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Abstract
Geometric and mechanical properties of individual cells and interactions among neighbor-

ing cells are the basis of formation of tissue patterns. Understanding the complex interplay

of cells is essential for gaining insight into embryogenesis, tissue development, and other

emerging behavior. Here we describe a cell model and an efficient geometric algorithm for

studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our ap-

proach improves upon previous methods by incorporating properties of individual cells as

well as detailed description of the dynamic growth process, with all topological changes ac-

counted for. Cell size, shape, and division plane orientation are modeled realistically. In ad-

dition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell

rearrangements are now fully accounted for. Different models of cell-cell interactions, such

as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern

formation for monolayered tissues from arbitrary initial conditions, including that of a single

cell, can also be studied in detail. Computational efficiency is achieved through the employ-

ment of a special data structure that ensures access to neighboring cells in constant time,

without additional space requirement. We have successfully generated tissues consisting

of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be

used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of

the classical developmental process of bristle formation on the epidermis of D. melanoga-
ster and the fundamental problem of homeostatic size control in epithelial tissues. Simula-

tion results reveal significant roles of solubility of secreted factors in both the bristle

formation and the homeostatic control of tissue size. Our method can be used to study

broad problems in monolayered tissue formation. Our software is publicly available.
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Introduction
Cell theory postulates that cell is the building block of an organism. It also assumes that the be-
havior of an organism is the sum of the actions of individual cells that constitute the organism
(see [1] for detailed review of this once widely accepted theory). In contrast, the organismal the-
ory treats the organism as a whole, rather than looking at its individual parts, i.e. cells. Several
studies have shown that mutations that affect the size or shape of individual cells can change
the size and shape of the organ, as seen in plant leaf [2, 3]. However, it was also shown that
there exists cooperation between leaf cells at some level, suggesting the existence of an organis-
mic response [1, 3, 4].

How different tissue patterns arise mechanistically is an important question. Experimental-
ly, it is challenging to design and conduct studies to identify specific effects of different attri-
butes of individual cells and cell-cell interactions on cellular pattern formation. Computational
studies can complement experimental studies in providing important insight. A number of
computational methods have already been developed [5–12].

Among these, the cellular Potts model is a widely used method for studying cell behavior,
where a lattice site can be a square, a triangle, or a hexagon. Each cell is modeled as a collection
of about 25–50 lattice sites [13]. Cells have a predefined size, and neighboring cells interact
with specific binding energy, which mimics effects of the underlying biology, e.g., cadherin in-
teractions [14]. Cellular Potts model can be used to study pattern formation involving multiple
cells. For example, Käfer et al studied cell packing using a Potts model on a set of 4 cells [15].
They concluded that both cell adhesion and cortex contractility determines cell patterning in
the Drosophila retina. Merkes et al further carried out a detailed study of contact inhibited che-
motaxis in controlling de novo and sprouting blood vessel growth [14].

However, cell shape and topology are not modeled directly in the cellular Potts model. Ex-
tensive post-processing is often required for more realistic cell shapes. In addition, the underly-
ing forces for cell movement are not explicitly accounted for. Changes such as growth and
division of cells are not modeled directly, as they are based on Metropolis moves of flips of the
identities of boundary lattice sites bordering two cells. Cell motions are achieved through ener-
gy minimization after stochastic fluctuations of flips of lattice sites introduced by Metropolis
moves. Due to these requirements, it is difficult to use Potts model to study details of cell prolif-
eration and cell migration, as such details are not adequately captured by collection of lattice
sites and by flipping these lattice sites. Another obstacle towards more realistic cell shape is the
computational cost. As more lattice sites are required for detailed geometry of a cell, the
computational cost grows rapidly if a tissue of many cells is to be modeled realistically. To
study such problems, parallel computing is often necessary [16].

A different class of cell models based on the finite element method have also been developed
[17–21]. While they provide very realistic descriptions of cell shapes, they have inflexible
boundary conditions and cannot model dynamic changes in cell shape. For example, it is diffi-
cult to study cell growth, cell migration, cell birth, and cell apoptosis using finite element based
models [17, 18].

The center-based model (e.g., as in the implementation of the CellSys system) approximates
each cell by an isotropic, elastic, and adhesive sphere [22]. Cells can interact with each other
and can respond to environmental stimuli. Growth, division, and cell migration can all be
modeled. It can be used to model large tissues containing many cells. This model is specifically
designed to study details of pair-wise cell forces based on an idealized model, i.e., cellular inter-
actions can be treated as interactions between homogeneous elastic sticky spheres, as in the
JKR model [22]. No detailed descriptions of cell shapes are included, and any shape deviation
from sphere (e.g., polygon) is ignored [22]. Furthermore, cells after division are assumed to
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take the form of spherical shape immediately. As a result, center based models are not well-
suited to study details of the dynamic changes in cell shape and in cell topology during the
growth process. They also cannot be used to study biological problems that deviate from the
idealized model, such as increased tension on the interface of two cell populations (e.g. tumor
cells vs normal cells), as the shape of the cell-cell interaction interface is not taken into account.

Vertex models are another class of very successful models. They are based on the postula-
tion that cell shape is determined by minimizing the energy under forces acting on cell junc-
tions, which are represented as vertices. Designed to study packing and remodeling of
epithelial cells [23, 24], in which the apical areas of a layer of epithelial cells are modeled, vertex
models incorporate changes due to cell division and cell extrusion. They can incorporate prop-
erties of cell size, shape, and elasticity, and can be used to study cell birth, growth, migration,
and apoptosis at varying degrees. They have been used widely to study tissue morphology [25],
tissue dynamics [26, 27], wound closure [28], cell sorting [29], regulation of cell division and
growth [30], and the genesis of cell polarity [31].

However, cell shapes in existing vertex models are not modeled with sufficient detail. For ex-
amples, cells are always polygonal and do not have curved boundaries. Cell growth is also not
modeled in detail. In addition, initial conditions require a plural number of cells (e.g., 16 cells),
often with periodic boundary conditions. Cell death can only be modeled for the special case
associated with a specific type of topological change [24, 32]. Furthermore, the apical areas of
cells in the epithelial tissue cannot be simply interpreted as cell sizes, since it is assumed that
changes in the apical area is accompanied by concomitant flow of cytosol in the apical region
towards the basal region of the cell. Cell height may therefore increase, with possibly overall lit-
tle change in cell volume [24, 30, 32]. Because of such model choices, the apical area of a cell
can shrink and even disappear without significantly changing the cell volume [24, 30, 32]. Tis-
sue growth is realized primarily through cell divisions [23]. The growth of individual cell that
do not conform to the average apical area is also not modeled explicitly.

Chimeric methods such as the viscoelastic cell model by Jamali et al. [33] and the immersed
boundary framework by Rajniak [34] can model realistic cell shape, cell growth, cell division,
cell motion, and cell-cell interactions. However, these methods are unsuitable for simulating
large tissues due to the model choice of representing the shape of a cell by a network of linear
Voigt elements or by a collection of boundary points connected through linear springs, which
leads to substantial computational overhead.

Here we describe a new dynamic cellular model that accounts for cell size, shape, and inter-
actions between cells in 2D. Individual cells can be added when born, or removed when dead.
Cells can also grow or shrink in size. They can divide and interact with each other, with specif-
ics dictated by cell types and cellular micro-environments [35, 36].

We aim to develop a general modeling framework for simulating cell growth and tissue pat-
tern in epithelial tissue development. We use three simplified examples of biological studies to
highlight the novel aspects of our model: (1) tissue development from a single or a very small
number of cells, without the requirement of the initial condition of a population of cells and
without periodic boundary conditions; (2) geometric and topological changes when two popu-
lation of cells fuse together by closing spatial gaps; and (3) more realistic model of cell deaths.
These are discussed in the context of studying embryogenesis, tissue fusion, and cell apoptosis.

While existing methods can address partially the three issues that motivate our studies,
there is not a single model, except the one presented in this study, which can simultaneously
address fully all these issues. Specifically, (1) most of existing models rely on strict initial condi-
tions and/or boundary conditions. For example, vertex models usually require an initial tissue
of at least 16 cells, and cannot simulate tissue development starting from a single cell. This pre-
vents their applications in studying the initial stages of tissue development that involves only a
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handful of cells. Furthermore, many vertex models require periodic boundary conditions,
which make it difficult to study realistically tissue development with heterogeneous patterns.
The subcellular finite element models also have the same problems. (2) Most of existing models
cannot be used to model realistically important events in tissue patterning such as tissue fusion,
which involves significant geometric and topological changes of cell shapes and connectedness
among cell populations. This is conceptually an important event and technically a challenging
problem that is often underappreciated. To our knowledge, no existing vertex models and sub-
cellular finite element models can model the important fusion process of cells and tissues. (3)
Upon cell apoptosis, extensive geometric changes occur in the apoptotic cell and its neighbors.
None of the vertex and finite element models can model this process realistically. For example,
the important process of cell apoptosis is modeled as simple extrusion process in vertex models.
In contrast, our model gives full account of cell size reduction and ultimately its elimination
due to DNA fragmentation and cytoplasm shrinkage, which are modeled through decreased
surface pressure or cell removal from the tissue [37]. (4) Most of the existing methods are com-
putationally inefficient and cannot simulate the biological relevant number of cells in a tissue.
Further summary of the strengths of the present model can be found in Table 1.

