP acting as both solvent and reaction
promoter, an array of tetrahydroquinoline-fused
spiroindolenines 57 that contain diverse electron properties on
the aromatical ring of both substrates 55 and 56 were efficiently
synthesized at a 47%–97% yield with up to >20:1 dr. Moreover,
the addition of TsOH·H2O could further enable the
transformation of THQ-fused spiroindolenine to ring-

expanded derivatives 58 via the 1,2-migration process. When
adding Sc(OTf)3 as catalyst into the reaction instead of HFIP in
DCE at room temperature, the three-component reactions for the
assembly of tetrahydroquinoline-fused indolenines 59 were
successfully achieved, giving the corresponding product a
54%–66% yield with 2:1 to 3:1 dr. The plausible mechanisms
were described as shown in Scheme 7 to explain this divergent
synthesis. The process of synthesizing products 57 mainly
contained a Friedel-Crafts alkylation/hydrolyzation/[1,5]-
hydride shift/spirocyclization sequence, which was similar to a
previous work by Xiao’s group with the assistance of HFIP. As for
product 69, due to its strong Lewis acidity, Sc(OTf)3 was
beneficial for generating the α,β-unsaturated indolenine
intermediate 67 and then initiated [1,5]-hydride transfer/
cyclization processes to provide the target products 69.

In addition to Xiao’s elegant work above, a controllable
synthesis of spiroindolenines and benzazepinoindoles via

SCHEME 8 | Controllable syntheses of spiroindolenines and benzazepinoindoles.
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HFIP-mediated cascade [1,5]-hydride shift/cyclization was
successfully developed by the team of Li and Wang (Scheme
8) (Bai et al., 2019). As shown in Scheme 8 (top line), the
controllable process of the two privileged skeletons 72/73
features high efficiency, mild reaction conditions, and good
substrate tolerance, giving these two individual products a
moderate to high yield (with moderate to excellent
diastereoselectivities for product 73). The proposed
mechanism of rationalizing the formation of two products 72/
73 was illustrated, and the addition of TsOH·H2O played an
important role in this controllable process (Scheme 8, bottom
line). As for the mechanism of spiroindolenines (Scheme 8, right
column), the reactive intermediate 80 was formed by the
promotion of HFIP-mediated H-bonding interaction between
compounds 78 and 79, followed by the result of vinylogous imine
81, which was generated through dual hydrogen bond-promoted
dehydration and served as a hydride acceptor. Under the
activation of HFIP, the electrophilic iminium intermediate 82
was obtained via a [1,5]-hydride shift process, and then the
dearomatization product 83 was furnished after the
nucleophilic attack at the C3 of the indole moiety and
cyclization sequence. As for the mechanism of
benzazepinoindoles, the protonation of spiroindolenine 73
gave the intermediate 74, which generated an iminium
intermediate 75 after the bond cleavage of C3–C8 promoted
by rearomatization. Then, the final thermodynamic
benzazepinoindole 72 was offered after an attack of iminium
moiety on the C2 position of the indole ring (path A). The author
also proposed two alternative competitive migration processes

based on the observed phenomenon (pathways B and C), which
might furnish two possible products 72 and 76 via the “three-
center-two-electron” transition state. However, in fact, there was
no possible product 76 observed in this reaction. Notably, the
N−H bond in intermediate 77 could chelate the OH group of
HFIP with the addition of TsOH·H2O in the reaction medium,
which served as a significant steric hindrance to block the
nucleophilic attack of C2 of indole to the iminium moiety,
and only delivered spiroindolenines 73 rather than
benzazepinoindoles 72 (pathway D).

