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Abstract

Background

Increased serum levels of C-reactive protein (CRP), an important component of the innate

immune response, are associated with increased risk of cardiovascular disease (CVD). Mul-

tiple single nucleotide polymorphisms (SNP) have been identified which are associated with

CRP levels, and Mendelian randomization studies have shown a positive association

between SNPs increasing CRP expression and risk of colon cancer (but thus far not CVD).

The effects of individual genetic variants often interact with the genetic background of a pop-

ulation and hence we sought to resolve the genetic determinants of serum CRP in a number

of American Indian populations.

Methods

The Strong Heart Family Study (SHFS) has serum CRP measurements from 2428 tribal

members, recruited as large families from three regions of the United States. Microsatellite

markers and MetaboChip defined SNP genotypes were incorporated into variance compo-

nents, decomposition-based linkage and association analyses.

Results

CRP levels exhibited significant heritability (h2 = 0.33 ± 0.05, p<1.3 X 10−20). A locus on

chromosome (chr) 6, near marker D6S281 (approximately at 169.6 Mb, GRCh38/hg38)
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showed suggestive linkage (LOD = 1.9) to CRP levels. No individual SNPs were found asso-

ciated with CRP levels after Bonferroni adjustment for multiple testing (threshold <7.77 x

10−7), however, we found nominal associations, many of which replicate previous findings at

the CRP, HNF1A and 7 other loci. In addition, we report association of 46 SNPs located at 7

novel loci on chromosomes 2, 5, 6(2 loci), 9, 10 and 17, with an average of 15.3 Kb between

SNPs and all with p-values less than 7.2 X 10−4.

Conclusion

In agreement with evidence from other populations, these data show CRP serum levels are

under considerable genetic influence; and include loci, such as near CRP and other genes,

that replicate results from other ethnic groups. These findings also suggest possible novel

loci on chr 6 and other chromosomes that warrant further investigation.

Introduction

Immune and inflammatory factors have longstanding roles in microbial infection [1,2] and

auto-immune disorders [3]; it is becoming increasingly clear that they also influence the path-

ogenesis and complications of metabolic conditions [4], cancer [5] and other chronic diseases

[6]. C-reactive protein (CRP) is a prominent component of the innate immune system

involved in non-self recognition and destruction [7] and has been employed as a non-specific

measure of inflammatory status in epidemiologic and clinical studies of numerous disorders

[8–10]. For example, elevated serum CRP is prospectively associated with a number of cancer

types, including colon [11], breast [12] and lung [13]. In addition, two studies using Mendelian

randomization approaches to assess the influence of inherited increases in CRP level on the

risk for colorectal cancer, supported a causal relationship between increased CRP and cancer

[14,15]. Evidence for a genetic influence on the relationship between immune factors, meta-

bolic syndrome and cardiovascular risk factors is provided by the association of alleles increas-

ing CRP levels and increased risk of obesity [16,17].

The interaction between genetic influences on basal CRP levels and a number of environ-

mental factors has been investigated using heritability estimation [18], candidate gene [19],

genome-wide linkage [18], genome-wide association (GWAS) [20,21] and other genetic

approaches [22]. Some of the more compelling results from GWAS are summarized in

Table 1. In general, excluding the CRP gene itself, 7 genomic regions of have been associated

with CRP in these studies. Within 5 Mb of the CRP gene, variants of IL6R were shown to be

independently associated to CRP levels [19]. Another chromosome (chr) 1 locus encompass-

ing the LEPR/JAK1 genes (which play a key role in immune response pathways [23]) has sev-

eral SNPs associated with serum CRP [21,24]. On chr 2, SNPs at GCKR have been implicated

in regulation of CRP expression [24]. SNPs near the EPHA7 and IL6 genes on chr 6 and 7

respectively, show association with CRP levels as well [25,26]. Variation in the HNF1A region

of chr 12 has been repeatedly reported to be correlated with CRP expression [27,28]. Variants

in three genes,TOMM40, APOE and APOC1, in a 30 Kb span of chr 19 are prominently related

to serum CRP [19,24,25].

Although genetic variants common across populations associate with CRP levels, there also

appear to be variants in multiple loci across the genome with differential strength of effects

[24,29,30], or that are found primarily in certain populations, such as African Americans [19],
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Table 1. GWAS Catalog [115] and selected SNP associations with serum CRP from the literature.

SNP Chr Coordinates Risk

Freq

β
or Odds Ratio

P-value Risk Allele Upstream Intragenic Downstream ethn� Ref��

rs1805096 1 65,636,574 0.37 -0.11 3.6 X 10−8 G No LEPR No EUR [72]

0.46 -0.11 5.4 X 10−5 AA [72]

rs1892534 1 65,640,261 0.39 -0.08 5.8 X 10−8 T No LEPR No EA [24]

0.46 -0.08 4.4 X 10−3 AA [24]

rs4420065 1 65,695,778 0.39 0.09 3.5 X 10−62 C LEPR No PDE4B EA [21]

rs4129267 1 154,453,788 0.40 -0.08 2.1 X 10−48 T No IL6R No EA [21]

0.40 -0.08 5.2 X 10−21 EA [19]

0.13 -0.12 5.7 X 10−7 AA [19]

rs2228145 1 154,454,494 0.40 -0.12 7.8 X 10−11 C No IL6R No EUR [72]

0.14 -0.09 2.6 X 10−2 AA [72]

rs12093699 1 159,678,198 0.29 NA��� 6.0 X 10−6 NA OR10J6P No CRPP1 EUR [112]

rs10494326 1 159,679,910 0.178 0.4199 4.0 X 10−73 T OR10J6P No CRPP1 AA/HIS [20]

rs726640 1 159,685,728 NA 0.44 2.0 X 10−13 NA OR10J6P No CRPP1 AA [116]

rs2592902 1 159,685,936 0.38 NA 1.0 X 10−9 A OR10J6P No CRPP1 EA/AA [94]

rs12755606 1 159,700,546 NA NA 4 X 10−120 C OR10J6P No CRPP1 EUR [117]

rs876537 1 159,705,143 0.43 0.29 1.4 X 10−9 C No CRPP1 No FIL [25]

rs16842559 1 159,706,381 0.89 0.106 4.0 X 10−21 T CRPP1 No CRP AS [118]

rs2794520 1 159,709,026 0.66 0.16 2 X 10−186 C CRPP1 No CRP EUR [21]

0.34 NA 3.0 X 10−8 EA [119]

0.60 0.19 1.8 X 10−15 EA [29]

NA -0.20 4.7 X 10−26 EA [77]

rs1205 1 159,712,443 0.33 -0.17 1.0 X 10−31 T No CRP No EA [24]

-0.199 1.65 X 10−26 EA [77]

0.20 -0.27 8.1 X 10−15 AA [24]

0.35 -0.22 5.37 X 10−09 HIS [24]

0.46 -0.26 8.5 X 10−09 FIL [25]

rs1800947 1 159,713,648 0.06 -0.30 3.1 X 10−25 G No CRP No EUR [24]

0.01 -0.61 1.3 X 10−6 AA [24]

0.02 -0.36 6.7 X 10−3 HIS [24]

0.06 -0.27 4.8 X 10−12 EUR [72]

0.01 -0.58 1.5 X 10−5 AA [72]

rs77832441 1 159,714,024 0.002 -0.75 1.4 X 10−4 A No CRP No EUR [72]

0.005 -2.06 6.6 X 10−4 AA [72]

rs1417938 1 159,714,396 0.30 0.14 5.6 X 10−7 A No CRP No EUR [24]

0.11 0.20 1.2 X 10−2 AA [24]

0.36 0.14 2.7 X 10−4 HIS [24]

rs3091244 1 159,714,875 0.38 0.17 3.5 X 10−91 G CRP No RPL27P2 EA [19]