We also give two more detailed examples of how this computational cell model can be used:
1) to verify or refute mechanism proposed to explain the formation of various tissue patterns,
and 2) to investigate effects of inhibition range of secreted factors and cell division type on the
homeostatic size control of the olfactory epithelium tissue. In 1), we study the long standing
problem of bristle formation on the epidermis of fruit fly D. melanogaster. We discuss simula-
tion results of bristle formation in D. melanogaster following several existing models for expres-
sion of bristle formation related genes achaete (ac), Delta (Dl), and Notch (N) from literature.
We further explore the relationship between the inhibition field radius (due to the solubility of
Delta-like protein) and the width of the stripe (where the genes ac and Dl are highly expressed)
through simulations based on our model. In 2), we study the fundamental problem of the ho-
meostatic size control of the olfactory epithelium tissue based on a model of stem cells, progen-
itor cells, and differentiated cells. We discuss the effects of the inhibition range of secreted
factors from differentiated cells in controlling tissue size. In addition, we assess the importance
of symmetric and asymmetric division of stem cells in tissue size control.

This paper is organized as follows. We first describe details of the cell model, along with the
data structure for its implementation. We then describe the mechanical forces used in our
model. This is followed by simulation studies of changes in cell geometry and cell rearrange-
ment due to these forces. For biological applications, we discuss the examples of embryogene-
sis, tissue fusion, and apoptosis, followed by more detailed simulation studies on the bristle
formation phenomenon on the epidermis of fruit fly D. melanogaster. We then discuss the ef-
fects of diffusion radius of Delta-like protein and the width of the stripes of highly expressed
ac, Dl, and N genes, as well as studies on the homeostatic size control of epithelial tissues.

Materials and Methods

Geometric Model of Cell
Similar to existing vertex models, the underlying physics of our two-dimensional cellular
model is that of a well-studied topic of surface energy minimization, also called bubble forma-
tion[38–40]. In this model, each cell minimizes its surface energy, as prominently observed in
the developing retina of Drosophila, where differential expression of N-cadherin leads to the
formation of an overall shape that minimizes their surface contact with surrounding cells [41].
There are known exceptions to the assumption of minimal contact energy. For example, during
the dorsal closure, the two dimensional epithelium has cell boundaries with non-constant
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Table 1. Comparisons to existingmethods.

Methods Our Model Cellular Potts
Model

Subcellular
Finite Element
Methods

Center-based
Models

Current Vertex
Models

Immersed
Boundary
Framework

Viscoelastic
cell Model

Flexible cell
size

Yes. Pre-defined Yes. Yes. Yes. Yes. Yes.

Realistic cell
shape

Yes. Cell
interior is
represented as
polygon and
the exposed
boundary as
curved edge

Indirectly.
Extensive post-
processing is
often required for
more realistic cell
shapes

No. Rigid and
inflexible
boundary
conditions;
Cannot model
dynamic
changes in cell
shapes

No. All cells are
represented as
pre-defined
sphere. Not
suited for
studying
dynamic
changes in cell
shape.

No. All cells are
represented as
polygon.

Yes. Cell is
represented by a
collection of
boundary points
connected
through linear
springs.

Yes. Cell is
represented by
a network of
linear Voigt
elements.

Cell growth and
division

Yes. By adding
partition wall
(division plane)
in the dividing
cell.

Indirectly. Based
on Metropolis
moves of flips of
the identities of
boundary lattice
sites bordering
two cells.

Yes. By dividing
the sub
elements into
halves.

Yes. By adding
one more
sphere as a
daughter cell.

Limited. Tissue
Growth is realized
primarily through
cell divisions. The
growth of
individual cell that
do not conform to
the average apical
area is not
modeled explicitly.

Yes. By
introducing a point
source inside the
cell that creates a
fluid flow causing
the cell to grow by
pushing its
boundaries and
increasing its
area/volume.

Yes. By adding
partition wall
(division plane)
in the dividing
cell.

Cell death Yes. Yes. Yes. Yes. Only in a special
case associated
with a topological
change.

Yes. Yes.

Cell motions Yes. Achieved
through surface
energy
minimization
after forces are
added on
vertices.

Indirectly
achieved through
energy
minimization after
stochastic
fluctuations in
flips of lattice
sites introduced
by Metropolis
moves.

Yes. Achieved
through intra-
cellular elements
velocity potential
minimization
after the cell
velocity is
changed.

Yes. Achieved
through pre-
defined energy
setup, and then
re-building of
the Voronoi
diagram.

Yes. Achieved
through energy
minimization after
forces are added
on vertices.

Yes. Achieved
through energy
minimization after
the forces are
added on vertices.

Yes. Achieved
through
protrusion,
adhesion, and
contraction.

Independence
of initial
conditions

Yes. Yes. Yes. Yes. No. Plural number
of cells are
required (e.g. 16)

Yes. Yes.

Independence
of boundary
conditions

Yes. Yes. No. hard-wall
boundary
conditions.

Yes. No. Periodic
boundary
conditions.

Yes. Yes.

Interactions
between cells

Yes. Through
the mutual
vertex and
edge between
cells.

Limited. Shapes
and maximum
neighbors are
pre-defined.

Yes. Intra-
cellular edges
between sub
elements are
added between
cells as
interactions.

Limited. Shape
of interaction
interface is not
taken into
account.

Yes. Through the
mutual vertex and
edge between
cells.

Yes. Through the
mutual vertices
between cells.

Yes. Through
the mutual
vertices
between cells.

Tissue fusion Yes. Yes. Yes. Yes. No. Not described but
possible in
principle.

Not described
but possible in
principle.

Computational
Efficiency

High High Low High Medium Medium Medium

doi:10.1371/journal.pone.0126484.t001
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curvatures [42]. Therefore, our method cannot be used to study detailed cell boundary changes
when the assumption of minimal contact energy is not valid.

In our two-dimensional model, an isolated cell is idealized and takes up the shape of a disk.
When two cells make contact, their common boundary is represented as a line segment. A cell
can make contacts with multiple neighboring cells. If a cell still has one or more free boundaries
remaining, these boundaries take the shape of arcs. A cell takes the shape of a polygon when it
is fully surrounded by other cells. This is similar to previous studies [17, 18, 20, 21].

Formally, a biological cell is represented by the combination of three types of geometric ele-
ments (Fig 1). First, a geometric cell ci is a spatial region representing the volume of cell i (Fig
1a). Cells can have different sizes. A cell is a disk when in isolation, but can be a disk segment
when the cell is contacting other cell(s). It can take the shape of the union of a polygon and one or

Fig 1. Two-dimensional cell model. a) An isolated cell is modeled as a disk. b) A cell is modeled as a disk segment when contacting other cell(s). An outer
edge ei is an arc or a circle, representing the boundary between cell ci and the outside medium (denoted as c0). An inner edge ei,j occurs when a cell ci is in
contact with another cell cj. Their shared boundary is modeled as a straight line segment. When two cells ci and cj make contact, their outer edges (arcs) ei
and ej intersect at two vertices vi,0,j and vj,0,i, which are also the two end-points of the inner edge ei,j. c) When three cells ci,cj and ck intersect, they form a
vertex vi,j,k. d) A cell completely surrounded by other cells is represented as a polygon.

doi:10.1371/journal.pone.0126484.g001
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more disk segment(s), when there are multiple contacting cells in the surroundings, and at the
same time there is one or more free boundaries (Fig 1b and 1c). When completely surrounded by
other cells, it takes the form of a polygon (Fig 1d).

Second, edges represent the boundaries of a cell. There are two types of edges: outer edges ei
for cell i and inner edges ei,j between cell i and cell j (Fig 1b). An outer edge ei is an arc or a cir-
cle, and represents the boundary between cell ci and the outside medium (denoted as c0). That
is, ei = ci\c0 6¼ ϕ. ei is a full circle when the cell exists in isolation, but becomes one or more
arcs if the medium does not fully surround the cell. An inner edge ei,j occurs when a cell ci is in
contact with another cell cj, namely, when ei,j = ci\cj 6¼ ϕ. Their shared boundary is a face with
constant surface curvature [38], but is modeled as a straight line segment here, as the curvature
is usually small. An inner edge appears twice, once for each of the neighboring cell, with the
order of the two indices reversed. This reflects the fact that each cell has a separate wall.

When a cell interacts with multiple cells, its boundary may contain one or more (possibly
disconnected) outer edges, along with one or more (possibly disconnected) inner edges. Over-
all, the cell boundary forms a closed curve, with straight line segments (inner edges) and/or
arcs (outer edges) as component pieces.

Third, vertex is the junction point of three edges. When two cells ci and cj make contact (Fig
1b), their outer edges (arcs) ei and ej intersect at two vertices, vi,0,j (indices in clockwise direc-
tion) and vj,0,i, which are also the two end-points of the inner edge ei,j (Fig 1b). When three
cells ci, cj and ck intersect (Fig 1c), they form a single vertex vi,j,k. In our two-dimensional
model, we assume no more than three cells can intersect as seen in soap bubbles [38–40]. That
is, no more than three edges can meet at a vertex.

For a tissue consisting of n cells, we denote the set of cell centers as Z = {z1,� � �,zn}, where zi
2 R

2 is the coordinates of the center of cell i. The set of edges is denoted as E� {ei}[{ei,j}, and
the set of vertices is denoted as V = {vi,j,k}. The overall state S of a tissue with n cells is defined
as: S = (Z,E,V). It fully determines the geometric pattern of the tissue formed by these n cells.

Data Structure
We have used the HalfEdge data structure [43] for algorithm implementation.