The Construction of a
Spiro-Tetrahydroquinoline Skeleton
Containing an (iso)Coumaranone Unit
In 2020, Deb’s group reported a diastereoselective olefination/
[1,5]-hydride shift/cyclization sequence to synthesize
spiroheterocycles from reaction of ortho amino benzaldehydes
84 or olefins 85/87 with active methylene compounds 86/88
(Scheme 9) (Bhowmik et al., 2021). The α,β-unsaturated electron-
deficient alkene used as a hydride acceptor enabled the synthesis
of novel spiro tetrahydroquinolines bearing 2- or 3-coumaranone
moieties with good to excellent yields (up to 99% yield).
Moreover, the employment of 4-hydroxycoumarin or 3-
isochromanone substituted olefins as substrates in the presence
of Yb(OTf)3 successfully provided access to a wide range of spiro-
tetrahydroquinolines 90/92 containing chromanone or 3-
isochromanone moieties with excellent to good yields and
diastereoselectivities.

SCHEME 9 | Cascade [1,5]-hydride shift/cyclization for synthesis of spirotetrahydroquinolines.
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Soon after, an efficient access to tetrahydroquinoline spiro-
heterocycles via the hydride shift cyclizations of aurones 94 was
developed by Xiao’s group (Scheme 10) (Duan et al., 2020a).
With low loading of Sc(OTf)3 in 2 mol%, a series of biologically

important spiro-heterocycles were achieved with good yield (up
to 95%) and good diastereoselectivities (up to >20:1 dr) under
mild conditions. The researchers proposed a plausible
mechanism for this reaction, as described in Scheme 10.

SCHEME 10 | Facial access to [5.4] spirocycles via hydride shift reaction.

SCHEME 11 | Concise synthesis of spiro-pyrazolone (A) and -imidazole (B) tetrahydroquinoline.
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Again, this work shows great potential of the driving force of
aromatization in hydride shift cyclization strategy.

The Construction of a
Spiro-Tetrahydroquinoline Skeleton
Containing Pyrazolone and Imidazole Units
The structure of pyrazolone derivatives is widely seen in
pharmaceuticals and drugs; hence, merging this valuable unit
into a spiro-tetrahydroquinoline skeleton by a [1,5]-hydride shift/
cyclization strategy could be a promising direction for the
discovery of new drugs. In 2015, a zinc chloride-catalyzed
protocol to synthesize a range of pyrazolone-fused spiro-
terahydroquinolines via a tandem [1,5]-hydride shift/
cyclization process was documented by Wang’s group
(Scheme 11A) (Zhao et al., 2015). The α,β-unsaturated
pyrazolone intermediate 101 served as a hydride acceptor and

engaged in the 1,5-hydride shift/cyclization sequence. This
methodology features broad substrate scope, high yields (up to
95% yield), good to excellent diastereoselectivities (up to >95:5
dr), as well as gram-scale capacity. Also, the reduction of one of
the spirocyclic compounds 101 using LiAlH4 in refluxing THF
condition was successfully realized, resulting in the
corresponding novel spiro-terahydroquinoline 102 having a
good reaction performance. However, efforts to explore an
enantioselective version of this reaction are still being
developed. The proposed mechanism for the construction of
spiro-tetrahydroquinoline is shown in Scheme 11A.

Very recently, Smirnov’s group reported an intramolecular
tandem [1,5]-hydride shift and cyclization to form spirocyclic
tetrahydroquinoline derivatives 107 under the promotion of
TiCl4 (Scheme 11B) (Zaitseva et al., 2021). The hydride shift
process was triggered by reactive α,β-unsaturated imidazole
fragments 105. This reaction demonstrated impressive

SCHEME 12 | A tandem 1,5-hydride transfer/cyclization process to construct isoxazolone-tetrahydroquinolines and 3-amino-3-carboxytetrahydroquinoline
derivatives.

SCHEME 13 | Synthesis of novel spiroisoxazol-5-one tetrahydroquinolines.
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substrate tolerance, giving the desirable spirocyclic compounds a
25%–95% yield under mild conditions. Moreover, a gram-scale
reaction was successfully conducted with up to 93% yield, paving
the way to potential research of antibacterial activity of those
bioactive molecules.