0.55 0.24 5.1 X 10−45 AA [19]

0.08 0.26 5.2 X 10−7 FIL [25]

NA 0.20 6.0 X 10−28 EA [77]

rs3093059 1 159,715,346 0.12 0.161 4.0 X 10−21 G CRP No RPL27P2 JPT [30]

rs3093058 1 159,715,525 0.001 0.32 1.4 X 10−1 T CRP No RPL27P2 EUR [24]

0.17 0.48 1.4 X 10−40 AA [24]

0.01 0.67 1.0 X 10−3 HIS [24]

rs1341665 1 159,721,769 0.96 -0.19 2.0 X 10−20 A CRP No RPL27P2 EA [29]

rs2808634 1 159,722,783 0.156 0.153 3.0 X 10−10 T CRP No RPL27P2 EA/AA [21]

(Continued)
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Table 1. (Continued)

SNP Chr Coordinates Risk

Freq

β
or Odds Ratio

P-value Risk Allele Upstream Intragenic Downstream ethn� Ref��

rs7553007 1 159,728,759 NA OR 20.7 8.0 X 10−44 NA CRP No RPL27P2 EUR/AS [28]

0.344 0.129 1.0 X 10−9 G HIS [20]

0.228 0.272 1.0 X 10−37 T AA [20]

0.369 0.164 2.0 X 10−16 C AS [120]

0.327 0.202 7.0 X 10−12 A EUR [121]

rs11265260 1 159,730,249 NA NA 7.0 X 10−6 NA CRP No RPL27P2 EUR/EA [108]

rs7561273 2 24,024,644 0.35 0.22 6.0 X 10−6 A No MFSD2B No MIC [124]

rs1260326 2 27,508,073 0.41 0.07 4.6 X 10−40 G No GCKR No EA [21]

0.42 0.10 2.4 X 10−17 EA [19]

0.15 0.06 2.1 X 10−2 AA [19]

0.03 1.0 X 10−3 AS [26]

rs780094 2 27,518,370 0.40 0.10 1.5 X 10−16 C No GCKR No EA [24]

0.19 0.03 2.3 X 10−1 AA [24]

0.34 0.07 2.6 X 10−2 HIS [24]

rs1441169 2 213,168,806 0.53 -0.03 2.3 X 10−11 G LINCO1953 No IKZF2 EUR [64]

rs960246 2 223,072,841 0.013 0.22 1.0 X 10−9 T KCNE4 No LOC105373905 AS [122]

rs1514895 3 170,987,904 0.71 -0.03 2.7 X 10−9 A SLC2A2 No EIF5A2 EUR [86]

rs16871289 4 21,509,760 0.017 0.03 9.0 X 10−6 A No KCNIP4 No HIS [123]

rs6846071 4 101,481,058 0.016 0.224 1.0 X 10−11 G FLJ20021 No LOC105377346 AS [122]

rs283610 5 73,952,687 0.456 0.03 7.0 X 10−6 G ARHGEF28 No CTD-2292M14.1 [123]

rs465384 5 125,907,327 NA NA 1.0 X 10−6 NA RP11-756H20.1 No RP11-114J13.1 EUR [117]

rs17658229 5 172,764,049 0.05 0.06 5.5 X 10−9 C AC022217.2 No DUSP1 EUR [86]

rs1408282 6 93,142,534 0.10 0.37 2.9 X 10−6 A COPS5P1 No EPHA7 FIL [25]

rs6904416 6 98,542,613 0.019 0.183 9.0 X 10−10 C RP11-436D23.1 No POU3F2 AS [122]

rs12202641 6 115,993,471 0.39 -0.02 3.0 X 10−10 No FRK No EUR [86]

rs9385532 6 130,050,082 0.33 -0.03 1.9 X 10−11 No L3MBTL No EUR [86]

rs6907728 6 131,907,629 0.186 0.04 3.0 X 10−6 C ENPP1 No CTGF HIS [123]

rs2097677 7 22,693,220 NA 0.05 2.6 X 10−9 A AC002480.2 No IL6 AS [26]

rs1880241 7 22,719,850 0.48 -0.03 8.4 X 10−14 G No IL6 EUR [86]

rs2710804 7 36,044,919 0.37 0.02 1.3 X 10−8 C lncRNA No EEPD1 EUR [86]

rs6956675 7 63,117,392 0.135 0.03 6.0 X 10−6 A SAPCD2P4 No SEPT14P1 HIS [123]

rs10255299 7 111,887,504 0.013 0.241 7.0 X 10−11 G No DOCK4 No AS [122]

rs10125337 9 94,681,756 0.004 0.03 4.0 X 10−6 G FBP1 No LOC107987101 HIS [123]

rs643434 9 133,266,943 0.37 0.02 1.0 X 10−9 A No ABO No EUR [86]

rs7076247 10 18,470,700 0.37 NA 6.0 X 10−6 NA No CACNB2 No EUR [112]

rs11066587 12 113,541,851 0.16 0.26 5.0 X 10−6 G LHX5-AS1 No LOC105369990 MIC [124]

rs1039302 12 120,798,455 0.36 0.21 5.0 X 10−6 T No SPPL3 No MIC [124]

rs2650000 12 120,951,159 -0.12 7.1 X 10−11 A No HNF1A-AS1 No EA [77]

0.35 -0.12 2.6 X 10−23 EA [24]

0.12 -0.09 5.2 X 10−3 AA [24]

0.36 -0.11 9.5 X 10−4 HIS [24]

rs7305618 12 120,965,129 0.52 0.267 1.0 X 10−8 T No HNF1A-AS1 No FIL [25]

rs7953249 12 120,965,921 -0.13 7.0 X 10−13 G No HNF1A-AS1 No EA [77]

rs1169289 12 120,978,819 0.46 -0.12 9.0 X 10−11 G No HNF1A No EUR [72]

0.34 -0.06 2.2 X 10−2 AA [72]

rs1169288 12 120,978,847 0.34 -0.11 9.5 X 10−9 C No HNF1A No EUR [72]

0.12 -0.08 4.0 X 10−2 AA [72]

(Continued)
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Table 1. (Continued)

SNP Chr Coordinates Risk

Freq

β
or Odds Ratio

P-value Risk Allele Upstream Intragenic Downstream ethn� Ref��

rs1183910 12 120,983,004 0.31 0.11���� 6 X 10−76 A No HNF1A No EA [27]

14%����� 1.2 X 10−17 EA [28]

0.33 -0.15 2 X 10−124 EA [21]

rs2393791 12 120,986,153 0.478 0.049 3.0 X 10−9 C No HNF1A No AS [122]

rs7310409 12 120,987,058 0.40 -0.18 1.6 X 10−10 A/G No HNF1A No EA [24]

0.32 -0.15 7.9 X 10−3 AA [24]

0.41 -0.13 1.1 X 10−3 HIS [24]

0.53 -0.07 2.7 X 10−8 JPT [30]

0.67 -0.22 1.6 X 10−6 FIL [25]

rs2259820 12 120,997,539 0.31 -0.12 1.8 X 10−9 T No HNF1A No EUR [72]

0.12 -0.07 9.6 X 10−2 AA [72]

rs2464196 12 120,997,624 0.32 -0.12 9.3 X 10−9 A No HNF1A No EUR [72]

0.12 -0.07 8.1 X 10−2 AA [72]

rs1169310 12 121,001,630 0.38 0.13 2.0 X 10−8 A No HNF1A No EUR [108]

rs2526932 14 72,614,360 0.012 0.275 6.0 X 10−13 G RP3-514A23.2 No DPF3 AS [122]

rs2239222 14 72,545,177 0.36 0.04 9.9 X 10−20 G No RGS6 No EUR [86]

rs112635299 14 94,371,805 0.02 -0.11 2.1 X 10−10 T SERPINA1 No SERPINA2 EUR [86]

rs178810 17 16,194,116 0.56 0.02 2.9 X 10−8 T No NCOR1 No EUR [86]

rs892073 19 29,421,387 0.044 0.03 8.0 X 10−6 A No CTC-525D6.1 No HIS [123]

rs2075650 19 44,892,362 0.15 -0.12 4.2 X 10−8 G No TOMM40 No EA [65]

