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Cancer stem cells (CSCs), characterized by infinite proliferation and self-renewal,
greatly challenge tumor therapy. Research into their plasticity, dynamic instability, and
immune microenvironment interactions may help overcome this obstacle. Data on the
stemness indices (mRNAsi), gene mutations, copy number variations (CNV), tumor
mutation burden (TMB), and corresponding clinical characteristics were obtained from
The Cancer Genome Atlas (TCGA) and UCSC Xena Browser. The infiltrating immune
cells in stomach adenocarcinoma (STAD) tissues were predicted using the CIBERSORT
method. Differentially expressed genes (DEGs) between the normal and tumor tissues
were used to construct prognostic models with weighted gene co-expression network
analysis (WGCNA) and Lasso regression. The association between cancer stemness,
gene mutations, and immune responses was evaluated in STAD. A total of 6,739 DEGs
were identified between the normal and tumor tissues. DEGs in the brown (containing
19 genes) and blue (containing 209 genes) co-expression modules were used to
perform survival analysis based on Cox regression. A nine-gene signature prognostic
model (ARHGEF38-IT1, CCDC15, CPZ, DNASE1L2, NUDT10, PASK, PLCL1, PRR5-
ARHGAP8, and SYCE2) was constructed from 178 survival-related DEGs that were
significantly related to overall survival, clinical characteristics, tumor microenvironment
immune cells, TMB, and cancer-related pathways in STAD. Gene correlation was
significant across the prognostic model, CNVs, and drug sensitivity. Our findings provide
a prognostic model and highlight potential mechanisms and associated factors (immune
microenvironment and mutation status) useful for targeting CSCs.

Keywords: stomach adenocarcinoma, cancer stemness, clinical characteristics, tumor microenvironment, tumor
mutation burden
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INTRODUCTION

Globally, stomach cancer is the fifth leading cancer
(7% of all cases) and the third leading cause of cancer-related
death, accounting for 9% of deaths (Brenner et al., 2009).
The survival and prognosis of stomach cancer remain poor,
despite significant advances in treatment options, such as
surgery, chemotherapy, radiation therapy, immunotherapy,
and gene therapy (Tan, 2019). Most patients with stomach
cancer are diagnosed with metastasis, commonly localized to
the liver, abdominal lining, lungs, lymph nodes, and bones
(Digklia and Wagner, 2016). Many factors are crucial for the
development of gastric cancer, including Helicobacter pylori
infection, smoking, alcohol, and smoked food consumption,
obesity, genetic syndromes, and chronic atrophic gastritis
(Poorolajal et al., 2020). Delineating the complicated
mechanisms involved in stomach cancer pathogenesis can
help mitigate its spread.

Cancer stem cells (CSCs) can self-renew, proliferate infinitely,
and form heterogeneous tumor cell populations. The mRNA
expression-based stemness index (mRNAsi) was used to
quantify stemness. Higher mRNAsi scores are associated
with active biological processes in CSCs and greater tumor
dedifferentiation, as reflected by histopathological grades
(Vlashi and Pajonk, 2015). Compared with cancer cells
without stemness, CSCs possess enhanced ability for tumor
progression, drug resistance, metastasis, and self-renewal
through self-protection mechanisms, such as inhibition of
apoptosis pathways, DNA damage repair, and production of
drug-resistant proteins (Beck and Blanpain, 2013). To solve
the difficulties associated with cancer treatment, researchers
are searching for drugs that specifically target CSC surface
markers or related signaling pathways (Dawood et al., 2014).
Recently, an increasing number of studies have reported on
the factors that affect the dynamic instability of CSCs, such
as gene heterogeneity and the mutual influence of the tumor
immune microenvironment (Miranda et al., 2019). For example,
the tumor immune microenvironment of CSCs consistently
infiltrates several natural killer cells (NKs), cytotoxic CD8+
T cells (CD8+ T), CD4+ T helper cells (CD4+ T), tumor-
associated macrophages, and tumor-associated neutrophils
(Ahmed et al., 2018). These immune cells in the CSC niche
play an important role in enabling the evasion of immune
surveillance and induce tumor growth, migration, and stemness
maintenance (Vahidian et al., 2019). Additional epigenetic
and mutational events also induce CSC emergence and
adenocarcinoma, including stomach adenocarcinoma (STAD)
(Bessède et al., 2015). Some stemness factors such as Sox2,
Oct3, Oct4, and Nanog are related to pluripotent stem cells
in STAD (Akhavan-Niaki and Samadani, 2014). The stemness
of STAD was also similarly dependent on cancer-related
signaling pathways, such as Notch and mTORC1 signaling,
to promote gastric cancer cell proliferation. These studies
demonstrated that targeting Notch and mTOR pathways in
combination might be a potential therapeutic strategy for
patients with STAD (Hibdon et al., 2019). Research progress
on the targeting effect and regulation of CSCs has focused on

cytokines, signal transduction pathway inhibitors, non-coding
RNAs, and other CSC-related proteins (Gulaia et al., 2018).
Moreover, the effective and persistent antitumor activity of
HER2-directed chimeric antigen receptor T cells affected
the maintenance of in vitro CSC subpopulations of STAD
and xenotransplanted in vivo tumors. The development and
clinical application of adoptive immunotherapy targeting CSCs
in patients with STAD may be possible in the near future
(Song et al., 2018).