Cell. An object is used to represent a cell, which contains attributes for the biology of the
cell, such as cell type, and attributes for visualization, such as color. In addition, a cell object
contains a pointer to a boundary edge if the cell is not an isolated cell. Otherwise, the edge-
pointer is set to null for a cell in isolation. In the latter case, the radius of the cell is stored.

Half-Edge. The boundary of a cell is formed by connected edges. We model this boundary
as an oriented closed curve in counterclockwise direction. Each physical inner edge is repre-
sented twice using two half-edges, once each in opposite directions for each of the two contact-
ing cells. Each physical outer edge is also represented twice with two half-edges, once for the
cell, and once for the outside space (Fig 2).

The data structure of a half-edge is an object that contains a pointer to the cell. For an outer
edge, this pointer is set to null. It also contains pointers to the two end-vertices. In addition, a
pointer to the reverse half-edge is also provided. A next pointer leads to the next half-edge
along the counter-clockwise direction of the closed curve. The half-edge data structure also
stores the angle of the arc for the outer edges.

Vertex. The vertex object simply stores the (x,y) coordinates and contains a pointer to one
of the half edges that starts from this vertex.

List of Neighboring Cells. One of the most important advantages of theHalf-Edge data
structure is the access to the neighbors of a cell in O(MAX_NEIGHBORS) and maintenance of
the list of neighboring cells in O(1) time. The neighboring cells can be traversed with the help
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of reverse edges. A summary of our data structure and the pseudo-code for traversing neigh-
boring cells can be found in S1 Appendix.

Our data structure offers an important advantage in maintaining the list of neighboring
cells. As the edges/reverse edges are updated constantly by the topological changes during the
growth process, there is no additional cost in terms of time or memory in maintaining the list
of neighboring cells. Such easy access and maintenance is only possible in grid-based models
with the compromise of lack of details of cell shape and size. In other models, a list of neighbor-
ing cells needs to be maintained and updated, for each cell. When the tissue size is large, this
maintenance is both time and storage consuming.

Physical Model of Cell and Cell Growth
Stationary Model. Wemodel cells with the assumption that they are in a stationary state,

in which changes are slow, and all forces in the system at every moment are balanced out by
each other.

We use discrete time steps to model incremental changes of cell volumes, which are dictated
by the underlying biology, e.g. cell birth, cell death, cell growth and shrinkage, and changes of
cell wall properties. In our model, we assume the energy of the cells reaches a minimum at the
state S:

EðSÞ ¼ EðX;E;VÞ ¼min :

Forces exerting on the system of cells at state S have a zero net sum. We model the mechanical
forces using only the vertices. The geometry of the whole system, including the edges and cells,
and the forces in each cell, all will follow once the vertex set V is specified. We have:

FðSÞ � FðVÞ ¼ dEðVÞ
dV

¼ 0:

Mechanical Forces. There are many physical forces that exist in a cell. Cytoskeletal micro-
filament [44–46], intermediate filaments [47], and cell membrane all exert compression forces
on a cell. In addition, there exists adhesion or alternatively repulsion force between cells. These
forces can be summed up and modeled as a tension force that exerts along the direction ei,j of
inner edge (interior cell boundary), or along the tangent direction of outer edge ei (free cell
boundary).

There are also expansion forces in a cell. These include those from microtubules [45, 46, 48,
49] and the extracellular matrix (ECM) [50]. We model these forces as a pressure force that acts

Fig 2. Data Structure. The boundary of a cell is formed by connected edges. It is modeled as an oriented
closed curve in the counterclockwise direction. Each physical inner edge is represented twice using two half-
edges, once each in opposite directions for each of the two contacting cells. Each physical outer edge is also
represented twice with two half-edges, once for the cell, and once for the outside space.

doi:10.1371/journal.pone.0126484.g002
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along the direction normal to the edge. Pressure force only exists for inner edge, not for arc/
outer edge, as the internal pressure is compensated by pressure due to the curvature of the arc
of the cell boundary. Tension force exists at vertices due to both inner and outer edges.

In our model, cells minimize their energy [41]. In this sense, cells take upon the appearance
and behavior of soap bubbles. According to the soap bubble model, cell walls take the shape of
constant mean curvature (CMC) surfaces under fixed volume and pressure conditions [38].
The most notable examples are spherical shape and biconcave erythrocyte shape [51]. We
therefore model cells as intersecting circular disks.

Physical forces are modeled to act at vertices (Fig 3). For inner edges, although the physical
cell wall will adopt a curved surface under the bubble model, the curvature is small and we sim-
plify it as a straight line segment. The physical forces originally tangent to the curved surface
are now decomposed into two components for the straight line segment. They are the tension
force T(ei,j) and the pressure force P(ei,j). Tension force acts in the direction of shortening the
edge, and pressure force follows the direction of the difference of pressure in two cells sharing
the edge.

For outer edges, we take the curved surface into account and model it as an arc. In this case,
the physical force tangent to the curved surface is modeled directly as the tension force T(ei)
for this cell, in the direction of shortening the arc. The pressure inside the boundary cell con-
taining this outer edge determines the curvature of the outer edge, and therefore determines
the tangential direction of the tension force.

Formally, the forces applied to a vertex v in V can be decomposed as

Fv ¼
X

e; s:t:v2e
½TðeÞ þPðeÞ�; ð1Þ

which sums over all edges e’s with the vertex v as an end point. Here T(e) and P(e) are the
forces acting on edge e through cell wall tension and intracellular pressure, respectively.

For the edge ei,j between cells i and j, the tension force is always tangential to the edge ei,j:

Tðei;jÞ ¼ Zði; jÞei;j;

where η is the tension coefficient, which may depend on the cell types of both cells, and ei,j is
the edge vector. We assume ei,j is in the direction of shortening ei,j, otherwise, we add a coeffi-
cient “−1” in front of this formula.

Pressure induced force is in the direction normal to the inner edge:

Pðei;jÞ ¼ ðPi � PjÞjei;jjnði;jÞ;

where Pi and Pj are the pressures in two cells, jei,jj is the length of the inner edge, and n(i,j) is the
unit vector normal to the edge in the direction from the cell with higher pressure to the cell
with lower pressure. Although pressure force exerts on the whole inner edge, we decompose it
equivalently to the two end vertices, each distributed with 1

2
of the total pressure force P(ei,j).

For an outer edge ei of cell i, the tension force acting on a vertex v is always tangential to the
arc ei, in the direction tv of shortening ei:

TðeiÞ ¼ Zði; 0Þjeijtv:

Here 0 denotes the outside medium, η(i,0) is the tension coefficient of the outer edge of cell i.
The internal pressure is compensated by pressure due to the curvature of the arc of the cell
boundary. Therefore, pressure induced force is zero. The value of the pressure inside an outer
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cell i itself is determined by the curvature of the edge:

Pi ¼ Zði; 0Þ=ri:

Here ri is the radius of the arc.
In general, forces at the two vertices of an edge can be in different direction, which can result

in displacement of the edge. The movement of an edge is the result of the volume change of the
cell. The new position of the edge forms an irregular quadrilateral with the edge before the

Fig 3. Tension force and pressure. Forces applied to the junction vertex of three cells a, b, and c. The tension force T(ei,j) exerts along the direction ei,j of
an inner edge (interior cell boundary), or along the tangent direction of outer edge ei (free cell boundary), where (i,j) are the two indices of cells a,b, or c. The
pressure force P(ei,j) acts along the direction normal to the cell boundary, in the direction from the cell with higher pressure to that with lower pressure.

doi:10.1371/journal.pone.0126484.g003
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movement. We distribute this volume change to the two vertices, each with a triangle. This vol-
ume change happens in each time step (Fig 4).

Growth, Shrinkage and Cell Movement. We assign different volume changes to individu-
al cells to reflect different stage of cell cycle. For cell i, when ΔVi > 0, cell i grows. When ΔVi<

0, cell i shrinks. When ΔVi = 0, cell i stays in a steady state.
Cell Shape. In our model, the cell walls take the shape of constant mean curvature surfaces

under fixed volume and pressure conditions. Physically, each cell has its own wall, and the sur-
face tension η(i,j) at an inner edge depends on the properties of both cell walls. The final shape
of a cell depends on the ratio of tension coefficient η(i,j) for inner edge and η(i,0) for the outer
edge (Fig 5). When η(i,j) = 0, there is no tension on an inner edge, and it can be regarded as an
imaginary cell wall. When η(i,j) = 0.5η(i,0), there is a strong adhesion force between the two
cells. When η(i,j) = η(i,0) = η(j,0), the two cells behave as if physically they have the same wall.
When η(i,j)� 2η(i,0), adding an inner wall would be more costly, as it is equivalent to adding
two outer walls. In this case, the overall energy of the two cells is not reduced. The two cells
therefore have no adhesion and behave like soccer balls (Fig 5).

Calculating Forces. For cell i that experiences cell volume change ΔVi at time step t, the
net force at each of its vertices can be calculated based on the assumption of stationary state:

DVi ¼
1

2
s
X

e

X

vðeÞ
jFvðeÞ � ej: ð2Þ

Here the coefficient of 1/2 represents the change in volume of one of the two triangles formed
by the division of the irregular quadrilateral (Fig 4). The summation is over all edges e of cell i
and over both end vertices {v(e)} of each edge, “×” represents vector cross product, and σ is the
constant for the integration step. The derivation of Eq (2) can be found in S1 Appendix. Eq (2)
is solved to obtain the forces at each vertex.