0.14 -0.22 1.8 X 10−38 EA [24]

-0.21 6.8 X 10−16 EA [77]

0.13 -0.18 2.2 X 10−47 EA [19]

0.14 -0.02 6.5 X 10−1 AA [24]

rs157581 19 44,892,457 0.21 -0.16 2.4 X 10−12 C No TOMM40 No EUR [72]

0.47 -0.09 5.1 X 10−4 AA [72]

rs11556505 19 44,892,887 0.14 -0.18 2.9 X 10−11 T No TOMM40 No EUR [72]

0.12 -0.02 6.3 X 10−1 AA [72]

rs112849259 19 44,894,050 0.03 -0.28 1.3 X 10−6 C No TOMM40 No EUR [72]

0.04 -0.37 1.1 X 10−7 AA [72]

rs769449 19 44,906,745 0.38 6.8 X 10−3 G No APOE No FIL [125]

rs769450 19 44,907,187 0.03 1.0 X 10−4 NA No APOE No EA [19]

0.37 0.08 1.6 X 10−6 AA [19]

rs429358 19 44,908,684 0.11 -0.31 7.0 X 10−8 C No APOE No EUR [72]

0.19 -0.24 1.5 X 10−6 AA [72]

rs4420638 19 44,919,689 0.18 -0.24 1.0 X 10−56 G APOC1 No APOC4 EA [24]

0.20 -0.03 2.7 X 10−1 AA [24]

0.10 -0.18 5.6 X 10−4 HIS [24]

0.20 -0.24 9 X 10−139 EA [21]

0.21 -0.28 1.6 X 10−6 MIC [124]

rs2159324 19 45,192,480 0.44 0.19 2.0 X 10−6 T No AC005779.2 No MIC [124]

rs2315008 20 63,712,604 0.31 -0.02 5.4 X 10−10 T No ZGPAT No EUR [86]

rs2315656 20 63,786,984 0.395 0.03 4.0 X 10−6 G No ZBTB46 No HIS [123]

� ethnicity, EA: European American, AA: African American, HIS: Hispanic, FIL: Filipino, AS: Asian, JPT: Japanese, MIC: Micronesia, EUR: European.

�� endnote reference.

��� NA: not available.

���� per allele effect in z score units -0.11 (lnCRP).

����� % change in ln CRP per minor allele.

https://doi.org/10.1371/journal.pone.0223574.t001

Genetic analysis of hsCRP in American Indians: The Strong Heart Family Study

PLOS ONE | https://doi.org/10.1371/journal.pone.0223574 October 17, 2019 5 / 26

https://doi.org/10.1371/journal.pone.0223574.t001
https://doi.org/10.1371/journal.pone.0223574


and in some cases very restricted in prevalence (Aboriginal Canadians [31]). There have been

very few studies focused on indigenous populations of North and South America [31–33]; and

none employing linkage or GWAS analysis. These have shown similar heritability of CRP (29

to 46%) and differing population prevalences of variants affecting CRP levels.

Cardiovascular disease (CVD) [34], diabetes mellitus (DM) [35] and other conditions [36]

with a significant inflammatory component account for a disproportionately large fraction of

mortality and morbidity in American Indian (AI) communities. A better understanding of the

genetic contributions to this important component of the innate immune system may shed

light on some of these health disparities. Unfortunately genetic research among indigenous

peoples has become more challenging after the inappropriate activities of some investigations

have been revealed [37,38]. The resulting lack of trust in investigators, exhibited among AI

and other populations can have many important societal impacts, including the possibility of

worsening already adverse health disparities [39,40]. The aim of this study is to identify genetic

loci influencing basal CRP levels using genome-wide linkage and extensive SNP genotyping

among participants in a large and well-characterized cohort of American Indians, the Strong

Heart Family Study (SHFS).

Methods

Population

The Strong Heart Study (SHS) is a population-based, cohort study of CVD and associated risk

factors among American Indians in three centers in Arizona, Oklahoma and North/South

Dakota. The participating communities, study design, survey methods and laboratory tech-

niques have been described previously [41,42]. The SHS was extended in 1998 and subsequent

phases, as the Strong Heart Family Study, recruiting participants 16 years and older, without

regard to disease status, from multi-generational families, including index members of the

SHS cohort. All participants have given written, informed consent. In addition, approval for

this study was obtained from relevant tribal communities and institutional review boards,

including Great Plains Indian Health Service (IHS) Institutional Review Board (IRB), Oglala

Sioux Research Review Board, Oklahoma IHS IRB, University of Oklahoma IRB, Phoenix

Area IHS IRB, MedStar Health Research Institute IRB, University of North Carolina IRB,

Columbia University IRB, and University of Texas Health IRB. The collection of phenotypic

data for the SHFS was conducted between 2001 and 2003 according to methods described pre-

viously [41]. "Ever" smoking was defined as having smoked at least 100 cigarettes during the

lifetime and "current" smoking as present, regular use of smoke tobacco. "Current" and "ever"

alcohol intake was defined as having had at least 12 alcoholic beverages in the last year or in

past years, respectively.

Biomarker, serum CRP

CRP was measured using a immunoturbidometric method (Vitros Chemistry Products, num-

ber 6801739, Ortho Clinical Diagnostics, Rochester, NY), on a Vitros 5,1 platform (Ortho

Clinical Diagnostics, Rochester, NY). This method has shown good comparability to results

from the previous Dade-Behring immunonephelometric method [43].

Genome-wide linkage analysis, quality control

The procedures for genotyping microsatellite markers in the SHFS have been described previ-

ously [44]. In brief, DNA was amplified with primers specific for short tandem repeat markers

using the ABI PRISM Linkage Mapping Set-MD10 Version 2.5 (Applied Biosystems, Foster
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City, CA). PCR products were loaded into an ABI PRISM 377 DNA sequencer for laser-based

automated genotyping. Analyses and assignment of the marker alleles were done using com-

puterized algorithms (Applied Biosystems). deCODE Genetics provided sex-averaged chro-

mosomal maps (in units of Haldane centi-morgans) for this analysis [45]. Pedigrees were

screened with the Pedigree Relationship Statistical Tests (PREST) [46] and SimWalk2 [47]

programs for checking for Mendelian inconsistencies and possible double recombinants. The

above screening resulted in less than 1% of all genotypes being excluded. Multipoint identity-

by-descent (IBD) matrices for genome-wide linkage analyses were calculated using the linkage

analysis package LOKI [48].

Genome-wide association analysis, quality control

To study potential effects of environmental exposures on incident diabetes [49], a subset of

SFHS [42] without prevalent diabetes has been genotyped utilizing the Illumina Human Car-

dio-Metabo BeadChip array (MetaboChip, Illumina, San Diego, CA), an Illumina custom

panel incorporated 196,725 SNPs previously identified as significant GWAS signals for meta-

bolic and CVD traits [50]. Blood samples collected from individuals who were free of DM at

baseline visit were used for this study and genotyped at the Texas Biomedical Research Insti-

tute, San Antonio, TX. All genomic positions listed are derived from NCBI GRCh38/hg38.

