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Bone metastasis is a common and devastating consequence of several

major cancer types, including breast and prostate. Osteocytes are the

predominant bone cell, and through connexin (Cx) 43 hemichannels

release ATP to the bone microenvironment that can be hydrolyzed to

adenosine. Here, we investigated how genes related to ATP paracrine signaling

are involved in two common bone-metastasizing malignancies, estrogen

receptor positive (ER+) breast and prostate cancers. Compared to other sites,

bone metastases of both cancer types expressed higher levels of ENTPD1

and NT5E, which encode CD39 and CD73, respectively, and hydrolyze

ATP to adenosine. ADORA3, encoding the adenosine A3 receptor, had a

similar expression pattern. In primary ER+ breast cancer, high levels of the

triplet ENTPD1/NT5E/ADORA3 expression signature was correlated with lower

overall, distant metastasis-free, and progression-free survival. In ER+ bone

metastasis biopsies, this expression signature is associated with lower survival.

This expression signature was also higher in bone-metastasizing primary

prostate cancers than in those that caused other tumor events or did not lead

to progressive disease. In 3D culture, a non-hydrolyzable ATP analog inhibited

the growth of breast and prostate cancer cell lines more than ATP did. A3

inhibition also reduced spheroid growth. Large-scale screens by the Drug

Repurposing Hub found ER+ breast cancer cell lines were uniquely sensitive
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to adenosine receptor antagonists. Together, these data suggest a

vital role for extracellular ATP degradation and adenosine receptor

signaling in cancer bone metastasis, and this study provides potential

diagnostic means for bone metastasis and specific targets for treatment

and prevention.

KEYWORDS

metastasis, bone, breast, prostate, purinergic, osteocyte

Introduction

Bone is the most common site for distant metastasis by
breast and prostate cancers and has devastating impacts on
patients (1, 2). Complications include severe pain, pathologic
fractures, life-threatening hypercalcemia, and spinal cord
compression (3, 4). Furthermore, patients with bone metastases
have poor overall prognosis and lower life expectancies (5–
7). Understanding the process that permits breast and prostate
cancer bone metastasis and knowing how to derail it is
critical for improving patient outcomes for the second-leading
cause of cancer deaths in women and men, respectively. The
microenvironment of distant organs plays a vital role in the
process of metastasis to that site (8). Despite this, few drugs
specifically target metastatic sites. Bisphosphonates induce
osteoclast apoptosis, promote osteocyte Cx43 hemichannel
activity (9, 10), and are used to treat bone metastases of various
types, including prostate and breast (11, 12). More uniquely,
they were clinically validated to prevent breast cancer metastasis
to bone in postmenopausal women (13).

Osteocytes comprise roughly 90% of bone cells and are
dominant regulators of the local microenvironment (14).
In normal bone physiology, they coordinate the actions of
bone-building osteoblasts and bone-degrading osteoclasts (14).
Osteocytes are rich in Cx43 hemichannels, through which
small paracrine signaling molecules such as prostaglandins and
ATP are released and influence both normal bone cells and
metastatic cancer cells (15, 16). Our previous study found
osteocytes expressing Cx43 with impaired hemichannel and
gap junction activity promoted the growth of triple-negative
breast cancer in bone, while osteocytes with impaired Cx43 gap
junction but retained hemichannel function had no such effect
(17). Further investigation showed that a stable extracellular
ATP (eATP) analog decreased triple-negative breast cancer cell
migration, while extracellular adenosine (eADO) increased it,
and thus preventing eATP degradation to eADO can enhance
the inhibitory effect of eATP on cancer cell migration (16).

A recent surge of interest in purinergic signaling in cancer
is primarily on its role in immunology. In tumors, eATP is
elevated and generally stimulates the immune system (18).

This eATP can be hydrolyzed to AMP by CD39, encoded
by the gene ENTPD1, and further degraded to adenosine by
CD73, encoded by the gene NT5E (18). The immunosuppressive
function of eADO is in part mediated by binding to T cell
adenosine 2A receptors (A2ARs) (18). This rationale has led
to interest in inhibiting eADO production in tumors as a way
of improving outcomes alone or combined with PD1-PDL1
inhibition (19, 20). However, much less attention has been
given to the non-immunologic functions of eATP and eADO
in cancer development and progression. Our studies on ATP
release by osteocytic hemichannels in bone and the effects of
eATP and eADO signaling on triple-negative breast cancer led
us to investigate whether tumor cells increase eATP hydrolysis
to promote bone metastasis. We focused on estrogen receptor-
positive (ER+) breast cancer, which accounts for 77% of breast
cancer bone metastases (1), and prostate cancer, which also
primarily metastasizes to bone (2, 7).