Fig 4. Change in Volume.Diagram representing the forces involved during cell growth. Vertices v1 and v2
are moved by Δv1 and Δv2 due to the forces Fv1 and Fv2, during the growth process respectively. e is the edge
connecting the two vertices. Its length is jej.
doi:10.1371/journal.pone.0126484.g004
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Updating vertex position. At time t+1, the location of a vertex vi after the volume change
is updated to:

viðt þ 1Þ ¼ viðtÞ þ sFvi
ðtÞ; ð3Þ

where vi(t) and vi(t+1) are locations of vertex i before and after the time step, respectively.
Time t is an integer representing the number of time steps since the initial time, σ is a constant
that controls the convergence rate towards stationary state, and Fvi is the net force exerting at
vertex location vi (see S1 Appendix for derivation of Eq (3)).

Algorithm for Calculating Stationary State. We assume all cells exist in stationary state
at the end of each time step of simulation. Cells can grow or shrink during a time step. During
each time step, some cells may be in a growth phase, and their volumes increase. Other cells
may shrink in size. There may also be cells that maintain constant volumes. The amount of vol-
ume changes are assigned from models of underlying biological process. The altered cell vol-
ume leads to movement of cell boundaries. In addition, cell wall properties such as the surface
tension coefficients may also be different at different time steps.

Fig 5. Cell geometry. Cell geometry is determined by the ratio of the tension coefficients. a) when η(i,j) = 0, there is no tension on an inner edge, and it can
be regarded as an imaginary cell wall; b) when η(i,j) = 0.5η(i,0), there is a strong adhesion force between the two cells; c) when η(i,j) = η(i,0) = η(j,0), the two
cells behave as if physically they have the same wall; d) when η(i,j) = 1.5η(i,0), there is a weak adhesion force between the two cells; e) when η(i,j)� 2η(i,0),
The two cells have no adhesion and behave like soccer balls. Adding an inner wall would be more costly, as it is equivalent to adding two outer walls. In this
case, the overall energy of the two cells is not reduced.

doi:10.1371/journal.pone.0126484.g005
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All these changes are introduced in increments of small fractions. For each increment, we
solve Eq (2) to obtain the updated forces. We then move the vertices using Eq (3) to their new
locations. After the final increment of volume or cell property change is introduced, we contin-
ue iterations with constant volume and cell properties. Vertices are further moved until the sys-
tem relaxes and reaches stationary state, and a balance of the forces is established (Eq 2). This
is the same as applying a gradient search method to find a local minimum of system energy of
the cells [52]. We then take the geometric patterns of the cells at this state as that of time step t
+ 1.

The procedure for computing the stationary state of the cell pattern after one time step is il-
lustrated in Table 2. Here Fvi are the forces acting on vertex i; V(t) = (v1(t),� � �,vm(t)) is the vec-
tor of coordinates of all of them vertices at time t; Δ V(t) = (ΔV1,� � �,ΔVm) is the vector of
desired volume changes associated with the vertices for all cells at time t, Δη(t) is the vector rep-
resenting desired changes in the cell properties (e.g., cell tension coefficients, cell color) for all
cells at time step t. The output is the new coordinates of the vertices V(t + 1) at time step t + 1.

The overall simulation of cellular pattern formation is carried out by repeatedly applying
this algorithm to model different biological phenomena, with pre-defined time-dependent vol-
ume changes and cell properties changes assigned as input. Stochasticity and other physical
factors can be incorporated in schemes that assign these changes.

Topological Changes of Cellular Pattern
An important ingredient in modeling dynamic changes of cells is an accurate account of all to-
pological changes. We discuss these changes below.

Cell Birth, Cell Division, and Cell Death. Topological changes occur during cell birth,
cell division, and cell death. In our model, a new cell is generated at cell birth. We model this
by inserting a new disk. A new cell is also formed if an existing cell divides. For cell division, we
add an edge inside the existing dividing cell and update the cell walls.

We model the process of cell death by gradually decreasing the cell size and eventually re-
moving it completely. This mimics the real process of cell apoptosis, in which the suicide pro-
gram of apoptosis of a cell leads to fragmentation of the DNA, shrinkage of the cytoplasm,
membrane changes and eventual cell death without lysis or damage to neighboring cells [37].
We carry out two primitive operations. First, all outer edges of the dying cell (if they exist) are

Table 2. Algorithm 1. UpdateCellPattern (V(t), Δ V(t), Δη(t), σ, k).

//ε: Threshold of forces

//k: Parameter for step size in incremental volume change.

while Fv > ε for any vertices or Δ V(t) not reached yet do

Solve Eq 2 to obtain updated forces Fv for all vertices after updating η with Δη(t).

if desired amount of changes in Δ V(t) not reached yet then

Introduce incremental changes Δ V(t)/k,

end if

Obtain new positions for all vertices using v0i ¼ vi þ sFvi

Update topological changes if required

end while

Assign viðt þ 1Þ ¼ v0i for all vertices

return V(t + 1) = (v1 (t + 1), � � �, vm (t + 1))

doi:10.1371/journal.pone.0126484.t002
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removed at the moment when cell dies; Second, the inner edges of all the cells contacting the
dying cell are replaced with outer edges.

Cell Contact Changes. In addition to cell birth and cell death, there are three additional
types of topological changes when cells grow or shrink and their boundaries move, resulting in
cell rearrangement. We use three primitives to model these topological changes, which occur
when the same space would be occupied by more than one cell (Fig 6):

Edge Insertion. When two cells grow, they may come in contact with each other. When
this happens, we add an inner edge to represent the newly formed intersection plane.

Fig 6. Topological primitives. Possible topological changes when cells grow or when their boundaries move. (a) Edge insertion. When two isolated cells
come into contact, we add an edge to represent the intersection plane of the boundary between these two cells. (b) Void removal. When three cells come into
contact, the curve triangular empty space is replaced by a vertex where the inner edges meet. (c) Edge flip. When two previously disconnected cells expand
to meet while pushing away two previously connected cells, we replace one inner edge with a new inner edge.

doi:10.1371/journal.pone.0126484.g006
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Void Removal. When three cells are grown together, new inner edges are introduced be-
tween two contacting cells. At the moment when three cells meet at a common vertex, we need
to replace the curved triangular empty space (void) with a new vertex where the three inner
edges meet.

Edge Flip. When two originally disconnected cells expand and come into contact, they
may squeeze away two previously contacting cells. In this case, we remove the inner edge be-
tween two cells originally in contact, and add a new inner edge between the two cells that now
come into contact.

Together with the three topological changes of inserting a cell due to cell birth, inserting an
inner edge due to cell division, and deleting a cell due to cell death, we exhaust all possible to-
pological changes of cellular patterns modeled in two dimensional space. In our model, these
topological changes can occur at any discrete time step during the simulation.

The full account of all possible topological changes allow us to model details of: (1) Cell
growth and cell shrinkage, (2) cell division, (3) cell death/apoptosis, (4) fusion events of two-
cell, three-cell, and many-cells, (5) cell neighbor swaps associated with edge flips, and (6) void
removal or hole filling (Fig 6). Among these, details of (1), (3), and (4) cannot be modeled in
current existing vertex models. These new technical developments are essential to study impor-
tant biological problems that are not easily amenable to other methods, such as embryogenesis,
tissue fusion, and cell apoptosis, as discussed in later sections.

Visualization and Movie Generation Tool
The overall state S of a tissue can be saved to a file at each time step. This can be visually in-
spected by a visualization and movie generation tool. Application of such a tool allows the user
to follow the development of the tissue at every time step. Fig 7 shows the development of a tis-
sue from 2 cells to approximately 4,000 cells. The visualization tool provides options of zoom-
ing, altering the background color and saving a particular frame. It also allows the user to
generate a movie of the growth process.

Running Time
Our implementation of the model is efficient and robust. We can grow a tissue from 2 to 1,000,
5,000, or 10,000 cells in approximately 104, 562, or 1,380 seconds, respectively on a Pentium
1.6 GHz processor. This time includes the time to write the state of the tissue at every time step
for visual illustration. On average, a tissue of size 12,500 cells can be generated in 30 minutes.
We have successfully generated tissues of size up to 20,000 cells, this compares favorably to
that of 10,000 cells reported in a previous study [24]. In this previous study, Matlab was used
for implementation, which is expected to be considerably slower than our implementation in
C++.

Results
We now describe applications of our cell model and simulation method to illustrate how they
can be used to explore mechanisms of cellular pattern formation in nature. We first give three
simplified examples.

Simplified Examples: Embryogenesis, Tissue Fusion, and Apoptosis
Embryogenesis and early stage of tissue formation. The early stages of embryogenesis

are critically important, as the embryonic stem cell lines are derived during this time. The fertil-
ized egg (day 1) divides to form a 2 cell embryo, followed by subsequent divisions to form 4
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cell, 8 cell and so on until a colony of cells is formed by the fourth day. The colony becomes
hollow from the middle, forming the blastocyst. Pluripotent embryonic stem cell lines are de-
veloped at this stage. The tissues of the embryo start to emerge and the cells become multipo-
tent subsequently. Early embryogenesis is largely monolayered and cell-cell interactions are an
important component of this process [53, 54]. Therefore our model is well suited to study this
developmental stage. An example of tissue development starting from a single cell is shown in
Fig 8 (S1 Movie), which can serve as a toy model for studying the early stage of embryogenesis.
Fig 8 shows the process of the first two rounds of division during the growth of a single cell. Fig
8a shows a single cell and the plane of its first division. Fig 8b shows the two daughter cells
after a short period of post-division growth. Fig 8c shows the formation of four-cells after the
second round of cell division. Note that cell shapes are modeled more realistically and take the
form enclosed by spherical arcs and polygonal line segments.