Here, we identified and explored CSC-related differentially
expressed genes (DEGs) in STAD, the related biological processes
(BP), and enhanced pathways to better understand their
functions. Furthermore, the prognostic model based on the
stemness index in STAD showed strong relevance to the clinical
characteristics and survival rates. All genes in the prognostic
model were crucial; some were divided by copy number
variations (CNV), and some were divided by gene mutations.
The correlation between gene expression and drug sensitivity
is important for proper guidance of CSC drug research in
the future. The whole prognostic model was evaluated using
a risk score. We obtained insights into the interface of the
infiltrating immune system cells, tumor mutation burden (TMB),
and pathways related to stemness in STAD.

MATERIALS AND METHODS

Genome-Wide Omics Data in STAD
The gene expression RNAseq (HTSeq-FPKM GDC Hub) and
corresponding clinical characteristics were downloaded from
The Cancer Genome Atlas (TCGA) website1. The clinical
characteristics included sex (male and female), age (from
35 to 90 years old), pathologic T (tumor size, including
T1, T2, T3, T4, and TX), pathologic M (tumor metastasis,
including M0, M1, and MX), pathologic N (tumor lymph
node metastasis, including N0, N1, N2, and NX), pathologic
stage (stages I, II, III, and IV), and survival information
(survival time and status). The data for mRNA expression-
based stemness index (mRNAsi) (stemness score-RNA based on
Pan-Cancer Atlas Hub), somatic mutation (VarScan2 Variant
Aggregation and Masking), and CNV [GISTIC-focal score by
gene Genomic Data Commons (GDC) Hub] were downloaded
from UCSC Xena datasets2. The Maftools R package3 was
used to calculate the distribution of TMB according to
somatic mutation data, which also generated the waterfall plot
of mutation genes.

The stemness of STAD cancer cells was evaluated using
mRNAsi (0–1). The closer the value was to 1, the stronger the
stemness characteristics of the cancer cells. The Kaplan–Meier
survival analysis method was used to describe the overall survival
of patients with STAD based on mRNAsi, which divided mRNAsi
into two groups (high and low mRNAsi groups). P < 0.05 was
considered a significant difference.

1https://portal.gdc.cancer.gov/
2https://xenabrowser.net/datapages/
3https://www.bioconductor.org/packages/release/bioc/html/maftools.html
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Identification of DEGs Between Normal
and Tumor Tissues in STAD
The limma package4 was used for the analysis of DEGs between
normal and tumor tissues in STAD. The inclusion criteria for
DECs were p < 0.05, false discovery rate (FDR) filter ≤ 0.05, and
log (fold change) filter ≥ 1.

Weighted Gene Co-expression Network
Analysis to Select the Co-expression
Modules and Hub Genes
The identified DEGs between normal and tumor tissues in
STAD were used to construct co-expression modules with the
weighted gene co-expression network (WGCNA) R package5.
The goodSamplesGenes function in the WGCNA R package
was used to test the data quality of the included samples
(Li and Zhan, 2019). Pearson correlation coefficients between
each gene module were used to construct a matrix to establish
the module-trait relationship between DEG expression and the
corresponding mRNAsi according to the β value (soft-threshold
value). The modules with the highest correlation to both
mRNAsi and EREG-mRNAsi were selected for further research.
Genetic significance (GS) was represented as the level of
correlation between DEG expression and mRNAsi. The GS
for mRNAsi was also calculated using linear regression. The
inclusion criteria for a hub gene were set as follows: module
membership > 0.8, and GS > 0.5.

Cox Regression Survival and Functional
Enrichment Analyses of DEGs in Blue
and Brown Co-expression Modules
Cox regression analysis was used to calculate the regression
coefficient for each hub of DEGs between normal and
tumor tissues in blue and brown co-expression modules.
We used the survival R package6 to obtain survival-related
DEGs and construct a prognostic model. Survival-related
DEGs were analyzed using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways7 to explore the
cancer-involved signaling pathways. Gene Ontology terms
analysis (Cytoscape v3.8) was used to analyze the BP of
the survival-related DEGs. P < 0.05, and FDR < 0.05
were applied as the inclusion criteria for KEGG pathway
and GO analysis. The enrichment P-value was calculated
based on 10,000 permutations, and the FDR value was
calculated with the Benjamini–Hochberg multiple testing
correction procedure. The protein and protein interaction (PPI)
network was used to construct an interaction network of the
survival-related DEGs8.

4https://www.bioconductor.org/packages/release/bioc/html/limma.html
5https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/
WGCNA/
6https://www.rdocumentation.org/packages/survival/versions/3.2-3
7http://ci.smu.edu.cn/genclip3/analysis.php
8https://string-db.org/cgi/input?sessionId=bEj4yF0DUhDV&input_page_show_
search=on

Lasso Regression Construction and
Verification of STAD
Survival-related DEGs (risk ratio > 1.4 or risk ratio < 0.7,
p < 0.05) were selected to construct Lasso regression using the
glmnet R package9 (Li and Zhan, 2020). The STAD samples
were divided into high- and low-risk score groups according
to the median risk score. The multiple receiver operating
characteristic (ROC) curve was plotted using the R package10

to show the area under the curve (AUC) of risk score, age,
sex, grade, stage, T stage, M stage, and N stage in STAD.
Principal component analysis (PCA) was used to test whether
the risk score was a good measurement for sample classification
in STAD. The Kaplan–Meier method evaluated the relevance
of overall survival in risk score groups. Corrplot R package11

was used to perform the correlation analysis between the
expression of DEGs in the prognostic model and CNV using
the Spearman method (p < 0.05). The association between
the expression of DEGs in the prognostic model and drug
sensitivity was performed using the Corrplot R package with
the Pearman method (p < 0.05) based on the corresponding
data from CellMiner12.