Materials and methods

Materials

Spheroid culture plates were purchased from Corning
(Corning, NY, United States; cat. 4515). ATP was purchased
from Sigma Aldrich (St. Louis, MO, United States; cat.
A2383). ATPγS was purchased from Fisher (Hampton, NH,
United States; cat. 40-801-0). Both were dissolved in Dulbecco’s
phosphate buffered saline (Gibco cat. 14190). MRS-1220 (cat.
12-175) was purchased from Fisher and dissolved in dimethyl
sulfoxide (Fisher cat. 67-68-5). The rest of the reagents were
purchased either from Fisher or Sigma.

Cell culture, 3D culture, and
quantification

MCF-7 cells were a gift from Dr. Michael Brattain
maintained in Dulbecco’s Modification of Eagle’s Medium
(DMEM) with 10% fetal bovine serum (FBS). 22Rv1 cells were a
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gift from Dr. Tim Huang at University of Texas Health Science
Center at San Antonio and were maintained in RPMI-1640 with
10% FBS. Cells were kept in a 5% CO2 incubator.

For 3D culture, 2,000 cells per well were seeded in ultra-
low adherent U-bottom 96-well plates with drug or vehicle
in DMEM with 2.5% FBS (MCF-7) or RPMI-1640 with 2.5%
FBS (22Rv1). Photos were taken using a Keyence BZ-X710
microscope (Keyence, Osaka, Japan) using a 20X phase contrast
objective (Nikon, Tokyo, Japan). Sphere cross-sectional area
was measured using ImageJ, (21) which was used to determine
volume. Statistical comparisons were made using t-test or
two-way ANOVA with the Geisser-Greenhouse correction and
Tukey’s post-test. EC50 values were calculated in Graphpad
Prism v9 using a four-parameter logistical model.

Ribonucleic acid expression in
metastases, and comparison with
primary tumor

Microarray datasets GSE74685, GSE14020, GSE32269,
and GSE47561 were downloaded from the Gene Expression
Omnibus. GSE14020 raw fluorescence CEL files were processed
using BART (22). Datasets were chosen based on clinical
characteristics (Supplementary Table 1), using workflow as
shown in Supplementary Figure 1. Differential gene expression
analysis for Supplementary Table 2 was performed using
the limma bioinformatics package (23). We compared log2-
transformed data in metastatic locations containing at least
5 samples using one-way ANOVA and Dunnett’s multiple
comparisons test. Expression between primary and metastatic
tumors was compared using a t-test. For breast cancer, the
Robust Microchip Array (RMA) function in Bioconductor was
used to process primary and metastatic data.

Survival analysis

Distant metastasis-free survival analysis in ER+ breast
cancers was performed on microarray data using KMPlot (24,
25). We used ER+ patients because the first distant metastasis in
these patients is usually located in bone (1). Expression data was
used to predict ER status when not histologically determined.
Patients were separated into high- and low-expressing tumors
by median, as evenly as possible. Overall and disease-specific
survival were performed using data from the TCGA BRCA
(26) cohort accessed through Xena browser (27) and analyzed
through KMPlot (24). Signatures were calculated by the average
expression [log2(norm_count + 1)] of the three genes when
noted in Figures 1B, 2. Survival analysis for samples taken from
established bone metastases used GSE124647 and cohorts were
separated by median expression. Significance was determined by
p < 0.05.

Gene signature and Gleason score
correlation

Signature correlation was performed on ER+ tumors in the
TCGA BRCA cohort using a previously published gene set (26,
28). TCGA PRAD (29) data (counts) were downloaded through
Xena browser (27). DKFZ data (counts) were downloaded from
cBio Cancer Genetics Portal (30, 31). Expression signatures
were the average expression of the three genes in each sample.
Pearson method was used for correlation analysis. One-way
ANOVA with a test for linear trend was used to find increasing
averages with increasing Gleason scores and Kruskall-Wallis test
with multiple comparisons for comparing signature expression
between primary tumors with or without bone metastases and
other events. Significance was determined by p < 0.05.

