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Summary

The dominating strains of most sugar-based natural
and industrial fermentations either belong to
Saccharomyces cerevisiae and Saccharomyces
uvarum or are their chimeric derivatives. Osmotoler-
ance is an essential trait of these strains for indus-
trial applications in which typically high
concentrations of sugars are used. As the ability of
the cells to cope with the hyperosmotic stress is
under polygenic control, significant improvement
can be expected from concerted modification of the
activity of multiple genes or from creating new gen-
omes harbouring positive alleles of strains of two or
more species. In this review, the application of the
methods of intergeneric and interspecies hybridiza-
tion to fitness improvement of strains used under
high-sugar fermentation conditions is discussed. By
protoplast fusion and heterospecific mating, hybrids
can be obtained that outperform the parental strains
in certain technological parameters including osmo-
tolerance. Spontaneous postzygotic genome evolu-
tion during mitotic propagation (GARMi) and meiosis
after the breakdown of the sterility barrier by loss of
MAT heterozygosity (GARMe) can be exploited for
further improvement. Both processes result in
derivatives of chimeric genomes, some of which can
be superior both to the parental strains and to the
hybrid. Three-species hybridization represents fur-
ther perspectives.

Introduction

Yeasts play an essential role in bread-making, the fer-
mentation of alcoholic beverages and the production of
bioethanol. Although a high number of fermentative
yeast species have biotechnological relevance, the
strains dominating most natural and industrial fermenta-
tions either belong to S. cerevisiae and S. uvarum or are
their chimeric derivatives including the genetically highly
diverse ‘hybrid species’ S. pastorianus/carlsbergensis
and S. bayanus. During the fermentation of high-sugar
and high-gravity substrates, the Saccharomyces cells
are exposed to hyperosmotic stress. To counterbalance
the extracellular solute concentrations, the cells accumu-
late glycerol. Since the response to the hyperosmotic
shock is a polygenic trait, significant improvement can
be expected from concerted modification of the activity
of multiple genes rather than from the manipulation of
individual genes (e.g. Albertyn et al., 1994; Shi et al.,
2018). Hybridization brings all alleles of all relevant
genes of different strains together and recombine them
during segregation/chimerization of the hybrid genomes.
The hybrids and/or their chimeric derivatives can outper-
form the parental strains in certain technologically rele-
vant properties including stress response. In this review,
I describe basic knowledge about the hyperosmotic
stress response and the exploitation of interspecies
hybridization and hybrid evolution in improving the fit-
ness of the strains under high-sugar conditions.

Yeasts face hyperosmotic stress during fermentation

The yeast cells have to cope with high-sugar and/or
VHG (very high gravity) conditions in the fermentation of
certain types of beverages, VHG brewing and VHG fuel
ethanol production technologies, fermented vegetable
extracts and high-sugar dough. When preparing dessert
wines from late-harvest or botrytized grapes, the sugar
concentrations in the must can be as high as 60% (e.g.
Don�eche, 1993; Sipiczki et al., 2010). In ice-wine grape
juice, the sugar content can reach 50% (Erasmus et al.,
2004). The total sugar content of sugar cane and sugar
beet molasses fermented in traditional alcohol distilleries
varies between 40% and 50% (e.g. Doelle and Docile,
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1990; Khoja et al., 2018). Sweet dough (high-sugar
dough) contains up to approximately 30% sucrose
(Sasano et al., 2012), and high-sugar vegetable extracts
can have 40–60% sugar (Ok and Hashinaga, 1997). In
VHG brewing, the gravity of the wort can exceed 20° P
(Huuskonen et al., 2010). In VHG fuel ethanol fermenta-
tion, the mashes contain sugar at concentrations higher
than 25% to achieve ethanol yields higher than 15%.
Certain S. cerevisiae strains can grow and vigorously
ferment potato mash containing as much as 40% (2.2
M) glucose (Watanabe et al., 2010). But not all
Saccharomyces strains can cope with sugar added at
such high concentration to the medium and strains of
other genera can be more tolerant.