Proportions of Immune Cells in STAD
Based on the CIBERSORT Method
To quantify the proportions of immune cells in STAD, the
CIBERSORT algorithm with the LM22 gene signature was used.
This is a popular method to discriminate between 22 human
immune cell phenotypes (naïve B cells, memory B cells, naïve
CD4+ T cells, resting memory CD4+ T cells, activated CD4+
T cells, CD8+ T cells, gamma delta T cells, follicular helper
T cells, regulatory T cells (Tregs), plasma cells, resting NK
cells, activated NK cells, M0 macrophages, M1 macrophages, M2
macrophages, monocytes, resting mast cells, activated mast cells,
resting dendritic cells, activated dendritic cells, eosinophils, and
neutrophils). Gene expression profiles of STAD from the TCGA
database were uploaded to the CIBERSORT web portal13 with the
algorithm running 1,000 permutations.

Correlation of Risk Score Based on the
Prognostic Model With Clinical
Characteristics and Immune Cells
The correlation of clinical characteristics, including age at
initial diagnosis, sex, pathologic M, pathologic N, pathologic
T, pathologic stage, and cancer status, between the high- and
low-risk score groups was performed using the pheatmap R
package14. Additionally, the clinical characteristics and risk
scores of patients with STAD were analyzed using univariate

9https://cran.r-project.org/web/packages/glmnet/index.html
10https://www.rdocumentation.org/packages/pROC/versions/1.16.2/topics/roc
11https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html
12https://discover.nci.nih.gov/cellminer/
13http://cibersort.stanford.edu/
14https://www.rdocumentation.org/packages/pheatmap/versions/1.0.12/topics/
pheatmap
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and multivariate Cox regression survival models15. The clinical
characteristics and risk score-based assessment nomogram16

were used to evaluate prognosis in STAD patients (1-, 2-, and
3-year survival rates). Different proportions of immune cells
between the high- and low-risk score groups analyzed using the
ggpubr R package17 (p < 0.05). Furthermore, the correlation
of each proportion of immune cells between the high- and
low-risk score groups was analyzed using the Corrplot R
package (p < 0.05). The correlation between the risk score and
TMB was plotted using GraphPad Prism 8 with Spearman’s
software (p < 0.05).

Gene Set Enrichment Analysis Identified
Different Gene Sets Between the High-
and Low-Risk Score Groups
Gene set enrichment analysis (GSEA) (version 4.1.0) was used
to identify classes of genes associated with phenotypes of risk
scores that were overrepresented in a large set of genes. The
enrichment P-value was calculated based on 1,000 permutations,
and the FDR value was calculated with the Benjamini-
Hochberg multiple testing correction procedure (p < 0.05,
FDR q-val < 0.05).

RESULTS

mRNAsi Was Significantly Associated
With STAD
The flowchart shown in Figure 1A summarizes the overall
bioinformatics analysis of the association between cancer
stemness, gene mutations, and immune response in STAD. The
data of mRNAsi were used to perform the overall survival analysis
in STAD (Supplementary Table 1). The mRNAsi subgroups
were clustered according to the median value of mRNAsi in
STAD. The overall survival was significantly different between
the high and low mRNAsi groups (Figure 1B, p = 0.002).
A significant difference in mRNAsi was observed between normal
and tumor tissues in STAD (Figure 1C). A total of 6,739 DEGs
were identified between normal and tumor tissues in STAD, of
which 1,146 were upregulated and 5,593 were downregulated
(Figure 1D and Supplementary Table 2).

WGCNA: Identification of the Most
Significant Modules and Genes
WGCNA was performed to select the most significant gene
modules associated with STAD stemness. When β = 4 (a
soft threshold), the scale-free R2 was 0.940 to obtain a
higher average connectivity degree (Figures 2A,B). The
6,739 DEGs were clustered into 16 gene co-expression
modules, including black, blue, brown, cyan, green-yellow,
gray, gray60, light cyan, magenta, midnight blue, pink,

15http://rstudio-pubs-static.s3.amazonaws.com/5896_
8f0fed2ccbbd42489276e554a05af87e.html
16https://cran.r-project.org/web/packages/rms/index.html
17https://cran.r-project.org/web/packages/ggpubr/index.html

purple, red, salmon, tan, and turquoise (Figures 2C,D).
In the identified gene co-expression modules, the black
and brown co-expression modules were most significantly
related to mRNAsi and EREG-mRNAsi. The blue module
was significantly associated with mRNAsi, with a correlation
close to -0.78, and with EREG-mRNAsi, with a correlation
close to -0.51. The brown module was significantly associated
with mRNAsi, with a correlation of 0.77, and with EREG-
mRNAsi, with a correlation of 0.39. In addition, the correlation
between module membership and GS in the brown co-
expression module was significantly associated with mRNAsi,
with a correlation of 0.9 (Figure 2E, and p < 0.05). The
correlation between module membership and GS in the
blue co-expression module was significantly associated with
mRNAsi, with a correlation of 0.89 (Figure 2F, and p < 0.05).
Thus, blue and brown co-expression modules were used for
subsequent analyses. Furthermore, hub genes were identified
in the blue and brown co-expression modules, with module
membership > 0.8 and GS > 0.5. There were 19 and 209 hub
genes in the brown and blue co-expression modules, respectively
(Supplementary Table 3).