Drug sensitivity determination

Drug screen was performed using PRISM technique (32)
by the Drug Repurposing Hub, as reported (33). Analyses were
performed on the 19Q3 screen. Data were analyzed on DepMap
(34) portal, which uses the Limma R statistical package (23).
Significance was determined by p < 0.0005.

Statistics

Statistical analyses were performed on Graphpad Prism
v9 unless otherwise noted. Graphs reflect mean ± SD,
except DepMap screen in which boxes represent median ± 1
interquartile range and whiskers represent 5th and 95th
percentiles. ∗p< 0.05; ∗∗p< 0.01, ∗∗∗p< 0.001, ∗∗∗∗p< 0.0001,
except for DepMap screen where p < 0.0005 is significant.

Results

ENTPD1, NT5E, and ADORA3 show
higher expression in bone metastases
than in other sites of metastasis or in
primary tumors

We previously identified ATP released by active
hemichannels as a potential inhibitor of triple-negative breast
cancer growth in bone (16, 17). Because hemichannels are rare
in most tissues but are well established in bone, we hypothesized
that downregulating one or more ATP receptors would
enable bone metastasis, and this receptor would have lower
expression levels in bone metastases compared to metastases
at other locations. We investigated this in microarray gene
expression data from patients with metastatic breast cancer
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FIGURE 1

ENTPD1, NT5E, and ADORA3 expression in primary ER+ breast cancer correlates with poor outcomes. (A) Kaplan Meier plots of distant
metastasis-free survival in ER+ breast cancer. The high-expression groups for ENTPD1 (HR = 1.66), NT5E (HR = 1.4), and ADORA3 (HR = 1.96) all
have a significantly greater chance of distant metastasis or death. Analysis was made using KMPlot (24). (B) Kaplan Meier plots of overall and
disease-specific survival of ER+ breast cancer patients in the TCGA BRCA cohort based on ENTPD1/NT5E/ADORA3 signature expression
(calculated by the average expression [log2(norm_count + 1)] of the three genes, and separated by median). In this separate cohort than (A), the
high-expression group had significantly lower overall and disease-specific survival (HR = 1.68 and 2.23, respectively). ∗p < 0.05; ∗∗p < 0.01.

(GSE14020). Surprisingly, none of the ATP receptors was
differentially expressed between bone and other metastatic
sites (Supplementary Table 2). However, ENTPD1 and NT5E,
which encode genes that degrade eATP to eADO, were more
highly expressed in bone metastases than in metastases to other
sites (Figure 3A),top. We next investigated which receptors
are activated by the excess eADO formed by eATP hydrolysis
and found increased expression of ADORA3, encoding A3R,
in bone metastases (Figure 3A),top. We also analyzed gene
expression in metastatic prostate cancer (GSE74685) and
found a similar expression pattern, with ENTPD1, NT5E,
and ADORA3 upregulation in bone metastases than in other
metastases (Figure 3A), bottom.

After determining that these three genes are more highly
expressed in bone metastases than in other metastases, we
further compared their expression between bone metastases and
primary tumors. ENTPD1, NT5E, and ADORA3 showed higher
expression in bone metastases than in primary breast cancers
(Figure 3B),top, GSE47561. Similarly, castrate-resistant bone

metastases had higher expression of these three genes than did
primary prostate cancer (Figure 3B), bottom, GSE32269. Taken
together, we demonstrated that the expression of two genes that
hydrolyze eATP to eADO and the eADO receptor ADORA3
are more highly expressed in bone metastases than in other
metastases or in primary tumors.

High expression of ENTPD1, NT5E, and
ADORA3 in primary ER+ breast cancer
is correlated with lower distant
metastasis-free survival, overall
survival, and disease-specific survival

Next, we investigated whether primary tumors with higher
expression of these genes are more likely to metastasize to
bone. Since bone is the site of first metastasis for the majority
of patients with ER+ breast cancer, (35) distant metastasis-
free survival in these patients should largely reflect bone
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FIGURE 2