Tissue fusion: gap closing. Two or more groups of cells spatially separated may come into
contact and become fused together after growth and migration to form a single continuous tis-
sue. In embryonic development, the formation of many organs and tissues, including palate,
heart, neural tubes, and eyes, depend on correctly controlled tissue fusion. Malfunction of the
fusion events can lead to serious diseases such as cleft palate, spina bifida, and head defects

Fig 7. Visualization of the growth of tissue from 2 to 4,000 cells. a) 2 cells; b) 100 cells; c) 500 cells; d) 1,000 cells; e) 4,000 cells, and f) zoomed in view of
4,000 cells.

doi:10.1371/journal.pone.0126484.g007
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[55]. Tissue fusion is also important for cancer metastasis where cells migrate and invade [56],
and for wound healing where tissue remodels [57]. The etiology of these defects are complex
and a number of genetic studies have implicated adhesion molecules [58], apoptosis, epithelial-
to-mesenchymal transition and cell migration [55]. However, the mechanical basis for the fu-
sion events have not been studied yet. We illustrate with a simple example to demonstrate that
some geometric and topological details of the fusion event can be studied using our model.

The basic events of tissue fusion are topological contacts. Our model can be used to study
details of such fusion events. When two cells grow to form a contact (Fig 9a), a new edge is
formed between these two cells (Fig 9b). Upon this contact, both cells become deformed from
the idealized shape of sphere, as a result of balancing the pressure forces from the opposing
cells (Fig 9b). In our model, three cells may also simultaneously come into contact (Fig 9c).
Here new edges are formed between each of the three pairs of neighboring cells, with the addi-
tional introduction of a new vertex at the point where the three new edges meet (Fig 9d).

Topological changes in tissue fusion involving many cells are more complex. An example of
two growing tissues, each consisting of 5 cells (blue and grey), fusing to form one single tissue
of 10 cells is shown in Fig 9e (before) and Fig 9f (after) (S2 Movie). During this fusion process,
4 new edges and three new vertices (highlighted) are formed. These fairly complex sequential
events of topological changes can be captured, tracked, and studied in detail using our cell
growth model.

Apoptosis of peripheral cells. Cell apoptosis [59], or programmed cell death, is essential
for many important biological processes, including embryonic development [60] and homeo-
static tissue size control [61]. Disrupted apoptosis may lead to diseases, such as neurodegenera-
tive diseases [62] and various types of cancer [62, 63]. Dislodged cells devoid of cellular matrix
contact often experience anoikis, a special form of apoptosis [64, 65], and the ability to evade
anoikis is an important attribute of metastatic cancer cells [66].

Our model can be used to study apoptosis. Cell death can be explicitly modeled during cell
growth and tissue development. The geometric changes in surrounding cells that accompany
cell apoptosis can also be modeled realistically. Unlike existing vertex models, programmed cell
death does not need to coincide with the topological changes of void removal (also called T2
transition [23]), and can occur anywhere dictated by the underlying model of biology. In

Fig 8. Model of tissue development starting from a single cell. (a) A single cell and its plane of first division; (b) Two daughter cells after the first division,
each is slight deformed from its shape in (a); (c) The formation of four cells after two cell divisions.

doi:10.1371/journal.pone.0126484.g008
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Fig 9. Fusion of cells and tissues. (a) and (b) shows two separate growing cells come into contact and become fused together. A new edge is formed
between the two cells. (c) and (d) shows the case of three growing cells fusion. Three new edges and a new vertex are formed after fusion. (e) and (f) shows
the fusion of two growing tissues. Two separate tissues contact with each other and become fused together to form a continuous tissue. The new edges and
vertices formed are highlighted.

doi:10.1371/journal.pone.0126484.g009
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contrast, cell death occurs in the vertex model only during T2 transitions [23]), which is only
possible for cells in the interior of a tissue fully surrounded by other cells.

Fig 10 shows two examples of cell apoptosis in peripheral tissue (S1 Movie). Fig 10a and 10c
each shows a small tissue before a cell (colored in red) becomes apoptosized. Fig 10b and 10d
each shows the corresponding tissue after the apoptosis. Here arrows point to the locations
where the apoptosis cells were located. Upon cell apoptosis, there are significant changes in cell
tension and pressure forces in surrounding cells (labeled with number 1 and 2), resulting in sig-
nificant changes in cell geometry. Forces on edges of each of the surrounding cells also experi-
ence rebalancing. All such changes, including the intermediate states (not shown) and the
sequence of events, are explicitly accounted for in our model.

Bristle Formation
We now give two examples of more detailed studies. We first study a long standing problem,
namely, the bristle plotting puzzle. Bristle cells are widely found in different species, including
insect epidermis and legs [67]. Bristles are sensor cells, and are important for detecting external
stimuli through the rigid exoskeleton [68, 69]. When a bristle is deflected, the pivoting of the

Fig 10. Apoptosis of a peripheral cell. (a) A small tissue before the labeled red cell proceeds to apoptosis. (b) The tissue after the demise of the red cell.
The black arrow points to the location where the red cell was. The apoptosis of the red cell caused significant changes on its neighboring cells (labeled 1 and
2). A larger tissue before (c) and after (d) the labeled red cell proceeds to apoptosis. The black arrow in (d) points to the location where the red cell
was apoptosized.

doi:10.1371/journal.pone.0126484.g010
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shaft in its socket sends a signal to the central nervous system [70, 71]. There is molecular evi-
dence that scales on the butterfly and moth wings are evolutionarily derived from bristles, and
their development is governed by similar underlying mechanism as bristle formation in insects
[72–74]. Bristle patterning therefore has become an excellent model system in the study of cel-
lular pattern formation.

Here we demonstrate how simulations using our cell model can help explain bristle forma-
tion on the epidermal region of D. melanogaster. We also discuss our simulation results for the
formation of scales on butterfly and moth wings.

Models proposed to explain bristle formation. An adult fruit fly (D. melanogaster) has
500,000 cells on its epidermis, but only 1% of them are bristles [75]. The position and number
of bristles vary among individual flies, but most bristles are organized into regular rows that
are parallel and/or perpendicular to the body axis or limbs (Fig 11) [76]. Furthermore, bristles
are more or less evenly spaced and aligned within each of these rows. This phenomenon has
been studied since 1915 [77], and a number of models have been developed to explain the un-
derlying mechanism of bristle formation [78–86].

Among the first models to suggest cell-cell interactions as the cause of bristle formation in
D. melanogaster was the “Pre-pattern Model”. This model postulated that differential distribu-
tion of properties (such as stress points) or signals within a field of embryonic cells comprise a
“prepattern” that is responsible for the organization of sensory bristles. It also suggested that
each bristle comes from a group of equivalent cells, anyone of which can become a bristle.
Once chosen, this cell inhibits its surrounding cells [78, 79]. Although this model summarized
the macro properties of bristle formation, it did not provide any mechanistic insight into
the process.

The “Pre-destined Model” was the first to give mechanistic explanation for the bristle forma-
tion process. It suggests that bristle sites could be fixed based on patterns of expression of genes
(ac and scute (sc) genes) [80]. Sharp expression boundaries indicate bristle sites. However, this
model did not explain the lack of bristle aggregation (� 2 bristle cells in contact) (Fig 12).

Fig 11. Bristles.Cartoon representation of the bristles on the epidermis of fruit fly. Most bristles are
organized in regular rows that are parallel or perpendicular to the body axis or limbs. The bristles are evenly
spaced and aligned within each of the rows. Modified from http://www.biology-resources.com/drawing-fruit-
fly.html

doi:10.1371/journal.pone.0126484.g011
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The “lateral inhibition” or “mutual inhibition”models offered a possible mechanism to pre-
vent aggregation of bristles [81–83]. Both postulated that the notch signaling pathway was in-
volved in inhibiting neighboring cells to acquire similar cell fate. The discovery of the
expression pattern of ac, Dl and N genes (Fig 13a) led to the modified lateral inhibition model
[84, 85]. According to this model, the formation of bristles was only possible in regions that
have high concentration of ac, Dl and low concentration of N. These regions form stripes, and
their width was observed to be between 3 to 5 cells.

An important discovery in the field is the identification of a soluble component (DlEC) of
the Delta protein [86]. This lead to the “inhibition field”model, which postulates that cells can
inhibit their neighbors up to a certain distance through diffusion of this soluble protein [86].
According to this model, direct cell-cell contact is not necessary. This model was also sup-
ported by the discovery of Delta-promoted filopodia that mediate long-range lateral inhibition
[87], although the mechanism was quite different. Although it remains an open question
whether DlEC, filopodia, or alternatively, another soluble protein is responsible for inhibiting

Fig 12. Aggregation of Bristles. The “Pre-destined Model” suggested that bristle sites can form based on patterns of expression of genes (ac and sc
genes) [80]. Here sharp expression boundaries indicate bristle sites. Our simulation results show that the “Pre-destined Model” can lead to aggregation of
bristles, which are not observed experimentally. For example, red circles highlight instances where� 2 contacting bristle cells form aggregates.

doi:10.1371/journal.pone.0126484.g012
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the cells that are not in direct contact, there is a general agreement that such a
mechanism exists.