Survival Analysis and Functional
Enrichment of Hub DEGs in the Brown
and Blue Co-expression Modules
The 228 hub genes identified in the brown and blue co-
expression modules were used for survival analysis with Cox
regression analysis. A total of 178 hub DEGs in the brown
and blue co-expression modules were significantly related
to the risk ratio in STAD (Figure 3A and Supplementary
Table 4). These survival-related hub DEGs were further
enriched for pathway analysis, and 12 significant pathways
were obtained, including cell cycle checkpoints, cell
cycle, cell cycle (mitotic), G2/M checkpoints, NOTCH
signaling, homology directed repair, DNA double-strand
break repair, signal transduction, purine metabolism, and
Ras signaling pathways (Figure 3B and Supplementary
Table 5). These survival-related hub DEGs also showed
GO enrichment according to BP to explore the potentially
involved mechanisms of action of CSCs. Seventy-two BP
enrichments were obtained, including maintenance of
gastrointestinal epithelium, mesenchyme morphogenesis,
response to chemokines, regulation of neuronal synaptic
plasticity, somatic diversification of immunoglobulins, fatty
acid transport, mitotic cell cycle checkpoint, regulation of
centrosome cycle, cyclin-dependent protein serine/threonine
kinase regulator activity, lamellipodium assembly, regulation of
ATPase activity, DNA unwinding involved in DNA replication,
protein localization to chromosome, centromeric region,
and cortical cytoskeleton organization (Figure 3C and
Supplementary Table 6). The PPI network obtained a high
combined score and co-expression correlation between some
of the interaction proteins. For example, UHRF1 and MCM2,
CHAF1A and MCM2, MCM2 and MSH2, ZFP36 and DUSP1,
POLE and MCM2, and POLE and MSH2 (Figure 3D and
Supplementary Table 7).
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FIGURE 1 | Identification of DEGs betweennormal and tumor tissues in STAD. (A) The flow chart for identification of mRNAsi related signature in STAD. (B)
Kaplan–Meier curves show that the low mRNAsi group had greater mortality than the high mRNAsi group. (C) Differences in mRNAsi between normal and tumor
tissues in STAD. (D) Identification of DEGs between normal and tumor tissues in STAD; green and red indicate downregulated and upregulated genes, respectively.

Construction of a Prognostic Model
for STAD
A total of 18 survival-related DEGs (risk ratio > 1.4 or risk
ratio < 0.7, p < 0.05) were selected to perform Lasso regression,
including MAPK10, CPZ, ARHGAP20, FAT3, PLCL1, CCL14,
BMPER, NUDT10, HSPB2, JAKMIP2, PRR5-ARHGAP8,
DNASE1L2, ZGRF1, DNAAF3, CCDC15, ARHGEF38-IT1,
SYCE2, and PASK. Furthermore, the nine mRNAsi survival-
related DEG prognostic model (ARHGEF38-IT1, CCDC15,
CPZ, DNAAF3, DNASE1L2, NUDT10, PASK, PRR5-ARHGAP8,
and SYCE2) was constructed with Lasso regression to improve
the predicted accuracy for overall survival in STAD, when log
(lambda) was between -3 and -4 (Figures 4A,B). The ROC curve
showed that the AUC value was higher than other clinical indices
(age, sex, grade, stage, T stage, N stage, and M stage), which
indicated that the nine mRNAsi survival-related DEG prognostic
model was better than other clinical indices currently used to

evaluate the prognostic status of STAD patients (Figure 4C).
A survival risk heatmap showed that STAD patients with higher
risk scores suffered from higher mortality (Figure 4D). The PCA
plot also proved that the nine mRNAsi survival-related DEG
prognostic model had the power to distinguish two separate
groups of STAD patients (Figure 4E). Additionally, overall
survival showed statistical significance between the high- and
low-risk score groups using the Kaplan–Meier survival curve
(Figure 4F and Supplementary Table 8).