Non-autosomal (n = 250) and monomorphic markers (n = 158) were removed prior to gen-

otyping quality control. Mendelian inconsistencies were excluded using Preswalk, a PEDSYS

compatible version of Simwalk2 [47]. SNPs with a marker call rate< 98% or no data

(n = 33,604) and individual samples with a call rate< 95% (n = 3) were excluded. Allele fre-

quency and Hardy-Weinberg equilibrium (HWE) values were estimated using Sequential Oli-

gogenic Linkage Analysis Routines (SOLAR) [51]. Markers failing HWE analysis at p< 10−5

(n = 1,519) and those with minor allele frequencies (MAF) less than 1% (n = 40,219) were also

excluded. Since there have been reports of duplicate sequences surrounding certain SNPs

(most easily recognized when the duplicate is on a sex chromosome) [52], we conducted an

additional screen for significant differences in genotype distribution between genders among

the 69 SNPs with association p-values <4X10-4 and passing the previously described, typical

screens. Within this group there were 3 SNPs that showed significant differences (p<0.05) in

genotype and allelic distribution between genders and were thus excluded. Details from two

examples are presented in the S1 Table.

Pairwise correlations (r2) between markers were calculated to estimate linkage disequilib-

rium (LD). The original annotation file for the Cardio-Metabo BeadChip, “MetaboChip_Gen-

e_Annotation” is accessible through the Illumina website. A PEDSYS [53] compatible version

of Merlin [54] was used for pedigree-guided imputation of array marker data using the UCSC

Genome Browser hg18 assembly [55]. The lack of comparable data sources for AI populations

necessitated the use of primarily European data from the UCSC assembly. The final data set

includes 120,972 autosomal markers with information available for MetaboChip analysis of

1,892 AI participants.

Statistical analysis

Genome-wide linkage analysis. We used stepwise linear regression in center stratified

samples to screen covariates (SAS, version 8.0). Quantitative genetic analysis was conducted

using a maximum likelihood variance components decomposition-based method [51]. This

approach was implemented in the computer program SOLAR, version 8.1.1 [51] which allows

for an explicit test of whether phenotypic covariance among family members are in part due to

genetic effects.
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A total of 2,428 SHFS participants were considered for linkage analysis (Arizona (AZ) =

286 Dakota (DK) = 1,066, Oklahoma (OK) = 1,076), as seen in Table 2, after excluding those

individuals with missing covariate data and as indicated below to normalize the phenotypic

trait distribution. Because variance components methods are sensitive to kurtosis [56] and to

avoid including those with an acute inflammatory process, phenotypic outliers (N = 195) with

CRP levels >16.0 (~3 standard deviations (SD) above the mean) were removed prior to analy-

sis. In addition, CRP levels were natural log transformed. All analyses were conducted sepa-

rately for each center and then on the combined data from all three centers. To maximize our

power to detect genetic effects, a minimally adjusted model (Model 2, Table 3), incorporating

age, age2, age�sex, age2�sex, sex, and center covariates was analyzed first. Secondary analyses

considered adjustment for the linear fixed effects of the covariates listed in Table 2, which were

previously shown to influence the trait in epidemiological studies [32,57–59]. We additionally

confirmed the significance of Model 2 covariates while accounting for family relationships in

SOLAR. Residuals were generated for Model 2 and used in all subsequent genetic analyses.

Kurtosis values for CRP were< 0.50 for all analyses.

Genome-wide association analysis using MetaboChip array. MetaboChip genotyping

was limited to the subset of SHFS without DM during the pilot (1997–1999) and the next

phase (2001–2003), thus a total of 1,892 SHFS participants were included in the SNP associa-

tion analysis. Linear regression models for CRP with each SNP were used under the assump-

tion of an additive genetic model and the analysis was performed using variance components

Table 2. Descriptive characteristics of SHFS participants stratified by study recruitment center.�

Linkage Study SNP Association Study

AZ DK OK AZ DK OK

Participants (N) 286 1066 1076 195 901 796

Gender (female) 66.4% 58.7% 57.2% 65.5% 60.0% 58.6%

Age, years mean (± SD) 37.7 (16.6) 38.5 (16.8) 43.3 (17.3) 33.2 (14.6) 36.5 (15.9) 40.2 (16.1)

Pedigrees, N 13 16 9

Generations 5 5 6

(ln)hsCRP, in mg/L, mean (± SD) 1.267 (1.059) 0.964 (1.109) 0.976 (1.074) 1.196 (1.044) 0.904 (1.144) 0.896 (1.092)

Diabetes�� N (%) 82 (29) 140 (13) 207 (19) 4 (9) 17 (2) 24 (3)

Smoking,��� ever/current, N (%) 133 (47) 701 (66) 625 (58) 71 (41) 556 (65) 430 (56)

Waist, cm, mean (± SD) 109.5 (20) 99.0 (17) 101.5 (17) 107.6 (21.4) 97.7 (16.2) 99.7 (16.6)

Menopausal Yes, N (%)���� 50 (26) 157 (25) 224 (36) 16 (14) 105 (20) 127 (28)

Alcohol Current, N (%) 177 (62) 715 (67) 518 (48) 111 (65) 598 (70) 403 (52)

Total cholesterol mg/dl, mean (± SD) 173.6 (33.1) 181.7 (36.6) 185.8 (37.1) 171.9 (32.4) 181.0 (36.0) 184.7 (35.8)

HDL-Cholest, mg/dl mean (± SD) 49.3 (14.3) 50.7 (13.7) 52.9 (15.5) 48.8 (14.3) 50.8 (13.8) 54.0 (15.7)

LDL-Cholest, mg/dl mean (± SD) 94.2 (25.8) 100.9 (30.8) 100.1 (30.2) 94.6 (25.5) 101.1 (30.6) 100.1 (30.6)

Triglycerides, mg/dl mean (± SD) 158.2 (111.0) 157.3 (138.9) 172.1 (176.4) 147.8 (85.1) 150.9 (129.0) 157.1 (103.6)

Estrogen use Yes, N (%) 40 (21) 102 (16) 92 (15) 2 (2) 40 (8) 60 (13)

BMI, Kg/m2 mean (± SD) 34.4 (8.5) 29.9 (6.6) 30.9 (6.8) 34.1 (9.0) 29.8 (6.6) 30.4 (6.8)

HbA1c (%, ± SD) 7.0 (2.2) 6.0 (1.6) 6.5 (1.9) 5.7 (1.3) 5.5 (0.9) 5.6 (0.9)

Systolic blood pressure (mmHg) 119.7 (14.8) 119.9 (16.0) 126.4 (17.2) 117.3 (13.0) 118.5 (14.6) 124.2 (16.2)

� Percentages and means calculated only from those with available measurements.

�� Diabetes was determined using the American Diabetes Association criteria.

��� Smoking was defined as "current" or "ever" smokers.

���� Percentage of females.

https://doi.org/10.1371/journal.pone.0223574.t002
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Table 3. Overall heritability assuming various models.