Inhibition Ranges based on Diffusion Coefficients. We first assume the average diame-
ter for epithelial cells in wing imaginal disc to be ca. 10 μm[88]. The inhibition field differs
when using different diffusion coefficients of Dl ligand. Following Merks et al., we assume the
Dl gradient is driven by both diffusion and degradation of Dl over the ECM [89]. Following
[90], we calculate the steady state gradient of Dl at three different diffusion coefficients of 1.2
μm2 s−1, 4.8 μm2 s−1, and 9.6 μm2 s−1[91] (Fig 14). We further assume a minimum threshold of
Dl density of 0.05 for concentration-dependent signal responses in cells, i.e., cells can be acti-
vated only when the Dl concentration is above the dimensionless cell response threshold of
0.05 (black indicating lines in Fig 14). With the three diffusion rates tested, the farthest cells
that Dl signal can reach are within 10μm, 20μm, and 30μm, respectively. This corresponds to
the 1, 2, and 3 layers of neighboring cells in our simulations.

Simulations of Different Mechanisms and Parameter Sensitivities. We have carried out
simulations to test each of the models by growing a tissue from 2 cells to about 4000 cells. The
concentration of bristle formation related genes ac, Dl and N were taken from literature [80–
86], these concentrations are treated as an input for the simulations (see S1 Appendix). To bet-
ter understand how the formation of bristle pattern is regulated, we also analyze the parameter
sensitivities of different inhibition ranges and stripe widths.

Our simulation results show that the “Pre-destined Model (No inhibition, Dl inhibition
range = 0 cell layers)” can lead to aggregation of bristles, i.e.� 2 contacting bristle cells form

Fig 13. Bristle Plotting Puzzle. Simulation results of bristle pattern formation using different models. a) The pattern of gene expression used for the stripe
models. Green stripes have almost equal expression of Dl andN genes but ac is not expressed. Blue stripes have high expression of ac and Dl genes but low
expression ofN gene. Red stripes have high expression of ac andN genes but low expression of Dl gene. Bristles only form in the blue stripes. b) Lateral
inhibition with stripes does not ensure equal spacing or good alignment. c) Inhibition field with out stripes ensures proper spacing but does not produce a
good alignment. d) Inhibition field with stripes produces equal spacing as well as good alignment.

doi:10.1371/journal.pone.0126484.g013
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Fig 14. Steady state spatial gradients ofDl of different diffusion rates. The steady state spatial gradients of Dl are due to diffusion and degradation. The
red solid line with triangular markers is the steady state gradient formed with the diffusion coefficient 1.2 μm2 s−1. The green dash line with square markers is
the gradient of the diffusion coefficient 4.8 μm2 s−1. The blue dotted line with circle markers is of the diffusion coefficient 9.6 μm2 s−1. The black straight lines
represents the 0.05 Dl concentration threshold for cellular response.

doi:10.1371/journal.pone.0126484.g014
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clusters, which are not observed experimentally (Fig 12). Using the “lateral inhibition (Dl inhi-
bition range = 1 cell layer)”model (S1 Appendix), where each cell can inhibit 5 to 6 surround-
ing cells [92], we found that the fraction of bristles (� 16%) was much more than
experimentally observed. In addition, there was no detectable alignment in regular rows. With
the “inhibition field (Dl inhibition range = 2, 3, or 4 cell layers)”model (S1 Appendix), we
found that if an inhibition radius of 3 layers of neighboring cells is used, evenly spaced bristles
form (Fig 13c).

Similarly, using the “lateral inhibition with stripes (Dl inhibition range = 1 cell layer)”model
(S1 Appendix), where each cell can inhibit 5 to 6 surrounding cells within the stripe, the frac-
tion of bristles (� 8%) was much more than experimentally observed and no alignment could
be detected. Therefore, the alignment and equal spacing observed on the epidermis of D. mela-
nogaster cannot be reproduced by the “lateral inhibition” and “lateral inhibition with stripes”
models (Fig 13b).

We found that regular rows of bristle cells with even spacing can be produced with different
choices of the stripe width and the inhibition radius (Dl inhibition range = 2, 3, or 4 cell layers).
Through simulations, we found that the degree of alignment of bristle cells increases as the
stripe width is reduced and inhibition radius is increased (Fig 15). To quantitatively analyze
this relationship, we ran simulations with different combinations of stripe width and inhibition
radius. Our results show that alignment is directly proportional to the inhibition radius, and in-
versely proportional to the stripe width (Fig 15). This is consistent with experimental observa-
tions, where increase in stripe width has been observed to cause increase in the number of
bristles and their misalignment [93].

Combining the “inhibition field”model with the expression pattern of ac, Dl and N in stripes
(S1 Appendix), we are able to obtain evenly spaced as well as aligned regular rows of bristles,
which reproduced results from experimental studies (Fig 13d) [85]. Here we quantify the de-
gree of alignment by an index %, which is calculated by drawing a vertical line in the middle of
each stripe and summing the number of cells that lie on a horizontal line segment between the
bristles and the vertical line. This is then normalized with the total number of bristles in the
stripe (Fig 16).

% ¼
X

j

X

i

dði; jÞ=Nj ð4Þ

Here d(i,j) is the number of cells that lie between the vertical line and bristle i in stripe j. Nj is
the total number of bristles in stripe j. A value close to zero indicates perfect alignment and a
large value indicates misalignment. In this case, we obtain % = 0.62, with 55% of the bristles
lying on the vertical line. Our simulation results using different models are summarized in
Table 3.

Epithelial Tissue Size Control
We now discuss the application of our method to study the fundamental problem of the ho-
meostatic size control of epithelial tissues controlled by stem cell lineages. Epithelial tissues is
one of the four basic types of animal tissues among connective, muscle and nervous tissues
[94]. Precise and robust homeostatic control of tissue size is essential for tissue development.
Tissue size control has been the subject of numerous studies [61, 95–97, 97–99], majority of
which are based on population averages and are without detailed spatial-temporal information.
At the heart of the problem is understanding the mechanism of the activation and inhibition of
proliferation and differentiation of different types of cells (i.e., stem cells, intermediate progeni-
tor cells, and fully differentiated cells), which are under the influence of various feedback loops
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Fig 15. Relationship between stripe width and Inhibition Radius. Effects of stripe width and inhibition radius on the alignment of the bristles. (Top) The
stripe width increase from left to right and the inhibition field radius increases from top to bottom. For a fixed Inhibition radius (horizontal rows) small stripe
width produces a better alignment (Alignment Index % is smaller). For a fixed stripe width (horizontal rows), large inhibition field radius produces a better
alignment. (Bottom) The degree of alignment of bristle cells increases as the stripe width is reduced and inhibition radius is increased, suggesting that the
alignment is directly proportional to the inhibition radius and inversely proportional to the stripe width.

doi:10.1371/journal.pone.0126484.g015
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controlled by secreted factors [61, 95–98, 100]. In this example, we apply our model to study
the homeostatic size control of the mammalian olfactory epithelium (OE), which is under con-
trol of stem cell lineages. We explore the effects of inhibition range of secreted factor to stem
cell growth, as well as the effects of symmetric vs asymmetric cell divisions of stem cells. Addi-
tional detailed study of other aspects of tissue size control can be found in [101].

Cell Lineage and Division Types. Our cell lineage model is based on previous studies [61,
102, 103]. There are three different cell types in our model: stem cells, intermediate progenitor
cells, and fully differentiated cells. Stems cells can develop into progenitor cells, and progenitor

Fig 16. The degree of alignment by an index %. It is calculated by drawing a vertical line in the middle of
each stripe and summing the number of cells that lie between the bristles and the line. This is then normalized
with the total number of bristles in the stripe. Here, a) is an example of good alignment with % = 0.5 and b) is
an example of bad alignment with % = 2.0

doi:10.1371/journal.pone.0126484.g016

Table 3. Simulation results for “Pre-destined”, “Lateral inhibition”, “Lateral inhibition with stripes”, “Inhibition Field”, and “Inhibition Field
with Stripes” models.

Model Characteristics Simulation Results

Pre-destined Based on expression of genes (ac and sc). Leads to aggregation of bristles.

Lateral Inhibition Inhibit neighboring cells through notch signaling pathway. Fraction of bristles (� 16%) is greater than experimental
observations.

Lateral Inhibition
with Stripes

Bristles can be formed only in regions with high concentration of
ac, Dl and low concentration of N. Bristles inhibit neighboring cells
through notch signaling.

Cannot produce aligned or evenly spaced bristles. The
fraction of bristles (� 8%) is greater than experimental
observations.

Inhibition Field Inhibit neighboring cells through notch signaling with a soluble
protein or Delta-promoted filopodia.

Bristles are evenly spaced but not aligned.

Inhibition Field
with Stripes

Bristles can be formed only in regions with high concentration of
ac, Dl and low concentration of N. Bristles inhibit neighboring cells
through notch signaling with a soluble protein or Delta-promoted
filopodia.

Bristles are evenly spaced and 55% are aligned well.

doi:10.1371/journal.pone.0126484.t003
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cells can develop into differentiated cells. Stem cells have unlimited ability to divide and pro-
genitor cells can divide at most twice. Differentiated cells do not divide.

There are three different types of cell divisions for stem cells and progenitor cells (Fig 17A)
[61, 102, 103]. In self-renewal, a stem cell or a progenitor cell is divided into two daughter cells
of the same type as the mother cell. In symmetric differentiation, a stem cell and a progenitor
cell are divided into two progenitor and two differentiated daughter cells, respectively. In asym-
metric division, a stem cell is divided into two daughter cells of different types, one stem cell
and one progenitor cell. Similarly, a progenitor cell is divided into two daughter cells of differ-
ent type: a progenitor daughter cell and a differentiated cell. Note that as progenitor cell can
maximally divide twice, the second division is always symmetric division.