Correlation analysis between the expression of DEGs in
the prognostic model and CNV showed four CNV-driven
DEGs, including DNASE1L2, PASK, and PRR5-ARHGAP8.
For example, the expression of DNASE1L2 was downregulated
in the single deletion CNV group compared with that in
the normal CNV group. However, it was upregulated in the
single-gain CNV group in STAD (p < 0.05). The other
two DEGs in the prognostic model showed a similar trend

Frontiers in Genetics | www.frontiersin.org 5 December 2020 | Volume 11 | Article 595477

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-595477 January 12, 2022 Time: 16:51 # 6

Ye et al. CCS Association in STAD

FIGURE 2 | Weighted gene co-expression network of STAD. (A,B) Soft threshold to identify the WGCNA module. (C) The cluster dendrogram of co-expression
modules in STAD. (D) Correlation between the gene module and clinical traits, including mRNAsi and EREG-mRNAsi. (E,F) Scatter plot of module eigen genes in the
blue and brown co-expression modules.
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FIGURE 3 | Function enrichment analysis of survival-related DEGs in STAD. (A) Prognosis-related genes by Cox regression in blue and brown co-expression
modules. (B) KEGG pathway of survival-related DEGs in blue and brown co-expression modules. (C) GO-BP analysis of survival-related DEGs in blue and brown
co-expression modules. A lower P-value and more significant enrichment were shown with greater node size. The same color indicated the same function group.
Among the groups, we chose a representative of the most significant term and lag highlighted. (D) PPI network of survival-related DEGs in blue and brown
co-expression modules.
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FIGURE 4 | Lasso regression identified the prognostic model in STAD. (A,B) Lasso regression complexity was controlled by lambda using the glmnet R package.
(C) The multi-ROC of risk score and clinical features. (D) Risk plot between the high- and low-risk score groups. (E) Principal component analysis for the risk scores.
(F) Overall survival analysis between high and low-risk score groups.
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(Figure 5A and Supplementary Table 9). The results suggested
that some dysregulation of key genes might be driven by CNV in
STAD. The gene mutation status was also shown with a waterfall
plot. The overall average mutation frequency of DEGs in the
prognostic model ranged from 0.10 to 38%. The PSK mutation
frequency is listed at the top, and the PLCL1 mutation frequency
was more than 20% in STAD (Figure 5B and Supplementary
Table 10). The results suggested that dysregulation of key genes
might be driven by mutations in STAD. The correlation analysis
between DEG expression in the prognostic model showed that
some genes were significantly associated with drug sensitivity.
For example, there was a significant correlation between the
expression of DNASE1L2 and hydroxyurea, uracil mustard,
chlorambucil, triethylenemelamine, pipobroman, thiotepa, and
chelerythrine. Additionally, there was a significant correlation
between the expression of PLCL1, SYCE2, PASK, and nelarabine
(Figure 5C and Supplementary Table 11). These results provide
potential directions for the development of drugs in the future.

Association of Risk Score With Clinical
Features, Immune Cells, and TMB
The heatmap shows that risk groups were significantly associated
with clinical features, including pathologic M stage and cancer
status (Figure 6A and Supplementary Table 12). Univariate
Cox regression analysis revealed that age at initial diagnosis,
pathologic M stage, pathologic T stage, pathologic stage, and
risk score were significantly correlated with overall survival
(Figure 6B). This indicated that the risk score could be a
risk factor for STAD. Multivariate Cox regression analysis
revealed that pathologic M stage and risk score were significantly
correlated with overall survival (Figure 6C). This indicated that
the risk score could be an independent risk factor for STAD.
Furthermore, the nomogram plot shows points for basic clinical
characteristics (age at initial diagnosis, sex, pathologic M stage,
pathologic T stage, pathologic N stage, and pathologic stage)
and risk score to estimate the patient survival rate according
to the combined scoring system (Figure 6D). It is a convenient
method to guide clinical applications. The proportion of immune
cells in STAD was significantly different between the high- and
low-risk groups, including Tregs, T cell gamma delta, CD8+ T
cells, resting dendritic cells, activated NK cells, M0 macrophages,
memory B cells, and activated mast cells (Figure 6E and
Supplementary Table 13). Different proportions of immune cells
between risk score subtypes are correlated with each other; for
example, CD8+ T cells and M0 macrophages, CD8+ T cells and
activated mast cells, resting dendritic cells, and M0 macrophages
(Figure 6F). The risk score was negatively correlated with the
TMB score (Figure 6G and Supplementary Table 13). This
indicated that the high-risk score group might have a poor
prognosis with a low TMB score.

GSEA Identified Some Significant Gene
Sets Between the High- and Low-Risk
Score Groups
The STAD samples were divided into two groups according
to the risk score. Some significant gene sets were enriched in

the high-risk score group, including gap junction, arachidonic
acid metabolism, neuroactive ligand receptor interaction, cell
adhesion molecule cams, calcium signaling pathway, focal
adhesion, complement and coagulation cascades, and EMC
receptor interaction. Other significant gene sets were enriched
in the low-risk score group, including mismatch repair, DNA
replication, homologous recombination, spliceosome, cell cycle,
proteasome, protein export, RNA degradation, p53 signaling
pathway, and ubiquitin-mediated proteolysis (Supplementary
Table 13). Example plots are shown in Figure 7.