The effect of hyperosmotic stress on the
Saccharomyces cells

Upon being exposed to hyperosmotic conditions, yeast
cells cease growing and propagating, rapidly lose intra-
cellular water, thereby resulting in a loss of turgor pres-
sure followed by shrinkage of the cytoplasm (Slaninova
et al., 2000; Schaber and Klipp, 2008; Munna et al.,
2015). In the shrinking cytoplasm, the microtubular and
actin-based cytoskeletal structures become disorganized
and deep plasma membrane invaginations are formed
which the cells can fill up with amorphous cell wall mate-
rial (Chowdhury et al., 1992; Slaninova et al., 2000). The
overall cell volume is also reduced, and the yeast cells
have to adapt their internal osmolarity to the hyperos-
motic external conditions to restore the optimal cell vol-
ume (e.g. Pratt et al., 2003; Munna et al., 2015; Talemi
et al., 2016).

The complexity of the response of the
Saccharomyces cells to hyperosmotic stress

To cope with an increased external osmolarity caused
by the high sugar concentration in the environment, the
Saccharomyces cells initiate a complex adaptive pro-
gram that includes the synthesis and retention of the
compatible osmolyte glycerol, temporary arrest of cell-
cycle progression, altered transcription and translation
patterns. The genes and processes involved in the
response have been reviewed in several recent studies
(Saito and Posas, 2012; Hohmann, 2015; Saxena and
Sitaraman, 2016; Taymaz-Nikerel et al., 2016;
Auesukaree, 2017) and can be summarized as follows
(Fig. 1).
The response is basically governed by the high-osmo-

larity glycerol (HOG) signalling pathway, whose core is
the Hog1 MAP kinase (MAPK) cascade. The phosphory-
lated Hog1 enters the nucleus and activates the expres-
sion of several transcription factors, each of which is

responsible for controlling the expression of a subset of
osmoresponsive genes. Due to the activity of these
genes, the intracellular level of glycerol increases which
prevents the efflux of water from the cell into the envi-
ronment. STL1 codes for a H+ symporter that transports
glycerol inside the cell. GPD1 encodes a NADH-depen-
dent glycerol-3-phosphate dehydrogenase that reduces
dihydroxy-acetone-phosphate to glycerol-3-phosphate.
Glycerol-3-phosphate is further converted to glycerol by
the glycerol-3-phosphate phosphatase encoded by
GPP2. In response to osmostress, the glycerol efflux
mediated by the Fps1 aquaglyceroporin closes to keep
the glycerol inside the cell, but this effect seems to be
independent of Hog1. Hog1 was found to down-regulate
the expression of the aquaporin Aqy2 and thereby
restrict water loss. Apart from the genes directly involved
in the HOG cascade, large numbers of additional
genes have been implicated in the response by tran-
scriptomic analyses and testing of deletion mutants (e.g.
Erasmus et al., 2003; O’Rourke and Herskowitz, 2004;
Ando et al., 2006; Tanaka-Tsuno et al., 2007; Jimenez-
Marti et al., 2011). Recent studies reported results
demonstrating that mitochondrial activity is also required
for proper osmotic stress adaptation (Pastor et al., 2009;
Gonzalez et al., 2016). The high number of up- and
down-regulated genes indicates that a large proportion
of the gene pool of the yeast cell has to be fine-tuned
to give an adequate response to the high external
osmolarity.