ENTPD1/NT5E/ADORA3 signature is correlated with breast cancer osteotropic signature and lower survival in bone patients with established
bone metastases. (A) A previous study (28) found 25 genes to be upregulated in circulating breast cancer cells from patients with bone
metastases compared to patients with extraskeletal metastases, forming a putative bone metastasis-specific signature. We compared
ENTPD1/NT5E/ADORA3 expression signature to the 25-gene osteotropic signature in the ER+ TCGA BRCA cohort. A strong Pearson correlation
(r = 0.5303) was observed. Individually, ENTPD1, NT5E, and ADORA3 were each correlated r > 0.2. These data imply that the 3-gene signature is
not an overall metastasis marker in ER+ breast cancer and is specifically associated with bone metastasis. (B) Kaplan Meier plots displaying
overall and progression-free survival in patients with ER+ breast cancer bone metastasis. In GSE124647, gene expression was measured in bone
biopsy samples. We split this cohort into high- and low-expressing ENTPD1/NT5E/ADORA3 signature (calculated by the average expression
[log2(norm_count + 1)] of the three genes, and separated by median). In this n = 13 cohort, high 3-gene signature expression was associated
with lower overall (HR = 6.75) and progression-free (HR = 3.718) survival, further suggesting ectonucleotidase and ADORA3 expression enables
breast cancer growth in the bone microenvironment. *p < 0.05; **p < 0.01; ****p < 0.0001.

metastasis. Primary breast cancer microarray expression studies
that reported this outcome were normalized and pooled by
KMPlot (24). We found the high-expression cohort for each
of ENTPD1, NT5E, and ADORA3 had significantly lower
distant metastasis-free survival (Figure 1A). None of the other
adenosine receptors was significantly correlated with distant
metastasis in patients with ER+ breast cancer (Supplementary
Figure 2A). To further explore how gene expression in primary
tumors might be related to prognosis, we analyzed overall
and disease-specific survival among those with ER+ tumors
among the TCGA BRCA cohort. The top half of the 3-
gene expression signature (calculated by the average expression
[log2(norm_count + 1)] of the three genes, and separated
by median) fared more poorly in both outcomes, with an
especially strong relationship with disease-specific survival
(Figure 1B). Additionally, there was generally a stronger
relationship with the signature than each individual gene
(Supplementary Figure 2B). The ENTPD1/NT5E/ADORA3
expression signature was not correlated with either outcome
in ER−, HER2-enriched, or basal breast cancers, which do
not share the same metastatic behavior (Supplementary
Figure 3A), nor were signatures combining expression of the
ectonucleotidases with any of the other aADO receptors in ER+

tumors (Supplementary Figure 3B).

Because these outcomes do not measure bone metastasis
specifically, we compared the 3-gene signature to an osteotropic
breast cancer gene signature (28). To determine this signature,
targeted RNA-Seq was performed on circulating cancer cells
of patients with metastatic breast cancer. There were 25 genes
upregulated in patients with bone metastases compared to
patients with extraskeletal metastases. The expression signature
combining these 25 genes exhibited a strong correlation with
the 3-gene ENTPD1/NT5E/ADORA3 signature in ER+ breast
cancers in the TCGA BRCA cohort, and this relationship is also
observed with each of the three genes individually (Figure 2A).
Because these genes are associated with metastasis to bone, but
not to other locations, this suggests that our data are specifically
reflective of bone metastasis and not of the overall metastatic
ability or aggressiveness.

ENTPD1/NT5E/ADORA3 gene
signature in breast cancer bone
metastases can predict poor prognosis

If the higher expression of these genes facilitates breast
cancer growth in bone, then their elevated expression in
already established bone metastases may promote further tumor
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progression. We compared overall survival and progression-
free survival in ER+ breast cancer bone metastases based on
the median expression of the three-gene signature. Patients
whose tumors were above the median expression level had
a significantly lower overall survival and progression-free

survival than patients below the median expression (Figure 2B).
Notably, expression of none of these genes was individually
correlated with overall survival (Supplementary Figure 4,
top) and only ADORA3 was significantly correlated with
progression-free survival (Supplementary Figure 4, bottom).
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FIGURE 3

ENTPD1, NT5E, and ADORA3 expression are much higher in bone metastases than in other metastases or primary tumors. (A) Relative
expression of ENTPD1, NT5E, and ADORA3 in metastatic breast and prostate tumors in various organs in GEO datasets GSE14020 and
GSE74685. We found that ENTPD1, NT5E, and ADORA3 tend to be more highly expressed in breast and prostate cancer bone metastases (red)
than in metastases to other sites (black). (B) We found significantly higher expression of ENTPD1, NT5E, and ADORA3 in bone metastases (red)
than in primary breast (black, GSE47561) or prostate (black, GSE32269) cancers. One-way ANOVA with Dunnett’s post-test was used in (A) and
unpaired Student’s t-test was used in (B). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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FIGURE 4