Model Covariates included in the final model h2 (SE) P-value Chrom (loc) LOD score

1 None 0.29

(0.04)

4.x 10–17 5 (25) 0.074

6 (185) 0.800

6 (189) 1.037

6 (191) 1.065

19 (93) 1.611

2 age, age2, age x sex, age2 x sex, sex, center 0.33

(0.05)

1.3 x 10–20 5 (25) 0.002

6 (185) 1.615

6 (189) 1.825

6 (191) 1.824

19 (93) 1.431

3 age, age2, age x sex, age2 x sex, sex, center, smoking status 0.33

(0.05)

6.7 x 10–21 5 (25) 0.002

6 (185) 1.583

6 (189) 1.880

6 (191) 1.896

19 (93) 1.315

4 age, age2, age x sex, age2 x sex, sex, center, Waist circumference, Body fat, total cholesterol, triglycerides,

HDL, LDL, HbA1C, Systolic blood pressure

0.32

(0.09)

9.7 x 10–6 5 (25) 2.002

6 (185) 0.012

6 (190)� 0.000

6 (190) 0.000

19 (90) 0.192

5 age, age2, age x sex, age2 x sex, sex, center, DM status 0.32

(0.05)

1.2 x10-18 5 (25) 0.002

6 (185) 1.512

6 (189) 1.807

6 (191) 1.828

19 (93) 1.463

6 age, age2, age x sex, age2 x sex, sex, center, hypertension status 0.33

(0.05)

1.3 x 10–19 5 (25) 0.000

6 (185) 1.493

6 (189) 1.714

6 (191) 1.698

19 (93) 1.332

7 age, age2, age x sex, age2 x sex, sex, center, hormone replacement therapy status 0.35

(0.07)

2.2 x 10–9 5 (25) 0.000

6 (185) 1.561

6 (189) 1.236

6 (191) 1.002

19 (95) 0.009

Highest LOD score in each center, compared with other centers

Center Covariates included in the final model h2 (SE) P-value Chrom (loc) LOD score

AZ age, age2, age x sex, age2 x sex, sex 0.70

(0.16)

3.3 x 10−6 18 (36) 2.360

DK age, age2, age x sex, age2 x sex, sex 18 (35) 0.001

OK age, age2, age x sex, age2 x sex, sex 18 (35) 0.000

AZ age, age2, age x sex, age2 x sex, sex 16 (50) 0.000

DK age, age2, age x sex, age2 x sex, sex 0.33

(0.06)

3.2 x 10−11 16 (51) 2.236

OK age, age2, age x sex, age2 x sex, sex 16 (50) 0.000

AZ age, age2, age x sex, age2 x sex, sex 6 (190) 0.000

DK age, age2, age x sex, age2 x sex, sex 6 (193) 0.499

OK age, age2, age x sex, age2 x sex, sex 0.28

(0.07)

2.0 x 10−7 6 (193) 1.284

� closest available locus.

https://doi.org/10.1371/journal.pone.0223574.t003
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decomposition-based models to account for familial correlation, as implemented in the

SOLAR software package [51]. This approach allows us to account for the non-independence

among family members.

Principal component analysis (PCA) was used to derive principal component scores (PCs)

modeling differences in ancestral contributions among study participants. PCs were calculated

using the unrelated SHFS founders (n = 644) and a subset of 15,158 selected SNPs (r2 <0.1;

MAF >0.05). PCA was performed on a matrix of “doses” (copies of minor allele) for the

selected SNPs, using “prcomp” in R. The PCs were then predicted for all genotyped individuals

using the PCA model fit to the founder data [60]. While no PC accounted for a large percent-

age of total variance in genotype scores, the first four PCs account for substantially more than

the rest and were, therefore, included as additional covariates in association analyses.

To minimize the problem of non-normality, the CRP data were log-transformed. All analyses

involved adjustment for basic covariates (age, age2, age�sex, age2�sex, sex2 and PCs). We stratified

the association analysis by geographical location (Arizona, Oklahoma, North and South Dakota)

to account for possible differences between the three locations. After consideration of linkage dis-

equilibrium effects using the Moskvina and Schmidt method [61] the 120,972 analyzed SNPs had

an effective size of 64,375 and the Bonferroni significance level was determined to be p<7.77 x

10−7. When considering SNPs or gene regions previously shown to be significantly associated

with CRP in the literature, a p-value of 0.05 was considered evidence of replication.

Metal. METAL software [62] was used to perform meta-analysis of GWAS results taken

from the three study centers, each study containing individual genome-wide MetaboChip

association results for multiple markers are analyzed across all studies for marker(s) with sig-

nificant results. The fixed-effect meta-analysis across the center-specific association results

used I2 to assess heterogeneity across centers.

Additional analysis. We used fine mapping and conditional analysis to identify indepen-

dent SNP associations within loci for CRP. We focused on chromosomal regions of 1, 12 and

19 (included in Table 1) due to better coverage of SNPs in these regions. For SNPs identified

in the literature but not available on the MetaboChip, we used a strategy of examining all SNPs

within a 1 Mb span of the published SNP, given that LD in AI is not available. Conditional

association analysis was then conducted, using the proxy SNPs as covariates. The p-value for

the hypothesis that a newly identified, secondary independent association exists, was calculated

as 0.05 divided by the number of independent SNPs in the region.

Results

The descriptive characteristics of CRP and other covariates, stratified by recruitment center, are

displayed in Table 2. Women exhibited significantly higher mean CRP than men (3.64 +/- 2.84

mg/dl vs 2.27 mg/dl +/- 2.90). The CRP levels were highest (3.61 mg/dl ˚ 2.74) in the AZ center

and lowest (2.58 mg/dl ˚ 3.01) in the DK center. Individuals from the AZ center had the highest

prevalence of DM and obesity compared to the other centers. In contrast, SHFS participants from

the DK center had the highest prevalence of current smokers. The OK center had the highest

prevalence of women with menopause. The descriptive characteristics of the subsample with

genotypes (N = 1,892) included in the MetaboChip analysis are given in Table 2. Essentially all of

the MetaboChip cohort (99.6%) were included in the linkage analysis; but due to the exclusion of

those with DM, only 70.1% of the linkage cohort were included in the MetaboChip analysis.

Genome-wide linkage analysis of CRP

To estimate the proportion of the CRP level variance due to genetic effects (heritability), we

used the full SHFS population. Heritability was significant for lnCRP levels (h2 = 0.33 ± 0.05
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with adjustment for demographic covariates in model 2, p<1.3 X 10−20) (Table 3). Further

adjustment for smoking (model 3), measures of obesity and serum lipid levels (model 4), DM

(model 5), or hypertension (model 6) provided similar estimates. In center stratified analyses,

heritability estimates are shown in Table 3, with the highest at 0.71 ± 0.16 in the Arizona

center.

Using the best heritability model (model 3) we next examined the evidence of linkage for

lnCRP. Logarithm of the odds (LOD) scores>1.9 are generally accepted as suggestive

genome-wide, multipoint linkage [63]. Thus there was suggestive evidence (LOD = 1.90) from

model 3 for linkage of CRP to a locus on chr 6, 191cM, near marker D6S281, corresponding to

a physical position at approximately 169.6 Mb (GRCh38/hg38). The signal was maximal with

these typical adjustments for smoking and demographic covariates; and was only slightly

attenuated after inclusion of DM (LOD = 1.83) and hypertension (LOD = 1.71) in the model.

Adjustment of model 2 for measures of adiposity, systolic blood pressure and serum lipids,

markedly attenuated the signal (LOD = 0.41) at this position. The LOD score was reduced in

each center-specific analyses at this locus, with the highest being 1.36 for model 2 in the

Dakota center and 1.28 for the OK center. The AZ center failed to show any sign of linkage at

this locus; but was hindered by a small sample size at that center.

At chr 16, the strongest linkage signal was found with model 2 at 51cM (D16S3068) with a

LOD score of 2.24 in the DK center. At this locus, however, the other centers show virtually no

signal, suggestive of a population-specific association. No individual center showed any note-

worthy signals on chr 19, with the maximum being 1.09 in the DK center. A maximum LOD

score of 2.36 was noted in the AZ center on chr 18 at 36cM; but there was no corresponding

signal in the DK and OK centers, with the maximal LOD score of 1.30 in the DK center

observed at 52cM.

Genome-wide analysis of SNPs for association with CRP

The main findings from association analyses using the MetaboChip genotyping data and stan-

dard covariates (age, age2, age�sex, age2�sex, sex2 and PCs) are summarized in Table 4

(restricted to those with a p-value of less than <7.0 x 10−5). Considering all three centers

together, no SNPs demonstrated a Bonferroni-corrected, MetaboChip wide, statistically signif-

icant association (p-value < 7.77 x 10−7). It should be noted that in the interest of conserving

space, there were 2 additional SNPs at the PHACTR1 locus, two at TARID, one at RP1L1, one

at TCF7L2 and two at HNF1A, also with association p-values less than 7.0 x 10−5.