Correlation between the presence of foreign genes
in the genome in ‘natural’ strains and their stress
response

In numerous wine and industrial strains isolated from
natural fermenting yeast communities, correlation was
observed between the presence of genes of two or even
more Saccharomyces species and the more adequate
response of their cells to certain types of stress (for a
review, see Marsit and Dequin, 2015). For example,
S. cerevisiae strains harbouring genes from the more
cryotolerant species S. uvarum or S. kudriavzevii are
better adapted to growth and fermentation at low temper-
atures than the strains of ‘pure’ S. cerevisiae genomes
(e.g. Peris et al., 2018). The proportion of the non-cere-
visiae gene pool varies in these chimeric strains from a
few genes to an (almost) complete subgenome (e.g.
Erny et al., 2012; Peris et al., 2018). The transgressive
stress-response phenotypes of certain natural chimeric
strains indicate that stress tolerance might be improved
synthetically by admixing genes of species. Examples of
modification of osmotolerance by interspecies hybridiza-
tion and posthybridization (postzygotic) genome evolu-
tion are shown in Table 1.
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Fig. 1. A schematic diagram of the roles of the Hog1 protein kinase phosphorylated by the HOG MAPK (Mitogen-Activated Protein Kinase)
pathway in the response of the Saccharomyces cell to the osmotic stress. The diagram is based on the review of Hohmann (2015).

Table 1. Examples of modulation of osmotolerance by hybridization and hybrid segregation.

Species combination New phenotype Reference

Somatic hybridization (protoplast fusion)
S. cerevisiae 9 Z. mellis Efficient fermentation at to 30% glucose combined

with good yields of ethanol production
Legmann and Margalith
(1983, 1986)

S. cerevisiae 9 D. hansenii Combination of the higher thermotolerance and growth rate of the S. cerevisiae
parent with higher osmotolerance from the D. hansenii parent

Loray et al. (1995)

S. cerevisiae 9 T. delbrueckii Tolerance to increased glucose concentrations
(up to 70%) combined with increased arabinitol and
glycerol production

Lucca et al.
(1999, 2002)

S. diastaticus (S. cerevisiae var.
diastaticus) 9 Z. rouxii

Fermentation and sugar utilization patterns of S. diastaticus
combined with increased osmotolerance

Spencer et al. (1985)

S. diastaticus (S. cerevisiae var.
diastaticus) 9 S. uvarum

Fermentation rate superior to those of the parental strain at 30%
sugar combined with the ability to ferment at 40 °C

Stewart et al. (1988)

Sexual hybridization (mating, conjugation)
S. cerevisiae 9 S. carlsbergensis Improved fermentation rates in high-gravity wort

(18° Plato) relative to the ale parent
Garcia Sanchez
et al. (2012)

S. cerevisiae 9 S. eubayanus Increased fermentation rate in very high-gravity wort
(25° Plato) relative to the parent strains

Krogerus et al. (2016)

S. cerevisiae 9 S. kudriavzevii Increased efficiency of fructose and glucose consumption
in high-sugar wine fermentations

Lopandic et al. (2016);
Gangl et al. (2017)

S. cerevisiae 9 S. mikatae Combination of low-temperature tolerance (from S. mikatae)
with high-temperature tolerance and
osmotolerance (from S. cerevisiae)

Bellon et al. (2013)

S. cervisiae 9 S. uvarum Increased fermentation efficiency, ethanol and glycerol
production in most of 32% sugar

Restuccia et al. (2011)

S. cerevisiae 9 S. uvarum Slightly increased osmotolerance in certain hybrids Pfliegler et al. (2014)
S. cervisiae 9 S. uvarum Combination of fermentation phenotypes from both parents:

robust fermentation in high-sugar juice
(25% and 35.5%) and the production of wines with low volatile acidity

Bellon et al. (2015)

Hybrid segregation by GARMi
S. cerevisiae 9 S. uvarum A segregant becoming dominant after five rounds of

fermentation of high-sugar grape must (evolved
hybrid) fermented the grape juice of 35% sugar at much
faster rate than the original hybrid strain

Bellon et al. (2018)

Hybrid segregation by GARMe
S. cerevisiae 9 S. kudriavzevii Increased efficiency of fructose and glucose consumption in high

sugar wine fermentations in certain F1 spore clones
Lopandic et al. (2016)