DISCUSSION

The intrinsic characteristics of CSCs include self-renewal and
multipotent properties, as well as proliferative potential, which
give certain cellular subpopulations the ability to initiate, develop,
and progress cancer (Huang et al., 2020). Dormant CSCs may
be activated by a series of gene mutation accumulations and
undergo a significant number of DNA sequence alterations
(Sengupta and Cancelas, 2010). These progressively accumulated
mutations drive immune escape and drug resistance in CSCs
(Rosa et al., 2016). CSCs have been reported in most human
tumors using fluorescence-activated cell sorting (FACS) and
sphere-forming assays (Jariyal et al., 2019). Common CSC
identification markers include ALDH1A1, CD34, CD24, CD44,
CD123, CD133, CD117, and EpCAM (Kim et al., 2016). These
specific CSC markers can be selectively targeted and used to
treat aggressive, metastatic, and relapse tumors. For example,
targeting the overexpressed CD123 marker on CD34+ CD38−
leukemic stem cells in acute myelogenous leukemia impairs
leukemic stem cells homing to the bone marrow and induces
a decrease in the overall AML cell repopulation (Jin et al.,
2009). Packaged nanoparticles with miR-34a can downregulate
the level of CD44 marker of CSCs in a mouse model of
prostate cancer (Wang et al., 2016). Although the success
of targeting CSCs has been limited, this may soon be a
viable option for intervention strategies, disease identification,
metastasis prevention, and identification of selective drug targets
(Kabakov et al., 2020). Recently, many CSCs have demonstrated
phenotypic plasticity and altered their transcriptomes under
therapeutic challenges to escape destruction, cooperating with
intratumoral heterogeneity and the immune microenvironment
(Miranda et al., 2019). Bioinformatics analysis designed to reveal
the association between cancer cell stemness, gene mutation,
and the immune microenvironment in STAD provided a
prognostic model, potential mechanisms, and the associated
factors (immune microenvironment and mutation status) of
targeting CSCs for future research.

To our knowledge, this is the first systematic analysis of
the association between cancer cell stemness, gene mutation,
and the immune microenvironment in STAD. These factors
were intimately linked to STAD. A total of 6,739 DEGs were
identified between normal and tumor tissues in STAD, and
further WGCNA identified that black and brown gene co-
expression modules were most significantly related to mRNAsi
and EREG-mRNAsi. Some of the identified 178 survival and
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FIGURE 5 | Correlation analysis between the expression of genes in prognostic signatures and CNV, mutation, and drug sensitivity. (A) Correlation analysis between
the expression of genes (DNASE1L2, PASK, and PRR5-ARHGAP8) in prognostic signatures and CNV. (B) The mutation distribution of genes (ARHGEF38-IT1,
CCDC15, CPZ, DNASE1L2, NUDT10, PASK, PLCL1, PRR5-ARHGAP8, and SYCE2) in prognostic signatures. (C) Correlation analysis between the expression of
genes (DNASE1L2, PLCL1, SYCE2, and PASK) in prognostic signatures and drug sensitivity.

Frontiers in Genetics | www.frontiersin.org 10 December 2020 | Volume 11 | Article 595477

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-595477 January 12, 2022 Time: 16:51 # 11

Ye et al. CCS Association in STAD

FIGURE 6 | Correlation of risk scores based on the prognostic model with clinical characteristics, immune cells, and TMB. (A) Heatmap of clinical correlation
between high and low-risk score groups. (B) Univariate Cox regression analysis of risk factors. (C) Multivariate Cox regression analysis of risk factors. (D) The risk
score and clinical information assessment nomogram to evaluate STAD prognosis (1-, 2-, and 3-year survival rates). (E) Boxplot shows the ratio differences of eight
immune cells between the high- and low-risk score groups. The Wilcoxon rank sum was used for the significance test. (F) The correlation between these eight
immune cells. (G) The correlation of risk scores based on the prognostic model with TMB. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

mRNAsi-related hub DEGs in this study have already attracted
great attention in the field of CSCs. For example, the KIT
gene encodes the human homolog of the proto-oncogenic
receptor tyrosine kinase c-kit. The C-kit was identified as a

transmembrane receptor for mast cell growth factor (stem cell
factor). Dysregulation or mutation of KIT is known to be
associated with gastrointestinal tumors (Hirota et al., 1998). The
c-kit receptor, as a stem cell factor, mediates the development of

Frontiers in Genetics | www.frontiersin.org 11 December 2020 | Volume 11 | Article 595477

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-595477 January 12, 2022 Time: 16:51 # 12

Ye et al. CCS Association in STAD

FIGURE 7 | GSEA identified different gene sets between the high and low-risk score groups in STAD. (A) The cell cycle pathway was significantly different between
the high- and low-risk score groups. (B) The RNA degradation pathway was significantly different between the high- and low-risk score groups. (C) The
ubiquitin-mediated proteolysis pathway was significantly different between the high- and low-risk score groups. (D) The cell adhesion molecules pathway was
significantly different between the high- and low-risk score groups. (E) The EMC receptor interaction pathway was significantly different between the high- and
low-risk score groups. (F) The p53 signaling pathway was significantly different between the high- and low-risk score groups.

some tumors by regulating survival and de novo proliferation of
mast cells to affect various biological processes, such as innate
and adaptive immune responses, expression of surface receptors
(chemokines, high-affinity IgE receptor, immunoglobulins, and
cytokines), and angiogenesis. As an anticancer strategy, targeting
c-kit may play an important role in human clinical trials
(Ammendola et al., 2016). The transcription factor SOX-9
could construct a DNA-binding complex with HMG-box class
proteins to recognize the sequence CCTTGAG. Almost all
gastric carcinoma cells overexpressed the stem cell marker
SOX9 (Sashikawa Kimura et al., 2011). Helicobacter pylori
infection is well known to be a major risk factor for STAD.
In a previous study, SOX9 was significantly upregulated in
specimens infected with H. pylori to increase levels of β-
catenin, induce gastric cancer cell proliferation, and enhance
stem cell-like properties (Santos et al., 2016). TFF2 protein
is a stable secretory protein expressed in the gastrointestinal
mucosa, which can affect the healing of the epithelium,
protect the mucosa from insults, and stabilize the mucus layer,
inhibiting gastric acid secretion (Qiao and Gumucio, 2011).
A transgenic mouse with the TFF2 promoter was generated
to check whether it was a marker of gastric progenitor cells;
the results suggested that TFF2 transcript-expressing cells
were progenitors for parietal, mucus neck, and zymogenic