Cellular Feedback Circuits. In our model, the growth rates of cells and the choices of divi-
sion types for stem cells and progenitor cells are independently controlled by negative feedback
loops involving various protein factors (Fig 17B). These are proteins secreted from differentiat-
ed cells located within a specific diffusion radius from the affected stem cell or progenitor cell.

We assume a basal cell growth rates v0S for stem cell and v0P for progenitor cell. In addition,
the three division types are assumed to have equal basal probabilities of being chosen. For stem
cell, the probability pSr for self-renewal, pSs for symmetric division, and pSa for asymmetric divi-
sion all take the value of 1/3 when there are no inhibitions: p0Sr ¼ p0Ss ¼ p0Sa ¼ 1=3: Similarly,
the corresponding probabilities for progenitor cells are also set to 1/3 when there are no inhibi-
tions: p0Pr ¼ p0Ps ¼ p0Pa ¼ 1=3:

Following [61], we use a total of eight Hill functions to model the negative feedback to the
growth rates and probabilities of choosing different division type for stem cells and for

Fig 17. Model of feedback circuits for tissue size control. a) Division types of stem cells and progenitor cells. Red sphere labeled with (S) indicates stem
cells, blue hexagon (P) indicates progenitor cells, and white diamond (D) indicates differentiated cell. The same color code is used for illustration of resulting
tissues. b) Feedback controls of stem cell model. Blue arrows indicate self-renewal or proliferation divisions. Black arrows indicate symmetric differentiation
divisions. Red arrows indicate asymmetric divisions. Flat-head arrows extending from differentiated cell with corresponding colors indicate inhibitions to
respective type of divisions.

doi:10.1371/journal.pone.0126484.g017

Computing Dynamics of Cell and Tissue Patterning

PLOS ONE | DOI:10.1371/journal.pone.0126484 May 14, 2015 27 / 40



progenitor cells (Eq (5)). The growth rates and probabilities at time t are calculated as:

vSðtÞ ¼ v0S
1þ gSNDðtÞ

for growth rate for stem cell;

pSrðtÞ ¼ p0Sr
1þ hSrNDðtÞ

for probability of stem cell self-renewal,

pSsðtÞ ¼ p0Ss
1þ hSsNDðtÞ

for probability of stem cell symmetric differentiation;

pSaðtÞ ¼ p0Sa
1þ hSaNDðtÞ

for probability of stem cell asymmetric division:

vPðtÞ ¼ v0P
1þ gPNDðtÞ

for growth rate of progenitor cell;

pPrðtÞ ¼ p0Pr
1þ hPrNDðtÞ

for probability of progenitor cell self-renewal,

pPsðtÞ ¼ p0Ps
1þ hPsNDðtÞ

for probability of progenitor cell symmetric differentiation;

pPaðtÞ ¼ p0Pa
1þ hPaNDðtÞ

for probability of progenitor cell asymmetric division:

ð5Þ

Here ND(t) is the number of differentiated cells in the neighborhood within a specific number
of layers of cells, which can be easily calculated using the half-edge data structure from the cell
growth model. Hill parameters gS, hSr, hSs and hSa are for growth rate, probabilities of self-re-
newal, symmetric and asymmetric divisions of stem cells, respectively. gP, hPr, hPs and hPa are
corresponding parameters for progenitor cells. When new probabilities of division types are
generated, they are normalized so the probabilities of three division types sum to one for
each cell.

Cell division happens when the cell volume doubles. The division type of a stem cell or a
progenitor cell is assigned based on the calculated probabilities of division types. The growth
rates and division types obtained from feedback circuits for each individual cell are then used
as input to model the growth of that cell, allowing more realistic cell behavior to be simulated.
The whole system of cells is therefore coupled spatio-temporally to enable modeling of tissue
development with stem cell lineage.

Effects of inhibition range. It is well known that differentiated cells inhibit growth and di-
vision of stem cells through secreted factors [61, 98, 100]. Using a model of a mixture of differ-
ent cell types, we explore how the range of inhibition affects the ability of a growing tissue to
achieve size control.

Secreted protein factors from differentiated cells may have different diffusion radius, for ex-
ample, due to difference in solubility. We tested models where secreted proteins from a differ-
entiated cell inhibit 2, 3, or 4 layers of cells in the immediate neighborhood. We carried out
four independent simulations for each condition, starting from a small planar tissue of 64 cells
with 10 stem cells (red) surrounded by 16 progenitor cells (blue) and 38 differentiated cells
(white). Fig 18a, 18b, and 18c depict simulation results. The corresponding time curve of size
of populations of stem cells (S), progenitor cells (P), and differentiated cells (D) are shown in
Fig 18d, 18e, and 18f, respectively.

We assume normal tissue growth occurs when stem cells are inhibited by neighboring dif-
ferentiated cells within three layers. Under this condition, tissue growth gradually slows down
and eventually stops after reaching a threshold, when the homeostatic steady state is
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established (S3 Movie). Fig 18a shows the spatial pattern of cells in steady state. Fig 18d shows
the time course of the size of different cell population. In this homeostatic steady state, differen-
tiated cells capable of carrying out physiological functions dominate the tissue. At the same
time, a small number of stem cells remain, ensuring that the potential for tissue regeneration is
retained. This is also seen in experimental studies [104].

When the inhibition range is reduced to only two layers, tissue size increases monotonically
with succeeding generations (Fig 18b and 18e) (S4 Movie). Size control is no longer possible.
On the other hand, when the inhibition range is increased to four layers, the overall size of the
tissue is suppressed, although size control is achieved (Fig 18c and 18f) (S5 Movie). Overall,
our results highlight the important role of inhibition range of secreted factors. An appropriate
inhibition range of secreted factors from differentiated cells in the negative control feedback
loop is important for achieving tissue size control while maintaining ability of
tissue regeneration.

Effects of inhibiting stem cell symmetric and asymmetric division. The balance between
symmetric and asymmetric divisions of stem cells is critical for normal tissue development,
wound healing, and tissue regeneration [105–107]. Its disruption can result in abnormal tissue
development and the induction of tumor [105]. This balance depends on both intrinsic infor-
mation such as cell polarity factors, as well as external signals [105].

Our cell model can be used to study the effects of symmetric and asymmetric division in
stem cells. We first explore the effects of altered symmetric differentiation of stem cells on tis-
sue development. When the inhibition to symmetric differentiation of stem cells is removed,

Fig 18. Effects of different inhibition ranges of secreted factors in negative feedback loop to stem cells on tissue size control. Examples of tissue
pattern and the time course of population size of different cell types when stem cells are inhibited by differentiated cells located within (a,d) 3-, (b,e) 2-, and (c,
f) 4-layers of neighboring cells, respectively. Normal size control with the ability to regenerate is achieved when 3 layers of neighboring cells are inhibited (a,
and d). When 2 layers of cells are inhibited, size control is no longer possible (b and e). When 4 layers of cells are inhibited, tissue size is suppressed.

doi:10.1371/journal.pone.0126484.g018
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the pool of stem cells is quickly depleted. The tissue size at steady state is much smaller com-
pared to that of normal development. In addition, the tissue does not maintain a population of
stem cells (Fig 19a and 19b) (S6 Movie). As a result, tissue developed without inhibition to
stem cell symmetric differentiation would be severely compromised in its ability for wound
healing and regeneration.

Next we explore the effects of increased asymmetric division of stem cells. Asymmetric divi-
sion was thought to be one of the defining characteristics of stem cells, because it can maintain
a population of stem cells, at the same time producing functional differentiated cells [105]. Our
results show that when the inhibition to asymmetric division is removed, the proliferation of
stem cell population persists. In addition, progenitor cells are continuously produced from
stem cells, regardless of the number of differentiated cells in the surrounding environment.
Under these conditions, the homeostatic tissue size control is not possible (Fig 19c and 19d)

Fig 19. Effects of inhibitions to stem cell symmetric and asymmetric divisions. An example of tissue formation without inhibition to symmetric division is
shown in a), and its corresponding time-course of the size of population of different cell types is shown in b). c) An example of tissue formation without
inhibition to asymmetric division and d) the corresponding time course of size of populations of different cell types.

doi:10.1371/journal.pone.0126484.g019
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(S7 Movie). In experimental studies of hyper-proliferation and malignant growth of Drosophila
melanogaster brain tissue [108], unregulated stem cell asymmetric division was found to lead
to excessive growth of the tissue and the generation of tumor. Our simulation results is in full
agreement with these experimental findings.

Taken together, our simulation results suggest that a regulation mechanism that maintains
a correct balance between symmetric and asymmetric divisions is important. This balance is es-
sential for the development and maintenance of tissues. Our results are in complete agreement
with experimental studies [109], in which a number of factors that regulate symmetric and
asymmetric divisions were discovered [109].

Discussion
The coordinated efforts of a large number of cells to form an organ is a complex process that is
not yet fully understood. Tissue formation occurs with precision and persistence, extending be-
yond individuals and even generations. We do not yet have the full picture of how changes in
properties of individual cells such as cell size, shape, geometry, lineage, division, growth rate,
and death affect tissue formation and the whole organism. Neither do we have sufficient infor-
mation on how and when cell-cell interactions become important.

To study cell pattern formation in 2D, we have presented a physical model of cell and a sim-
ulation algorithm that incorporates cell size, shape, lineage, growth rate, death rate, and differ-
ent cell-cell interactions. In this work, monolayered tissue formation can be modeled using our
method by following the growth process of either a single cell, or a group of cells with arbitrari-
ly pre-arranged spatial relationship, unlike previous studies that must start with a specific pre-
existing cellular pattern [24, 28, 31, 32]. The natural growth process can be modeled without
the constraints from unrealistic boundary conditions and therefore do not suffer from the asso-
ciated artifacts. Our method can incorporate biological properties such as different growth
rates due to the effect of different growth factors. Effects of different division orientation can
also be studied [110]. Furthermore, programmed cell death during the cell cycle can be incor-
porated. Our model represents the geometry of cells more accurately, with inner cells treated as
polygons and outer cells as disc segments, as seen in in vivo studies [41].