S. cerevisiae 9 S. uvarum Slightly increased osmotolerance in certain F1 spore clones Pfliegler et al. (2014)
S. diastaticus (S. cerevisiae var.
diastaticus) 9 Z. rouxii

Certain spore clones had greater capacity to
raise sweet dough than the hybrid

Spencer et al. (1985)
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Improving high-sugar osmotolerance by interspecific
and intergeneric hybridization

Somatic hybridization (protoplast fusion)

Osmotolerant somatic hybrids (growing at high sugar
or salt concentrations) were obtained by protoplast
fusion between S. cerevisiae and Zygosaccharomyces
mellis (Legmann and Margalith, 1983, 1986), S. di-
astaticus (S. cerevisiae var. diastaticus) and Z. rouxii
(Spencer et al., 1985), S. diastaticus (S. cerevisiae var.
diastaticus) and S. uvarum (Stewart et al., 1988),
S. cerevisiae and Debaromyces hansenii (Loray et al.,
1995) and S. cerevisiae and Torulaspora delbrueckii
(Lucca et al., 1999). The S. diastaticus 9 Z. rouxii
hybrid was tolerant of sugar concentrations that were
higher than those permitting the growth of the S. di-
astaticus parent. The viable spores of the hybrid
formed clones of vegetative cells that had a much
greater dough-raising capacity than either the original
hybrid or a commercial baker’s yeast (Spencer et al.,
1985). Unfortunately, little has been revealed from the
genome structures of these hybrids. The few experi-
mental data available indicate that the intergeneric
hybrids had Saccharomyces genomes supplemented
with only small percentages of the genomes of the
non-Saccharomyces fusion partners (Spencer et al.,
1985; Salek, 2002) (Fig. 2A).

Hybridization by mating (conjugation)

In the genus, Saccharomyces interspecies hybrids can
be generated also by natural sexual hybridization
because the reproductive isolation of the species is
‘postzygotic’. Cells of different Saccharomyces species
can form viable hybrids by sexual mating (conjugation)
but the hybrids are sterile. The sterility is mainly due to
the failure of the (allosyndetic, homeologous) chromo-
somes to pair in meiosis (no functional gametes are pro-
duced) and to MAT heterozygosity (mating-specific
genes are repressed) (for a review, see Sipiczki, 2018).
Each species can form sterile hybrids by mating with
each other species, and the hybrids can have advanta-
geous ‘transgressive’ traits in their phenotypes.
Hybrids of S. cerevisiae and S. uvarum strains were

constructed that displayed combinations of positive phe-
notypic traits of the parents: robust fermentation in high-
sugar grape juice (from S. cerevisiae) and the production
of wines with low volatile acidity (from S. uvarum)
(Restuccia et al., 2011; Bellon et al., 2015). A different
combination of strains of these species and the mating
of S. cerevisiae 9 S. kudriavzevii resulted in hybrids
showing improved fermentation rate in a must of high
sugar content (Lopandic et al., 2016; Gangl et al., 2017).
The S. cerevisiae 9 S. paradoxus and S. cere-
visiae 9 S. mikatae hybrids inherited the osmotolerance

(A) (B)

Fig. 2. Interspecies hybridization and the evolution of the hybrid genome.
A. Somatic hybridization (protoplast fusion).
B. Hybridization by sexual conjugation (mating). NS: non-Saccharomyces species; S: Saccharomyces; S1: Saccharomyces species 1; S2: Sac-
charomyces species 2. Star marks incomplete subgenome. GARMi: Genome Autoreduction in mitosis. GARMe: Genome Autoreduction in meio-
sis.
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of the S. cerevisiae parent (Bellon et al., 2011, 2013).
When S. cerevisiae was hybridized with S. eubayanus,
the allotriploids and the allotetraplois, but not the allodi-
ploids, outperformed the parental strains in fermentation
of very high-gravity wort (Krogerus et al., 2016).