The Construction of a
Spiro-Tetrahydroquinoline Skeleton
Containing an Isoxazolone Unit
As important heterocyclic structures, isoxazol-5-one and
tetrahydroquinoline scaffolds are found in a wide range of
medicines and bioactive natural products (Sridharan et al.,
2011). Hence, merging these two structures to synthesize novel
spirocyclic molecules could be attractive for the discovery of lead
compounds. In 2013, an intramolecular tandem 1,5-hydride
transfer/cyclization process catalyzed by Lewis acid Sc(OTf)3
to construct isoxazolone-tetrahydroquinolines and 3-amino-3-
carboxytetrahydroquinoline derivatives has been established by
the group of Yuan (Scheme 12) (Han et al., 2013). In this method,
the (Z)-alkylidene azlactone 111 served as both a hydride donor
and an acceptor, offering an array of tetracyclic and pentacyclic
heterocycles containing two stereogenic centers and spirocyclic
skeletons with up to 99% yield with diastereoselectivities ranging
from 57:43 to 73:27. To demonstrate the synthetic utility of this
method, transformation of several spirocyclic products to 3-
amino-3-carboxytetrahydroquinoline derivatives 113 was also
demonstrated through an efficient ring opening process using
MeONa as base in MeOH with up to 97% yield, and 70:30 to 75:
25 dr.

Three years later, Wang’s group designed a ZnCl2-tatalyzed
Knoevenagel condensation/[1,5]-hydride shift/cyclization
sequence to synthesize a series of novel spiroisoxazol-5-one
tetrahydroquinolines (Scheme 13) (Zhao et al., 2016). In their
strategy, the condensation of 2-(pyrrolidin-1-yl)benzaldehyde
118 and 3-methylisoxazol-5(4H)-one 119 changed the reactive
intermediate 120 into a hydride donor and acceptor, which
underwent a subsequent [1,5]-hydride shift/cyclization process
to furnish the final product 122. As a result, this reaction featured
a broad substrate scope and a simple reaction operation,
providing the target spirocyclic products 117 with up to 97%
yield and up to >95:5 dr, which demonstrated the high efficiency
of this methodology.

The Construction of a
Spiro-Tetrahydroquinoline Skeleton
Containing a Coumarin Unit
In 2017, Xiao’s group developed an innovative and operationally
practical on-water catalysis to efficiently construct important
spiro-tetrahydroquinoline compounds through a novel cascade
SNAr/Knoevenagel condensation/[1,5]-hydride shift/cyclization
sequence (Scheme 14) (Zhu et al., 2017). Compared with
previous work, this reaction offered an example of cascade
C(sp3)–H functionalization sequence operated on water under
mild conditions instead of complex and harsh reaction
conditions. The Knoevenagel condensation of 2-
aminobenzaldehydes 123 and 1,3-dicarbonyl 124/126
compounds generated the reactive electron-deficient alkenes,
which further initialized the subsequent [1,5]-hydride shift/

SCHEME 14 | The water-promotion cascade reaction to synthesize spiro tetrahydroquinolines.
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SCHEME 15 | Facile synthesis of spirocyclic tetrahydroquinolines.

SCHEME 16 | [1,5]-Hydride shift reaction toward spirocyclic tetrahydroquinolines bearing chromanone moieties.
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cyclization route. Most of the substrates could be well-tolerated
and produce the required spirocyclic compounds 128/129 with
good yield and acceptable dr values as well as good atom and step
economy in one operation. Moreover, the construction of the
anti-bacterial agent (−)-PNU-286607 was also smoothly
conducted with an excellent yield of 93%, which further
demonstrated the power of this strategy.

To further expand the potential of that practical strategy, in
2021, the same group developed a similar work that used
environmental-friendly EtOH as solvent for the efficient
construction of the pharmaceutically significant spirocyclic
tetrahydroquinolines 147 (Scheme 15) (Yu et al., 2022). This
strategy featured high efficiency, mild reaction conditions,
high step and atom economy, and good substrate tolerance as
well, producing the target spirocyclic tetrahydroquinolines
containing different pharmaceutically interesting moieties
with impressive results. Moreover, this strategy has been
smoothly applied for the preparation of PUN-286607,
affording the target molecule 151 with up to 92% yield,
which demonstrated the powerful applicability of this
method.