In our study, we assume force equlibrium and take small step sizes in cell volume changes.
We allow vertex movement relaxes and vertices reach their stationary positions. These model
assumptions can be improved upon by introducing time-sepcific, cell-type specific, and/or lo-
cation specific parameter values for cell and tissue mechanical proprties. In addition, more re-
alistic growth and shrinkage parameters for different cells can also be introduced. We believe
once relevant experimental measurements become available, such improvement will lead to
more realistic simulations, with perhaps additional insight gained into details of cell
pattern formation.

Our implementation of the model using theHalf-Edge data structure is very efficient and ro-
bust, and provides additional benefit of no overhead with regards to time and storage in main-
taining the list of neighboring cells for each cell. We are able to simulate tissues with a large
number of cells (* 20,000) in a very short amount of time. In addition, a visualization tool has
been developed that allows the user to follow the development of the tissue visually at each
time step. Our software is publicly available (S1 Software).

Comparison with Other Models
Our model differs from previous models. Compared to the center-based model [22], more de-
tailed cell shape is explicitly included. Instead of an idealized model of sphere interactions, cell
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interactions are accounted for through forces due to pressure difference, surface tension, and
adhesion, allowing more complex cell interactions. Many application examples given in this
work would be difficult to study using the center-based model.

Our model also differs significantly from existing vertex models. First, the process of cell
growth, with details of cell shapes and their changes, are modeled explicitly. Cell shape is more
realistically represented, where a cell can take up the shape of a circle (the two-dimensional
equivalent of sphere), a polygon, or a polygon with an arbitrary number of circular arcs as part
of the cell boundary. The specific cell shape is dictated by the geometry of neighboring cells
and the pressure forces they exert. In our model, boundary cells can have curved edges, with
the curvature changing gradually when cell grows. Cell areas directly relate to cell sizes, and de-
tailed incremental quasi-static changes in cell volume is followed explicitly. Contributions
from changes in pressure force due to cell volume changes are also explicitly incorporated. Cell
growth can be modeled independent of cell division. As a result, details of the growth process
of individual cells, including creation and elimination, as well as changes in the curved bound-
aries, are all accounted for explicitly.

Second, our model is more general and can be used to study cell birth, initial cell division,
and subsequent cell growth in detail, e.g., the initial formation of cell colonies, starting from
single cells. In the explicit vertex model, a sufficient number of neighboring cells is required to
close cells off to form a polygon. Typically, initial conditions require the existence of a plural
number of cells (e.g., 16), sometimes under periodic boundary conditions [23]. Although such
models work well in studying packing of epithelial cells, the process of embryogenesis starting
from a single or a handful of dividing cells are difficult to model using vertex model. In con-
trast, birth of a single cell and its subsequent divisions can be modeled explicitly using our ap-
proach, with details of cell shapes, including curved cell boundaries, as well as the structure of
cell population explicitly followed.

Third, our method can model cell death or apoptosis more realistically. In the vertex mod-
els, cell death is modeled through cell extrusion, but cell death or cell apoptosis in other situa-
tions is not accounted for. Specifically, cell extrusion is used as a surrogate for cell death, which
is modeled through the T2 transition, namely, replacement of a tiny triangle/polygon by a ver-
tex [23]. This transition is identical to the topological change of void removal we use here.
However, T2 changes can occur in the vertex model without cell death. Cell apical area shrink-
age due to cell division, occurrence of multiple T1 transitions, as well as multiple steps of tissue
relaxations, all can lead to T2 transition, without involving actual cell death [23]. Furthermore,
the occurrence of T2 transition itself does not account for all cases of cell death. As cell apopto-
sis is a controlled or programmed process induced by complex cellular processes, its occurrence
is independent of the T2 topological changes. For example, a cell death can occur at boundary
cell, and its occurrence can also create an empty hole in the tissue, instead of being replaced by
the vertex shared by its original neighboring cells. These changes would be difficult to model
using existing vertex models.

In our model, death of an arbitrary cell can be modeled through the underlying biological
model of apoptosis. As we can model cell growth as well as cell shrinkage explicitly, and all to-
pological changes are exhaustively accounted for, any cell in a tissue can be assigned to be pro-
grammed to apoptosize. Its demise can be followed explicitly through implementation of
schemes of negative growth rates. The resulting topological changes of hole creation or void re-
moval, which depend on the cell mechanics of the surrounding environment, are also modeled.

The method of cell simulation reported here is similar in some aspects to several general
purpose simulation methods, such as the Surface Evolvermethod. For example, both methods
formulate and solve the geometric and mechanical problem in a similar fashion. However, the
Surface Evolver method was designed as a generic tool for finding the minimal energy surface.
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It is not suited for dynamic simulations of biological tissue pattern formation involving cell
growth, division, and apoptosis. Although the Surface Evolver method provides interfaces for
custom defined volume constraints for individual cells, modeling constantly changing cell vol-
umes, i.e. those in cell growth, is not supported [111]. Therefore, it is not suited for simulating
realistic cellular and tissue pattern formations during tissue development and diseases, which
often involve significant amount of cell growth and divisions. In literature, Surface Evolver has
been used to study biological processes under the condition of constant cell volume and fixed
cell numbers, (e.g. 20 cells in [112],< 100 cells in [113], and 200–380 cells in [114]). All three
cases have at least 2 orders of magnitude less number of cells than that our method can simu-
late (on a scale e.g. 104 cells). Furthermore, to our knowledge, the Surface Evolver has not been
used to study pattern formations where extensive cell growth, cell division, cell proliferation,
and their integration are required, such as in tissue development of a large number of cells.

While the integration of cell growth, cell division, and cell death with effects of secreted fac-
tors is a challenging task for general purpose simulation methods such as the Surface Evolver,
our method can model dynamic changes of cell shapes and topological connectedness of tissue
realistically. An efficient data structure enables fast access of information and manipulation of
neighboring cells in constant time. These advantages translate to greatly improve computation-
al efficiency, such that simulating tissue pattern formation from a single cell to tens of thou-
sands of cells can be carried out with ease.

In summary, our model has the advantage of more realistic cell shape and can model realis-
tically cell growth, division, and apoptosis without restrictions. Furthermore, our model does
not depend on any specific initial conditions nor boundary conditions. We can model geomet-
rical and mechanical interactions among cells more realistically, and are able to model tissue
pattern formation starting from 1–2 cells, with topological events such as tissue fusion fully ac-
counted for. A full comparison to other existing methods has been summarized in Table 1.

Pattern Formation in Epithelial Tissues
We also give examples of how our method can be used to study cellular pattern formation. Spe-
cifically, we studied the mechanism of bristle formation on the epidermis of D. melanogaster.
We have explored the relationship between the inhibition field radius due to the solubility of
Delta-like protein and the width of the stripe, in which the genes such as ac and Dl are highly
expressed. Our simulation results suggest that equal spacing between cells can be achieved
through inhibition field associated with a soluble protein, such as DlEC.

Our findings are also relevant for understanding the pattern formation of scale cells on the
wings of butterfly and moth. The developmental similarity between butterfly scales and insect
bristles has been known since 1896 [115]. Scale cells are arranged in parallel rows in most of
the butterfly species. In most moths, they are just evenly spaced [116]. There are also several
butterfly species that do not have aligned scales. Furthermore, the spacing between the scale
cells varies from 1 to 5 cells in different species. It is currently unclear how these patterns have
evolved. There is some evidence that the notch signaling pathway might be involved in the or-
ganization of butterfly scales [117]. Morphologically, scale cells are bigger than the surrounding
cells, and are known to be able to inhibit 7–10 cells by direct cell-cell contact. Our simulation
results support the idea that scale cells and bristle cells have similar underlying mechanisms for
their formation. The radius of the inhibition field can vary from species to species based on the
solubility of the Delta-like protein. Furthermore, our results suggest that in order to achieve
good alignment, notch/delta like stripes are necessary (Fig 20).
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Outlook
Our model is general and has been successfully applied previously to study the effect of division
plane orientation and cell rearrangements on the packing geometry of epithelial cells [110,
118], on how mechanical forces mediate localized topological changes in regulating cell topolo-
gy in proliferating epithelial [110, 119], on how tissue elongation in Drosophila wing is regulat-
ed by oriented cell divisions, oriented mechanical forces, and reduced cell sizes [120], and on
spatial population dynamics of stem cell lineage in tissue growth [101], wound healing and
cancerogenesis [121].

Fig 20. Butterfly Scales with Inhibition Field radius of 2 cells. Simulation with Inhibition field radius of 2 cells produces evenly spaced cells but regular
rows do not form.

doi:10.1371/journal.pone.0126484.g020

Computing Dynamics of Cell and Tissue Patterning

PLOS ONE | DOI:10.1371/journal.pone.0126484 May 14, 2015 34 / 40



Our model can also be extended to incorporate nutrient gradients formed by diffusion. The
concentration of these nutrients can be treated as additional force acting on the cells, with sto-
chastic effects incorporated. This model is well suited to study general spatio-temporal pattern
of tissue formation such as epithelial tumor growth and the interactions between epithelial
tumor cells and normal cells.
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