Postzygotic genome segregation and chimerization
broadens phenotypic diversity

Postzygotic shaping of the hybrid genome (postzygotic
genome evolution)

The hybrid genomes are usually unstable and prone to
‘postzygotic’ changes either during vegetative (mitotic)
propagation of the sterile alloploid cells or during sporu-
lation of the allopolyploid cells upon the breakdown of
their sterility. As both processes are associated with
spontaneous loss of chromosomes, the terms GARMi
(Genome AutoReduction in Mitosis) and GARMe
(Genome AutoReduction in Meiosis) were recently pro-
posed to designate them (Sipiczki, 2018) (Fig. 2B).
In GARMi (usually referred to as ‘hybrid stabilization’

or ‘hybrid evolution’), recurrent unequal mitotic divisions
(biased segregation) generate alloaneuploid cells lacking
chromosomes or arms of chromosomes in one or the
other subgenome (for a review, see Sipiczki, 2018).
GARMe can take place after the breakdown of the steril-
ity barrier in allotetraploid meiosis by the loss of MAT
heterozygosity (malsegregation of the MAT-carrying
chromosomes in one of the subgenomes) (Pfliegler
et al., 2012; Karanyicz et al., 2017). The alloaneuploid
spores establish vegetatively propagating clones of mat-
ing-competent cells (F1 spore clones, ‘propagating
gametes’) which can conjugate with each other (selfing)
to form sporulation-proficient alloaneuploid zygotes pro-
ducing alloaneuploid cells (F2 generation). As aneu-
ploidy usually destabilizes the genome, the F2 cells can
easily lose additional chromosomes when sporulate. The
outcomes of both processes are strains of chimeric (mo-
saic) genomes composed of various combinations and
proportions of the parental gene pools.

Postzygotic genomic changes are associated with novel
phenotypic traits

Several studies have shown that the prolonged cultiva-
tion of a hybrid under a specific stress condition (high
ethanol or sugar concentration, nutrient-limited condi-
tions, extreme temperature, etc.) gradually improves its
fitness (e.g. Piotrowski et al., 2012; Dunn et al., 2013;
Lopandic et al., 2016; Smukowski Heil et al., 2017;
Krogerus et al., 2018). Where investigated, the improved
fitness turned out to be associated with the accumulation
of segregants (‘evolved hybrids’ or ‘evolved variants’) of
specific types of chimeric genomes in the population.

The genetic changes are most probably due to sponta-
neous missegregation and/or structural changes of cer-
tain chromosomes at mitotic divisions, and to randomly
occurring mutations. The stress factor does not induce
these genetic changes; it only differentially affects the
growth of the derivatives if they differ in fitness. The less
sensitive derivatives will gradually overgrow the rest of
the population. Different conditions lead to different
genomic outcomes from the same hybrid (e.g. Piotrowski
et al., 2012; Lopandic et al., 2016).
The gradual enrichment of the hybrid culture with a

specific derived segregant is nicely illustrated by
the results of Bellon et al. (2018) who let a
S. cerevisiae 9 S. uvarum hybrid propagate vegetatively
through a series of successive fermentations of a botry-
tized Riesling must of high sugar content (350 g l�1 ini-
tial sugar) and monitored the changes in the population.
After the 5th round of fermentation, 95% of the cells
lacked the entire chromosome 14 of S. uvarum and the
rest lacked its left arm. It was hypothesized that the loss
of the S. uvarum chromosome 14 accounted for the
increased fitness of the population. However, chromo-
some 14 instability had been observed also in S. cere-
visiae 9 S. uvarum hybrids exposed to nitrogen limiting
conditions (Dunn et al., 2013). Thus, the loss of this
chromosome may not be specific for the high-sugar
stress response.
In a different study (Lopandic et al., 2016), no