In 2020, Wang’s group developed a catalyst-free tandem 1,5-
hydride shift/cyclization process to form polycyclic spiro
skeletons (Scheme 16) (Liu et al., 2020). The generated α,β-
unsaturated chroman intermediate 157 acted as a hydride
acceptor in the reaction process. This reaction features high
atom and step economy, and mild conditions, providing access
to a series of new spiro benzoquinolizidine-chromanones 154
with satisfactory yields (up to 91% yield) and excellent
diastereoselectivities (up to >20:1 dr). Notably, both the gram-
scale reaction and derivatization of the spirocyclic products were
smoothly conducted with satisfactory reaction performance,
which demonstrated the robustness of this methodology. A

plausible mechanistic pathway was proposed by Wang and co-
workers in Scheme 16.

The Construction of a
Spiro-Tetrahydroquinoline Skeleton
Containing Other Units
As early as 2009, the Kamilar research group developed a
practical two-step route for the asymmetric synthesis of the
(-)-PNU-286607 166, a promising spirocyclic
tetrahydroquinoline compound bearing barbituric acid moiety
(Scheme 17A) (Ruble et al., 2009). This is a limited case that
applied the cascade [1,5]-hydride shift/cyclization sequence to
prepare the chiral barbituric acid-fused spiro
tetrahydroquinoline. The whole reaction route started with
chiral trans-dimethylmorpholine 161 in MeCN as a reaction
mediated at a temperature of 65°C, and resulted in desirable
chiral molecule 163 with excellent stereochemical control after a
comprehensive study on the stereochemical process. Notably, the
isomerization of 166 using n-BuOH as solvent delivered the
diastereoisomer 165 with excellent reaction performance and
excellent ee value. The condensation of aldehyde 160 and
barbituric acid 164 led to the production of unsaturated
barbituric acid intermediate 162 as a hydride acceptor. This
exploration demonstrated the potential of [1,5]-hydride shift/
cyclization-involved C(sp3)–H activation to construct valuable
spiro-tetrahydroquinoline molecules.

Inspired by Kamilar’s unprecedented work, a sequential
Knoevenagel condensation/[1,5]-prototropic shift of tetramates
167 with aminobenzaldehydes 168 to furnish the functionalized
spirocyclic tetramates 170 was reported by Moloney’s group in
2019 (Scheme 17B) (Josa-Cullere et al., 2019). The α,β-
unsaturated 1,3-dicarbonyl intermediate 169 served as a

SCHEME 17 | Asymmetric synthesis of (-)-PNU-286607 (A) and spirocyclic tetramates (B).
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hydride acceptor and started the sequential reaction under
optimized conditions. Interestingly, the stability of isolated
major products was dependent on the solvent and on the
nature of the azacycle, and the final products were obtained
with low to good yields and up to 98:2 dr.

One year later, Xiao’s group developed a rapid buildup of
polycyclic skeleton directly from phenols 171 and ortho-
aminobenzaldehydes 172 via cascade [1,5]-hydride shift/
dearomative cyclizations (Scheme 18) (Li et al., 2018a). HFIP
was used as both reaction promoter and solvent, enabling one-

SCHEME 18 | Synthesis of spirocyclic skeleton via cascade dearomative cyclization.

SCHEME 19 | Aromatization-driven cascade sequence to prepare spirocycles.
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step construction of structurally diverse spiro-
tetrahydroquinolines with a good yield (up to 98%) and with
high diastereoselectivities (up to >20:1), good functional group
compatibilities, as well as gram-scale capacity. Importantly, this is
an unprecedented strategy that employed in situ generated
o-QMs 173 as novel hydride acceptors and aromatization as
the driving force to initiate the hydride shift/cyclization sequence.
Undoubtedly, this novel method opens a new avenue for the
assembly of complex molecules via a cascade hydride shift/
cyclization strategy. The researchers proposed a possible
mechanism to point out the significance of HFIP (Scheme 18).