These results corroborate previous literature reports of association between CRP and the

SNPs in Table 1. Of the 77 variants previously linked to CRP, 27 were also identified as having

similar associations in the present study, such as 4 SNPs in the CRP region, all with p-values

less than 9 x 10−4, and 10 SNPs at HNF1A with p-values ranging from 0.07 to 4.4 x 10−6 for

rs2393791. Of interest, a recent meta-analysis of over 200,000 Europeans found 58 novel vari-

ants [64], including rs178810 on chr 17, significantly associated with CRP, which was repli-

cated by the current study (p-value 0.038). At the previously reported chr 19 region spanning

APOE, TOMM40 and APOC1 [19,65], there were 3 SNPs with duplicate genotyping in the cur-

rent study, all with nominal significance and direction of effect concordant with the literature

[19,65].

We found two additional, nominally significant SNPs relatively proximal to others reported

associated with CRP level, such as rs7635320 within 1.5 Mb of reported rs1514895 on chr 3,

and rs7143416 within 2 Mb of reported rs112635299 on chr 14.

Alternatively, when the available MetaboChip SNPs were searched by region for the genes

listed in Table 1, there are 3 SNPs intronic to JAK1 (and approximately 400 Kb from the
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Table 4. MetaboChip results, combined center analysis, by chromosome, with association p-values (maximum of 7.0 X 10−5).

SNP Gene� Chr: Min/maj

allele��
z-score��� P Physical

Coordinates����
MAF

rs7595184 CENTG2 2 A/G 4.01 6.2 X 10−5 235,596,138 0.04

rs7617596 FOXP1 3 A/G -4.03 5.6 X 10−5 71,472,343 0.329

rs1127343 C3orf28 3 A/G 4.54 5.6 X 10−6 122,409,547 0.147

rs7635320 MDS1 3 A/G -3.99 6.7 X 10−5 169,246,830 0.356

rs4583704 ZNF509 4 C/G 4.03 5.5 X 10−5 4,372,749 0.486

rs200200 FARS2 6 A/G 4.34 1.4 X 10−5 5,443,407 0.03

rs9472752 PHACTR1 6 A/G 4.01 6.1 X 10−5 12,863,902 0.383

rs7740975 SLC35F1 6 A/G 4.24 2.2 X 10−5 118,158,542 0.112

rs1966248 TARID 6 A/T -4.07 4.8 X 10−5 133,838,484 0.342

rs1294948 RAMP3 7 A/C -4.2 2.7 X 10−5 45,172,191 0.216

rs7814795 RP1L1 8 A/G -4.4 1.1 X 10−5 10,661,775 0.324

rs2577888 YTHDF3 8 A/C 4.08 4.5 X 10−5 64,364,912 0.257

rs10739202 PTPRD 9 A/G -4 6.2 X 10−5 9,897,289 0.013

rs10733682 LMX1B 9 A/G 4.81 1.5 X 10−6 126,698,635 0.243

rs4132670 TCF7L2 10 A/G -4.06 5.0 X 10−5 113,008,012 0.108

rs2393791 HNF1A 12 A/G 4.59 4.5 X 10−6 120,986,153 0.409

rs927791 FGF9 13 A/G 4.03 5.6 X 10−5 21,734,552 0.114

rs4531650 EGLN3 14 C/G 4.07 4.7 X 10−5 34,047,374 0.478

rs7143416 SLC24A4 14 A/G 4.23 2.4 X 10−5 92,452,449 0.284

rs3794808 SLC6A4 17 A/G 4.13 3.7 X 10−5 30,204,775 0.385

rs9902290 SNIP 17 C/G 3.98 7.0 X 10−5 38,651,325 0.044

Center specific analysis

SNP Gene Chr: Min/maj

allele

β P Physical

coordinates

MAF

Arizona

rs1877715 CXCR1 2 A/G -1.02 1.2 X 10−6 218,187,823 0.07

rs704951 XYLB 3 G/A -1.36 3.3 X 10−8 38,372,036 0.06

rs12356821 WBP1L 10 C/G -1.93 1.1 X 10−8 102,804,051 0.03

rs11195703 ncRNA 10 G/A -0.73 3.6 X 10−6 111,741,277 0.13

rs72858840 SBF2 11 A/C -2.15 5.6 X 10−7 10,033,699 0.02

rs12939525 CEP131 17 G/A -1.15 1.2 X 10−6 81,220,205 0.07

Dakota

rs12735411 ATP1A1 1 C/T -0.48 1.3 X 10−5 116,353,438 0.07

rs1205 CRP 1 A/G -0.23 2.4 X 10−5 159,712,443 0.52

rs1341665 CRP 1 A/G 0.24 1.6 X 10−5 159,721,769 0.47

rs11986935 PINX1 8 A/T -0.27 4.4 X 10−5 10,834,039 0.25

rs1328648 DCLK1 13 A/G 0.23 3.2 X 10−5 36,148,879 0.43

rs74876483 SKOR1 15 C/T 0.34 2.0 X 10−5 67,861,793 0.14

Oklahoma

rs4895389 TARID 6 C/T -0.28 2.0 X 10−6 133,838,014 0.34

rs1969783 TARID 6 C/T -0.28 2.6 X 10−6 133,838,261 0.35

rs1966248 TARID 6 A/T -0.29 1.3 X 10−6 133,838,484 0.34

rs231350 KCNQ1 11 A/C -0.26 5.5 X 10−6 2,692,419 0.39

rs2014429 PAUPAR 11 A/G/T 0.26 8.7 X 10−6 31,919,489 0.39

� Most proximal candidate gene.

�� Minor allele is effect allele, major is referent.

��� inverse weighted average of three centers.

���� GRCh38.p7, dbSNP build 1.

https://doi.org/10.1371/journal.pone.0223574.t004
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reported LEPR gene) on chr 1, all with association p-values less than 4.5 x 10−3. Also on chro-

mosome 1, we found 5 SNPs in the IL6R region with association p-values less than 0.05. At the

GCKR locus of chromosome 2, seven SNPs were identified of nominal significance. The above

mentioned meta-analysis also found 2 additional variants (implicating FRK and ABO on chr 6

and 9) [64] which have 7 and 4 SNPs represented in the present analysis, all with p-values less

than 0.05.

S2 Table highlights 3 clusters of nominally significant SNPs co-localizing with the CRP,

HFN1A, and TOMM40/APOE/APOC1 regions, which include five SNPs within a 39Kb

region, 19 SNPs within 43 Kb, and 6 SNPs within 27 Kb respectively. In addition, another 7

compact chromosomal regions are shown (S1 Table), suggesting that these SNPs are in linkage

disequilibrium, potentially with a functional variant. These include a cluster of 6 SNPs within

28 Kb on chr 2, and a cluster of 5 SNPs within a 194 Kb region of chr 5. The latter group is

within ~1 Mb of a novel SNP recently reported associated with CRP [64]. On chr 6 there are

two groups, one of 12 SNPs within an 148 Kb region (centered at 12,825,000) and one of 5

SNPs within 55Kb (centered at 133,850,000). The latter is again within 2 and 4 Mb from two

previous literature reports of associated SNPs. A group of 5 SNPs clustered within 10 Kb is

found on chr 9, within ~200 Kb of a newly reported SNP [64]. There are 10 SNPs centered

around 113,120,000 and within 243 Kb on chr 10, and another 3 SNPs reside within a 17 Kb

area of chr 17. The SNPs in these clusters range from 1: 1,800bp to 1:39,000bp; and except for

the chr 19 cluster, all of the p-values are <1x10-3. Please see figures S1–S10 Figs, showing locus

zoom (A) and linkage disequilibrium plots (B) for each of these clusters in regions of chromo-

somes 1,2,5,6a/b,9,10,12,17 and 19.