cells (Quante et al., 2010). Some of the identified survival and
mRNAsi-related hub DEGs in this study closely interacted with
stem cell markers. For example, SLC7A11, a glutamate-cystine
transporter, is a member of a heteromeric, sodium-independent,
anionic amino acid transport system. SLC7A11 combined with
CD44 (cancer cell stem marker) controls the reduced glutathione
and defense against reactive oxygen species in a transgenic
mouse model of gastric cancer (Ishimoto et al., 2011). These
examples indicate that findings in our study were consistent
with those of previous studies. Interestingly, we have also
reported new findings that provide a foundation for future studies
on CSCs in STAD.

The identified 178 survival and mRNAsi-related hub DEGs
in this study were significantly enriched in some crucial CSC-
related pathways. Various anticancer drugs targeting CSCs are
closely related to cell cycle checkpoints and pathways (Yuan
et al., 2015). For example, the effects of metformin have been
evaluated by two- and three-dimensional cell culture systems
to observe the development of tumorspheres in gastric cancer
cell lines. The antitumor effect of metformin on STAD could
target gastric CSCs by inducing cell cycle arrest (Courtois
et al., 2017). The effects of all-trans-retinoic acid on CSCs
in STAD were also evaluated using conventional two- and
three-dimensional cell culture systems. All-trans-retinoic acid
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can inhibit tumor sphere initiation through cell cycle arrest
via an increase in cyclin-dependent kinase (CDK) inhibitors
and decrease in cell-cycle progression activators (Nguyen
et al., 2016). The Notch pathway regulates gastric stem
cell proliferation in mouse genetic models through HES1,
NICD, and mTORC1 target ribosomal proteins. Additionally,
Notch pathway components, including downstream target
genes, Notch ligands, and receptors have been reported to
be oncogenes in various tumors (Hibdon et al., 2019). In
this study, survival and mRNAsi-related hub DEGs were
significantly related to the Notch pathway, including AGO2,
CNTN1, DTX4, LFNG, TACC3, and TFDP1. Some of the
components of the Notch pathway have been proposed to
be crucial for CSCs in other studies. For example, LFNG
encodes evolutionarily conserved glycosyltransferases that define
boundaries during embryonic development in the Notch
signaling pathway. Musashi2 contributes to the maintenance
of CD4+ 4v6+ liver CSCs via the Notch signaling pathway,
which increases proliferation, migration and invasion, self-
renewal, and resistance to sorafenib. Mechanically, Musashi2
interacts with the mRNA and proteins of LFNG to activate
Notch1. This suggests that LFNG could be a potential target
for stem cell-targeted therapy for cancers (Wang X. et al.,
2019). TACC3, a motor spindle protein, which may be necessary
for stabilization of the mitotic spindle, has been proven to
be important in the differentiation of various cancer cells.
Moreover, TACC3 is commonly overexpressed in cancers and
positively correlated with poor overall survival and disease-free
survival (Thakur et al., 2013). TACC3 inhibitor could reduce
sphere formation, clonogenicity, cell growth and proliferation,
and cancer stem cell-like phenotype by suppressing the Wnt/β-
catenin and PI3K/AKT signaling pathways (Zhou et al., 2015).
The downstream target gene of the Notch signaling pathway,
TFDP1 (a heterodimeric partner of the E2F family) can
be directly regulated by microRNA-4711-5p to induce G1
arrest; suppress cell migration and invasion abilities, sphere
formation, proliferation, and reactive oxygen species activity;
and decrease the expression of stem cell markers (Morimoto
et al., 2020). Several miRNAs have potent tumor-suppressive
effects. Additionally, miRNAs are short RNAs that are easily
enveloped by nanoparticles to target cancer-related pathways
and genes (Rezaie et al., 2018). The identified survival and
mRNAsi-related hub DEGs were also significantly related to
the homology directed repair (HDR) pathway. Double-stranded
DNA lesions can be repaired to maintain genomic stability
by the HDR mechanism, which is important for suppressing
cancer formation and development. For example, if the HDR
pathway is dysfunctional, expression of a defective receptor on
the cell surface might ignore signals to stop dividing and continue
to form a tumor (Mladenov et al., 2016). Poly (ADP-ribose)
polymerase (PARP) inhibitors have been developed as promising
cancer therapeutics, especially for HDR-deficient tumors (Bian
et al., 2018). CSCs increase the ability to repair DNA damage
through the upregulation of DNA damage responses, such as
HDR, and enhancement of the capacity to arrest at specific
cell cycle checkpoints. PARP family members are also involved
in cancer stem cell biology. For example, the combination of

a PARP inhibitor (Niraparib) and the cyclin-dependent kinase
inhibitor dinaciclib downregulates MYC-driven homologous
recombination and reduces cancer stem cell-like phenotypes.
Targeting HDR in CSCs may be a promising cancer strategy
(Zeniou et al., 2019).