ENTPD1/NT5E/ADORA3 expression level is higher in primary prostate tumors that metastasize to bone. Gleason scores reflect the
undifferentiation of prostate tumors. Tumors are given two scores that are often added together such as in TCGA PRAD dataset. Tumors with
higher scores are more likely to metastasize to bone and other poor outcomes (36). (A) An increasing Gleason score is associated with higher
ENTPD1/NT5E/ADORA3 expression signature in the DKFZ but not the TCGA PRAD cohort. (B) 3-gene expression signature is higher in tumors
that form bone metastases, than in tumors that do not progress or cause other events. (A) One-way ANOVA with test for trend, (B)
Kruskal–Wallis test with multiple comparisons. ∗p < 0.05.
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This analysis provides further support for the hypothesis that
the eATP to eADO hydrolysis might be directly linked to the
process of breast cancer bone metastases and overall survival.

Higher expression of
ENTPD1/NT5E/ADORA3 gene
signature in primary prostate cancer is
associated with bone metastasis, but
not other progression

We first compared their expression levels across Gleason
scores, a measure of tumoral undifferentiation where
tumors are given two scores for the dominant and non-
dominant phenotype that are often combined into one
score. Higher Gleason scores are associated with a worse
prognosis and a greater likelihood of recurrence, bone
metastasis, and mortality (36–38). There was a significant
trend of increasing signature expression with increasing
Gleason scores in the German Cancer Research Center
cohort (Deutsches Krebsforschungszentrum, DKFZ), (39)
but not TCGA PRAD cohort (Figure 4A). Thus, the
ENTPD1/NT5E/ADORA3 signature does not have a strong
relationship with undifferentiation. Notably, most patients
who present with localized disease and high Gleason scores
do not suffer from bone metastasis in the next 15 years (40).
Further, Gleason score and the National Comprehensive Cancer

Network combined clinicopathologic score are outperformed
by the FDA approved Decipher R© Genomic Classifier (41, 42).
In the TCGA PRAD cohort, bone-event-causing primary
tumors had higher 3-gene signature expression than did those
that did not progress, and those that caused other new tumor
events, which in this cohort comprise biochemical recurrence,
new primary tumor, locoregional metastasis, and distant
metastasis to other locations (Figure 4B). This suggests that the
ENTPD1/NT5E/ADORA3 expression signature is specific for
bone metastasis and not of other disease progressions.

Extracellular ATP and A3R antagonist
MRS-1220 inhibit breast and prostate
cancer cell growth in 3D culture, and
non-hydrolyzable ATP analog ATPγS
causes stronger reduction

We next used relevant in vitro models to determine whether
these data reflect a confounding variable or if higher expression
of these genes may facilitate bone metastasis. We first compared
the effects of ATP and its non-hydrolyzable analog ATPγS on
MCF-7, (43) an ER+ breast cancer cell line and 22Rv1, (44)
a prostate cancer cell line that originated from the primary
tumor of a patient with bone metastasis (45) and that generates
mixed osteoblastic and osteolytic tumors in bone (46). In 3D
culture conditions ATPγS strongly inhibited growth of MCF-7

FIGURE 5

Extracellular ATP (eATP) inhibits MCF-7 and 22Rv1 breast cancer cell growth in 3D culture and non-hydrolyzable ATP analog ATPγS causes
stronger reduction. We cultured 2000 MCF-7 (A) or 22Rv1 (B) cells in 3D culture conditions for 1 week with 1mM ATP, ATPγS or vehicle before
acquiring images using a Keyence BZ-X710 microscope and determining sphere volume. ATP significantly inhibited the sphere size compared to
vehicle, and its non-hydrolyzable analog significantly further reduced sphere size. One-way ANOVA with Tukey’s post-test was used for pairwise
comparisons. ∗p < 0.05; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001. Scale bar = 200 µm.
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cells compared to ATP, which is subject to hydrolysis by CD39
and CD73 encoded by ENTPD1 and NT5E genes, respectively.
Both conditions inhibited growth compared to PBS vehicle
control (Figure 5A). Similar results were obtained in 22Rv1
cells (Figure 5B). These data show that eATP signaling inhibits
the growth of breast and prostate cancer cells and that eATP
hydrolysis is a mechanism that averts these effects. We also
investigated how inhibition of A3R, encoded by the ADORA3
gene, affects growth in 3D culture using MRS-1220, a specific
A3R inhibitor. We found dose-dependent growth inhibition in
both MCF-7 and 22Rv1 cells in 3D culture with an EC50 of
39 nM in MCF-7 cells and 13 nM in 22Rv1 cells (Figure 6).
Together, these data demonstrate the importance of eATP
hydrolysis and the reliance on A3 signaling for ER+ breast
cancer and prostate cancer cells.