karyotype changes (no GARMi) were detected in
S. cerevisiae 9 S. uvarum and S. cerevisiae 9 S. kudri-
avzevii hybrids after the fermentation of a high-sugar
grape must (Gr€uner Veltliner with an initial sugar concen-
tration of 337.5 g l�1) but both hybrids segregated at
meiosis (GARMe). As the spores were viable (produced
colonies), the hybrids must have been allotetraploid. The
tetrad isolated from the S. cerevisiae 9 S. uvarum
hybrid showed the segregation pattern characteristic of
the tetrads in which the (second) sterility barrier breaks
down (Pfliegler et al., 2012): two spores lacked the
MAT-carrying chromosome of the S. uvarum subge-
nome. The clones established by these alloaneuploid
spores remained stable during fermentation, whereas
the other two, presumably allodiploid spore clones
underwent GARMi, resulting in mixed populations of
cells lacking various chromosomes mostly in the
S. uvarum subgenome. In contrast to the finding of the
Bellon laboratory (Bellon et al., 2018), no chromosome
14 instability was detected here. The spore clones that
retained the MAT-carrying chromosomes of both parents
showed the phenotype of the hybrid: had higher fermen-
tation rates and richer aroma profile in the high-glucose
must, produced more ethanol and less volatile acids
than the other spores and the parental strains (Lopandic
et al., 2016; Gangl et al., 2017). The karyotype of the
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S. cerevisiae 9 S. kudriavzevii hybrid also showed 2:2
segregation (GARMe), but different chromosomes were
involved, and all spore clones performed worse than the
hybrid for all parameters examined. The segregation of
AFLP (amplified fragment length polymorphism) pattern
in these alloaneuploids was much more complex, indi-
cating that smaller-scale GARMe, and GARMi changes
took place both within the subgenomes and between
them. The observed diversity of spore clones indicates
that meiotic segregation poses a risk to the application
of hybrids of genomes larger than allodiploid in fermenta-
tion technologies.

New perspectives in three-species hybridizations

The gene pools of the two-species Saccharomyces
hybrids or their alloaneuploid or chimeric derivatives can
be enriched with genes from a third species by mating
with a strain of the third species (e.g. Sipiczki et al.,
2014; Antunovics et al., 2018a,b). Two strategies have
been developed for the construction of three-species
synthetic hybrids and/or genomic chimeras (Antunovics
et al., 2018b) (Fig. 3). One method is based on the fertil-
ity of the alloaneuploid spore clones produced in
GARMe after the breakdown of the sterility barrier in tet-
raploid meiosis. These clones sporulate, and their
spores can be mass-mated with spores of a homothallic

strain or with cells of a heterothallic strain of the third
species. The outcome of the process is a chimeric strain
with a complete genome of the third species and incom-
plete genomes of the parental strains of the two-species
alloaneuploid. As spores of diverse alloaneuploid/chi-
meric genomes are produced during GARMe of the two-
species hybrid, the arising zygotes will have diverse gen-
omes composed of various proportions of the genes of
the three parental species. The other approach gener-
ates true allotriploid hybrids having complete genomes
of all three species. Their construction starts with
hybridizing two species and selecting a stabile (sterile)
allodiploid hybrid. This sterile MATa/MATalpha hybrid is
then mated with fertile spores or cells of the third
species by taking advantage of the phenomenon
referred to as ‘rare mating’ (Gunge and Nakatomi, 1972).
MAT heterozygosity suppresses the mating-specific
genes and makes the allodiploid cells mating-incompe-
tent, but very rarely certain cells escape the block
and conjugate with mating-competent cells or spores of
a different strain. S. cerevisiae 9 S. kudriavzevii 9
S. uvarum (‘cekudvarum’) chimeric and allotriploid hybrid
strains have been recently produced with these methods
(Antunovics et al., 2018a,b). Both types of three-species
strains showed transgressive phenotypic traits. Although
their response to high-sugar stress has not been exam-
ined, improved osmotolerance can be expected in cer-
tain strains or in their GARMI/GARME derivatives
because natural isolates of composite genomes consist-
ing of genes from these species had phenotypes suit-
able to overcome stuck fermentation (Christ et al.,
2015).
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