Furthermore, the nine-gene signature prognostic model
(ARHGEF38-IT1, CCDC15, CPZ, DNASE1L2, NUDT10, PASK,
PLCL1, PRR5-ARHGAP8, and SYCE2) constructed in this
study was significantly related to the overall survival, clinical
characteristics, tumor microenvironment immune cells, TMB,
and cancer-related pathways. Some genes in the prognostic
model were driven by CNV or gene mutation and were
associated with drug sensitivity. The development of cancers
is affected by multiple factors and various genes. It is
difficult to completely explain the pathogenic course, clinical
features, and prognosis of cancer using a single-gene model.
A multigene-signature prognostic model would provide an
optimized integrated risk score using a regression method.
Our nine-gene signature prognostic model was significantly
associated with STAD survival and well-distributed samples
into two separate subtypes, as tested by PCA. ROC indicated
a high sensitivity and specificity for the risk score as a
prognostic factor, even better than the common clinical features,
including age, sex, grade, stage, T stage, N stage, and M
stage. As one of the independent risk factors, the nomogram
plot also proved that it is a fine-to-important risk score as
one of the clinical variables in clinical practice. Therefore,
there was an important significance to the prediction of
prognosis in STAD combined detection of the risk score
based on mRNAsi and clinical features. However, the power
of the model could be improved, if one could collect clinical
samples to verified the prognostic model. Further study was
necessary to verified the prognostic model in a large register-
based series. In terms of mechanisms, DNASE1L2, PASK, and
PRR5-ARHGAP8 might be driven by CNVs. The mutation
frequency of PASK was more than 30% in STAD. A recent
study showed that PASK, a downstream phosphorylation target
of mTORC1, stimulates the differentiation of muscle stem
cells by activating the myogenin promoter and driving stem
cell self-renewal (Kikani et al., 2019). The correlation between
the expression of genes in the prognostic model and drug
sensitivity provides more findings for some drugs that are
currently undergoing clinical trials. For example, 26 women with
metastatic breast cancer who developed resistance to low-dose
combination chemotherapy were enrolled to receive a high-
dose hydroxyurea (18 mg/mL), cyclophosphamide (6 mg/mL),
and thiotepa (600 mg/mL) combination. Phase I and II
trials have demonstrated that 1 and 2 years progression-free
survival was improved (Vaughan et al., 1994). In another
study, 26 patients with lymphoblastic leukemia and 13 patients
with lymphoblastic lymphoma were enrolled and treated
with nelarabine. Nelarabine has significant antitumor activity
and is well tolerated in relapsed or refractory lymphoblastic
leukemia and lymphoblastic lymphoma (DeAngelo et al.,
2007). Other drugs, such as uracil mustard, chlorambucil,
triethylenemelamine, pipobroman, thiotepa, and chelerythrine,
have also been studied in STAD.
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In terms of the immune microenvironment, some immune
cell proportions were significantly different between the high-
and low-risk score groups, such as Tregs, T cell gamma
delta, CD8+ T cells, resting dendritic cells, activated NK cells,
M0 macrophages, memory B cells, and activated mast cells.
Cross-talk between immune cells and CSCs is obvious in
various cancers. Recent studies have revealed that CSC-targeted
immunotherapy based on various immunological effector cells
is a possible and promising method for patients with cancer
(Saijo et al., 2013). For example, CD133 is upregulated in the
population of CSCs and is a potential target for cytotoxic T cells.
Specifically, in lysed CD133+ CSCs, natural processing, antigen
presentation, and the ability of cytotoxic T cells to kill CSCs
bearing the antigen are effective (Ji et al., 2014). Some cytokines
also regulate proliferation, tumorigenicity, and migration of
mesenchymal CSCs in vivo and in vitro. Additionally, immune
infiltration varies widely among CSC molecular subtypes in
a TGF-beta-dependent manner (Beier et al., 2012). NK cells,
CD8+ T cells, γδ T cells, and antibodies have been shown
to target CSCs and kill target cells using cytotoxic granules
(granzymes and perforin). Therefore, treatment-resistant CSCs
are susceptible to CSC-targeted immunotherapy (Hirohashi et al.,
2010). Patients with high tumor mutational burden have had
favorable prognoses, especially in those treated with immune
checkpoint inhibitors. Patients with advanced gastric cancer
with a high tumor mutational burden were correlated with
enhanced progression-free survival and objective response rate
when receiving immunotherapy (Wang F. et al., 2019). The
negative correlation between risk score and TMB demonstrated
in our study was consistent with previous reports, which
indicated cross-talk between gene mutations and stemness
in STAD. Furthermore, the cancer-related gene sets between
the high- and low-risk score groups widely involved cellular
processes, including the levels of RNA, DNA, and protein.
These results provide insights into the alterations in CSC-related
mechanisms in STAD.

CONCLUSION

We focused on alterations in stemness-related genes in STAD,
using the mRNAsi index. The prognostic models for STAD could

be useful for further investigation of clinical applications in
stomach cancers. The association between CSCs, gene mutations,
and the immune microenvironment in STAD provides an
improved understanding of different drug targets and can enable
the development of CSC-targeted therapy.
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