Center specific analysis (Table 4, last section) revealed considerable differences between cen-

ters in strength of association among SNPs. For example, the OK center showed consistently

strong association (all p-values less than 2.6 x 10−6) for three chr 6 SNPs tightly clustered within

only 470 bp of each other; and within an intron of the TARID gene, which also encompasses the

chr 6 SNP cluster at ~133,850,000 shown in Table 4. The DK center showed strongest associa-

tion for 2 SNPs at the CRP locus, but essentially no apparent association with the top SNPs from

the other centers. The AZ center also showed substantial association (p-values from 2.3 x 10−6

to 7 x 10−5) with SNPs at chr 6, but in loci quite distant from the clusters identified in the overall

analysis. Although other SNPs showed association p-values below the genome-wide threshold,

there were only 171 participants at the AZ center and there was minimal overlap with loci in the

overall analysis or the other centers. Chromosome 11 also contained a large cluster of SNPs

with maximum association p-values of ~1 x 10−6, but the minor allele frequencies were quite

low, leaving the results dependent on as few as 6 individuals from the total of 171.

Conditional analysis for fine mapping

We conducted linkage analysis conditional on our top SNPs on chromosomes 5 and 6. For

model 4, our topmost signal was on chromosome 5 (LOD = 2.00). Our association analysis

identified four SNPs on chromosome 5 (p< 7 x 10−4), however they were not in the same

region as our linkage signal and thus adjusting for the SNPs did not change the linkage signal

(LOD = 2.00). For model 3, our best linkage hit was on chromosome 6 (LOD = 1.9). There

were two clusters of SNPs on chromosome 6 which were associated with CRP at a significance

level of< 7 x 10−4. None of these regions overlapped with our linkage signal. The SNPs with at

least nominal association with CRP and closest to our linkage region were about 34Mb apart.

On chromosome 1, we identified a 5Mb region from 154,453,788 to 159,730,249 that con-

tained most of the significant SNPs in the literature. Of the 20 SNPs in this region, only

rs2794520, rs1205, rs1341665 and rs3091244 were genotyped in our dataset. For the rest of the
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SNPs we scanned the region plus and minus 500kb to find proxy SNPs. We considered proxy

SNPs to be those that are significantly associated with CRP and are in LD (r2� 0.8) with one

of the four SNPs in a European population. We found that except two SNPs of the IL6R gene

and four SNPs (rs1417938, rs4131568, rs1800947, rs3093058) of CRP, the remaining 14 SNPs

were in strong LD with each other. Since none of the other SNPs in the region were signifi-

cantly associated with CRP, we conducted a conditional analysis with one variant (rs1205) of

the LD block of 14 SNPs. With adjustment for rs1205, the CRP SNPs rs2592887, rs1470515,

rs2794520 and rs1341665 became non-significant, with p-values of 0.26, 0.35, 0.41 and 0.63

respectively. For chromosome 12, we did not find any SNPs to be in LD with significant SNPs

in other populations. However, since our best association signal was on chromosome 12

(HNF1A), we conducted additional analysis conditional on rs2393791 to identify secondary

signals. Similar to previous analysis, loci on chromosome 12 were no longer significant and

others showed minimal changes. For chromosome 19, we found rs8106922 to be a proxy SNP

for rs769450 which was significantly associated with CRP in other populations but not geno-

typed in our cohort. Analysis conditional on rs8106922, however, showed no change in p-val-

ues. In summary, conditional analysis showed loss of nominal association when our initial chr

1 results were adjusted with rs1205 as a covariate; and similar loss of association for chr 12

SNPs in the HNF1A region, when adjusting for rs2393791. See S3 Table for details.

Functional annotation of identified variants

The associated SNPs are grouped into clusters based on their LD patterns (Table 4). We used

RegulomeDB [66] and HaploReg [67,68] to functionally annotate CRP-associated variants.

RegulomeDB showed that rs1969783 and rs1966248 of TARID and rs5629931 of TCF7L2 had

a score of 3a (less likely to affect binding) and rs2592887 and rs1205 of CRP, rs4895389 of

TARID and rs3405329 and rs6721844 of LDAH had lower scores of 4 (minimal binding evi-

dence). The LDs shown by HaploReg (S4 Table), based on European populations by default,

are very similar to the LD patterns found in the present study. In addition, several SNPs over-

lap with promoter and enhancer histone marks and DNase hypersensitivity regions in various

tissues (S4 Table).

Discussion

The results reported here further inform our understanding of inherited genetic influences on

baseline serum CRP levels, by examining a family-based sample with unique ethnic and envi-

ronmental characteristics, through the use of linkage, focused SNP association analyses, and

bio-informatic methods. Previously unrecognized loci suggesting an association with serum

CRP levels include a linkage signal at chr 6, 181–194 cM and three SNPs with among the low-

est association p-values within our study, located approximately 34 Mb centromeric to the

linkage peak. Further support for an effect from this region is seen in center specific linkage

and SNP association analysis from Oklahoma. The MetaboChip genotype association results

also support earlier findings in proximity to the CRP gene (chr 1), the KCNE4 and GCKR
genes (chr 2), HNF1A (chr 12), and TOMM40, APOE (chr 19) genes that have been previously

associated with CRP expression, as noted in Table 1. In addition, the clustering of groups of

highly associated SNPs within very limited regions on chromosomes 5, 6, 9, 10, and 17 suggests

the existence of novel loci, even though the p-values are above the Bonferroni, genome-wide

adjusted threshold. Fine mapping suggested lack of secondary associated SNPs at two regions

near the CRP and HNF1A genes.

The heritability estimate of CRP from the present study is 0.33 (p<1.3 x 10−20) compared

with similarly-adjusted, previous findings for American Indians (0.38) [32], African Americans
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(0.45) [69], Chinese (0.38) [70] and non-Hispanic whites (0.40) [57]. The strongest linkage sig-

nal, across all centers, was between 189 and 191 cM on chr 6 with adjustment for typical demo-

graphic variables; and there was minimal attenuation with further adjustment for DM and

hypertensive status. Center specific analyses in both DK and OK revealed linkage peaks in the

same chr 6 region, however there was an absence of signal in the AZ center, perhaps due to the

small number of participants there. While higher LOD scores were seen in some center-specific

analyses, only a LOD of 1.09 in the DK center corresponded with the previously identified chr

19 locus [20,24,71,72], otherwise there seemed to be no correlation between centers, with the

MetaboChip association results, or with reports in the literature, as summarized in Table 1. As

CRP levels are clearly correlated with measures of obesity [73] and there is a genetic correlation

between physical activity and LDL-C [44], it is possible that inclusion of covariates of adiposity,

lipids and blood pressure could result in "over-adjustment", reducing power to detect linkage.

While there have been relatively few linkage studies of CRP [74–76], Ding et al reported a

LOD of 0.49 on chr 6, 187cM among African Americans [18], and a LOD score of 1.7 (107cM)

on chr 10 [18]. While the present linkage results failed to replicate this chr 10 result in Ameri-

can Indians, a suggestive cluster of SNPs was found approximately 30 Mb proximal to this

locus. Another region on chr 6 (6q16.1) has been associated with plasma CRP levels in a cohort

of Filipino women [25], and lies within ~38 Mb of the present findings at 133,000,000.

Inspecting loci where SNPs influencing CRP expression have been reported, for example,

on chr 1 (at the CRP gene) [24,77], chromosomes 2 [21,64], 12 [72,77], and 19 [20,24], our

results failed to show a linkage signal, with the highest LOD score (1.41) at chr 19, 96cM

(APOE and TOMM40 genes).