In 2019, based on previous works, the same group continued
to use HFIP as the solvent to develop p-QMs-triggered cascade
[1,5]-hydride shift/spirocyclization and hydrolysis reaction. This
strategy enabled the synthesis of spirocyclic products 181 with
good to high yields (52%–99%) under mild conditions, featuring
room temperature, additive-free, and good functional group
tolerance (Scheme 19) (Lv et al., 2019). Interestingly, an array
of ortho-benzylated anilines 183 were obtained with high yields
when using acyclic amines incorporating N,N′-dibenzyl,
N-methyl-N′-benzyl, and N,N′-diethyl groups. The plausible
reaction mechanism indicated that the rearomatic complex
185 with iminium ion generated by the intramolecular [1,5]-
hydride transfer underwent two reaction process to produce the
dearomatic product 187 (path A) and the hydrolysis process
product 188 (path B, R2 =Me or Ph) based on the properties of R2

groups. Undoubtedly, Xiao’s work demonstrated that
aromatization serving as a powerful driving force could trigger
hydride shift-involved cascade reactions for the buildup of
architecturally complex molecules.

In addition to the above works, the [1,5]-hydride shift strategy
can also be used for the construction of spirocyclic
tetrahydroquinolines containing cycloalkane units. In 2006,
Tverdokhlebov and co-authors disclosed an interaction of
ortho-aminobenzaldehydes 189 with substituted acetonitriles
190 promoted by Et3N in EtOH to yield tetrahydroquinoline-
2-spirocycloalkanes 192 with high yields (Scheme 20)
(Tverdokhlebov et al., 2006). According to the tert-amino

effect mechanism, the reaction was assumed to move forward
via sequential Knoevenagel condensation/[1,5]-hydrogen shift/
ring closure of the formed adduct.

SUMMARY AND PROSPECT

Spiro-tetrahydroquinolines are unique molecules in medicinal
chemistry and pharmaceuticals that have attracted considerable
attention from the industrial and academic community. In the
past years, remarkable advancements have been achieved in the
construction of these useful compounds via the cascade [1,5]-
hydride shift-involved C(sp3)–H activation reaction. In this
review, we have systematically highlighted the utility and
versatility of the cascade [1,5]-hydride shift/cyclization
reaction for constructing spiro-tetrahydroquinoline derivatives.
These valuable spirocyclic molecules have been well categorized
according to the structural type of final products. Despite the
significant developments that have been made in this growing
field, some challenges still need to addressed: (1) The limitation of
substrate scope, structural diversity of product, complex reaction
conditions, and problem of large-scale capacity still limit its
potential in organic synthesis (Mori et al., 2014; Liu et al.,
2018; Xing et al., 2020; Yuan et al., 2020; Guo et al., 2021;
Sakai et al., 2021; Yang X. et al., 2021; Xie et al., 2022). (2)
The current application of the cascade [1,5]-hydride shift/
cyclization strategy mainly focuses on the construction of five-
and six-membered spiro-tetrahydroquinoline. However,
exploration of building a spiro-architecture with a challenging
ring size (like divergent synthesis of medium ring size) as well as
conducting total synthesis of a structurally complex natural
product remain elusive (Li et al., 2018b; Wang et al., 2018;
Kataoka et al., 2019; Hu et al., 2020; Shen et al., 2020; Hu
et al., 2021a; Hu et al., 2021b; Wang et al., 2021; Yang S.
et al., 2021). (3) Notably, the application of [1,5]-hydride shift/
cyclization strategy in stereoselective chemistry was barely
reported (Mori et al., 2018). Considerable efforts should be
focused on the synthesis of chiral spirocyclic molecules with

SCHEME 20 | The construction of tetrahydroquinoline-2-spirocycloalkanes.
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the application of this powerful strategy. (4) Finally, the bio-
evaluation of target spirocyclic products for new drug discovery
and research is quite far behind its synthetic chemistry (Sridharan
et al., 2011; Wang Y. et al., 2015; Muthukrishnan et al., 2019).
Further medicinal research of those bioactive compounds should
be devoted to this field in the near future. We hope our review
could provide a quick look into and offer some inspiration for the
research on hydride shift strategy in the future.
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