The MetaboChip data showing 12 SNPs clustered in a span of about 150Kb at position

12,800,000 and another 5 SNPs within 55Kb around 133,850,000 in the 6p22.3 and 6q22.31

regions may represent extended regions of LD which contain a functional variant influencing

CRP levels. The first cluster of 12 SNPs is intronic to the PHACTR1 gene, which plays a role in

endothelial cell survival and is associated with susceptibility to myocardial infarction and coro-

nary artery disease [78]. The second cluster of 5 SNPs is within the TCF21 antisense RNA

inducing promoter demethylation (TARID) gene [79]. Variants within TARID or its target (ie

TCF21) are associated with coronary artery disease [80,81], blood pressure [82], cis-effects on

circulating cytokines [83], and visceral fat [84]. Directly between the above two clusters, lies

rs7740975 (2.2 X 10−5 p-value for association in present study), which is intronic to solute car-

rier family 35 member F1 (SLC35F1), a member of the SLC35 family of transporters which aid

in the formation of glycoproteins in the Golgi apparatus and endoplasmic reticulum [85]. Var-

iants of this member of the solute carrier gene family have been associated with a number of

cardiovascular disease phenotypes related to hypertension [86], congestive heart failure [87],

obesity [88], heart rate [89], and electrocardiographic QT interval [90], as have some polymor-

phisms of the CRP gene [17,91–93]. Of note, the gene G protein-coupled receptor class C

group 6 member A (GPRC6A) is only 500 Kb distal to this SNP and has demonstrated effects

on CRP levels [21]. A search of dbSNP failed to reveal any other significant citations of SNPs

from this region on chr 6 in relation to effects on serum levels of CRP.

Further examination of the MetaboChip results in relation to the apparent clusters of asso-

ciated SNPs, or possible haplotypes, we find that the group on chr 1 between 159,683,149 and

159,721,769 very clearly overlap the CRP gene, as well as contain documented, functional

SNPs such as the 3’ UTR SNP, rs1205 [24,25]. The rs2592887 SNP in this region is in linkage

disequilibrium with rs876537, which is associated with CRP in both European and African

American populations [94].

The chr 2 cluster between 20,961,892 and 20,989,723 is approximately 25 Kb from the 3’

end of the apolipoprotein B (APOB) gene. This gene is intricately involved with lipid
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metabolism and regulation, as well as associated with a number of cardiovascular disease enti-

ties [95]. This set of SNPs is also 150 Kb 5’ from the lipid droplet associated hydrolase (LDAH)

gene, similarly involved in lipid metabolism and demonstrating increased expression within

the macrophages of human atherosclerotic lesions [96].

Five SNPs within 200 Kb on chr 5 reside very near the CEPB4 gene, variants of which have

been related to control of inflammation and obesity [97]. Within 6 Kb of SLC2A6 on chr 9, a

group of 5 SNPs is nominally associated with CRP. This gene is involved with hexose transport

in brain, spleen and leukocytes [98], as well as increasingly expressed in chronic lymphocytic

leukemia [99], but a PubMed search reveals no apparent relevance to clinical inflammation or

CRP expression.

Another suggestive cluster is found on chr 10, comprising 10 SNPs within 243 Kb, all but

one of which are intronic to the transcription factor 7 like 2 (TCF7L2) gene. TCF7L2 is instru-

mental in the Wnt signaling pathway [100] and variants are well known to be associated with

risk of DM and its complications [101]. Variants of this gene also alter CRP levels in response

to drug treatment [102].

Consistent with other studies, there are 19 SNPs within a 43 Kb span on chr 12 encompass-

ing the HNF1A gene, a hepatic transcription factor which has been repeatedly found to affect

CRP expression [24,77], as well as C12orf43, variants of which have been linked to cardiovas-

cular disease [103] and CRP expression [20]. Mutations of HNF1A are known to cause matu-

rity DM of youth, type 3 (MODY3) [104], and polymorphisms are associated with risk of DM

and atherosclerotic vascular disease [105].

Lastly, 3 SNPs on chr 17 lie within 17 Kb, within or between MYL4 and CDC27, the latter

known to influence TGF-beta [106], a strong modulator of inflammatory response [107].

A rather extensive literature exists associating SNPs with serum CRP

[20,21,24,25,72,77,108]. Some of the more compelling reports are summarized in Table 1.

Besides CRP, the LEPR region on chr 1, has suggestive findings in the current study; and three

SNPs intronic to JAK1 show nominal significance. The latter gene plays a key role in immune

response pathways [109] and is within 400 Kb of LEPR. Conversely, the IL6R region fails to

indicate any signal, including rs4129267 (p = 0.17). Our results in the GCKR region reveal a

cluster of SNPs, with maximal association p-values of 3.5 X 10−3. Although 31 SNPs were geno-

typed in the EPHA and many in the IL6 regions, no indications of association with CRP were

found. Current findings related to the HNF1A gene are noted above.

Our results highlight 5 SNPs in the APOE, TOMM40, APOC1 area, with p-values for associ-

ation all less than 6.8 X 10−3. The TOMM40 protein is a component of the mitochondrial

membrane and mutations appear to contribute to risk of Alzheimer’s disease and other aging

phenomenon [110,111]. The APOE and APOC1 genes play important roles in lipid metabo-

lism and are associated with clinical conditions dependent on this function [112,113].

Like most genetic association studies, we identified several noncoding variants associated

with CRP levels. Although noncoding regions do not affect mRNA sequence, they may regu-

late other factors involved in the transcription or regulation of the genes. We used Regulo-

meDB [66] and HaploReg [67,68] to functionally annotate variants; and several, such as

rs1205, rs35131127, rs1969783, and rs1169310 showed potential evidence of functionality. (S4

Table)

Limitations of this study include marginally significant findings after conservative, Bonfer-

roni adjustment for multiple testing in a study population of a moderate sample size. This is

ameliorated to some extent by the correlation between many groups of SNPs in the array and

the fact that all of the MetaboChip SNPs were chosen for a priori evidence of association with

cardiovascular phenotypes, which also relate to CRP. The somewhat indirect correspondence

between the linkage and SNP association analyses shows different strengths of the
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methodologies, in that linkage appears more successful at identifying rare and family-specific

variants whereas association analysis tends to rely more on common variants, as illustrated in

an analysis by He et al [114]. Differences may also arise from the fact that the MetaboChip

cohort excluded those with DM, perhaps minimizing the effect of variants that both predis-

posed to diabetes/obesity and increased CRP level. Our replication of an interaction (gender

by microarray determined genotype) at certain loci (eg at rs12723357 on chr 1 and at

rs17301021 on chr 15) is an important reminder that the potential for systematic, microarray

genotyping errors is a problem that warrants careful attention [52]. An additional concern

involved identified clusters of SNPs within constricted regions that showed strong association

with CRP; but also showed uniformly marginal HWE p-values (eg 9 SNPs on chr 6), all within

250 Kb and none of which with HWE p-values greater than 2.2 X 10−4. In contrast to the clus-

ters we thought pointed to regions harboring a functional variant (with HWE results well

within an expected distribution), the anomalous clusters were interpreted as due to haplotypes

identifying unique center background and thus spuriously associated with CRP due to the rec-

ognized differences in CRP by center. The underlying difference in CRP between centers

could be due to genetic influences; but could also reflect environmental factors as well. In

either case, this probably represents an example of population stratification, when the analysis

addresses all centers combined.

The strengths of this study include a population-based ascertainment of samples from com-

munities with unique environmental and genetic backgrounds, extensive covariate information

collected in a prospective manner, and the use of two complementary genetic analysis methods.

From a broader perspective, the SHS [44] has represented a relatively successful collaboration

with the participating tribal communities since inception in 1998. Sustaining a mutually benefi-

cial engagement at this level requires considerable effort from both parties; but we feel the his-

tory of the Strong Heart Study can provide a useful model for this type of research.
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