ER+ breast cancer cell lines are
uniquely sensitive to non-xanthine
adenosine receptor antagonists in the
drug repurposing Hub

The Drug Repurposing Hub measures differential sensitivity
of numerous cell lines to pharmacologic agents (33). We
analyzed non-xanthine A3 antagonists CGS-15943, SCH-58261,
and MRS-1220 because of their ability to block adenosine

receptors without phosphodiesterase inhibition (47). The results
strongly supported our hypothesis. Breast cancer cells, especially
ER+ ones, are uniquely sensitive to these three drugs at 2.5
µM (Figure 7). Furthermore, 22Rv1 cells displayed similar
sensitivity as ER+ breast cancer cells, though there were too few
prostate cancer cell lines to draw conclusions about prostatic
cell lines as a whole. It should be noted, that using this
technique, there is a limitation in the lack of connection of this
data with the metastatic potential and targeting of the cancer.
However, given the prevalence of bone metastasis in breast and
prostate cancer, coupled with our other results, we generalize
that treatment could lead to far-reaching impact. These data
suggest that A3R inhibition may be a new therapeutic avenue for
the treatment or prevention of ER+ breast and prostate cancer
bone metastases and further highlights the importance of eADO
signaling in cancer.

Discussion

Metastasis is an inefficient process, and few disseminated
cells successfully become overt metastases (48). Bone is a highly
vascularized tissue (49) easily accessible by circulating cancer
cells. An overwhelming majority of cancer deaths are caused by
metastasis (50, 51) and bone is the most common metastatic
site for ER+ breast and prostate cancers (1, 2). Understanding

FIGURE 6

Adenosine A3 receptor antagonist MRS-1220 inhibits MCF-7 and 22Rv1 cells in a dose-dependent manner. We incubated 2000 MCF-7 (A) and
22Rv1 (B) cells in 3D culture conditions for 1 week before determining sphere volume. A dose-dependent inhibition was observed in both cell
lines, with EC50 values of 39 nM (95% CI 11.27–110 nM) in MCF-7 cells and 13 nM (95% CI = 8.629–18.39 nM) in 22Rv1 cells. Scale bar = 200 µm.
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FIGURE 7

Breast cancer cell lines, especially ER+ ones, are uniquely sensitive to non-xanthine adenosine receptor antagonists in large-scale PRISM screen
performed by The Drug Repurposing Hub. In the Drug Repurposing Hub, numerous different cell lines are barcoded, pooled, and relative
barcode frequency is collected after drug treatment. Non-xanthine A3 antagonists CGS-15943, SCH-68261, and MRS-1220 each decreased
relative quantities of ER+ breast cancer cell lines relative to other cell lines. Data were analyzed on DepMap portal using the limma R statistical
package. Significant differences were considered by p < 0.0005.

the factors that prevent most breast and prostate cancer cells
from colonizing this new environment and how some cells
bypass these barriers is vital for preventing and treating bone
metastases, and also determining which tumors may be low
risk. Despite advances in bone metastasis treatment, clinical
outcomes after bone metastases remain poor (5, 7, 52, 53).
Prevention of breast cancer bone metastases by bisphosphonates
is a rare example of a drug targeting a potential metastatic site,
effectively reducing metastasis there (13).

Bisphosphonates have long been known to induce apoptosis
of osteoclasts (54). We and others have reported that
bisphosphonates also promoted osteocytes, the predominant
bone cell, to release ATP to the extracellular environment

through Cx43 hemichannels and that this decreases triple-
negative breast cancer growth in bone (15–17, 55). We further
found that eATP signaling inhibits and eADO promotes growth
and migration in these cell lines. The present study provides
new findings in several ways. We showed that expression of a
three-gene expression signature comprising ENTPD1, NT5E,
and ADORA3 in primary ER+ breast and prostate cancers
was correlated with bone metastases. The fact that these genes
were much more highly expressed in bone metastases than in
other locations or in primary tumors lends further support
for their role in metastasizing bone, a tissue rich in Cx43
hemichannels that release ATP. The growth inhibitory effect of
the non-hydrolyzable ATP analog ATPγS compared to eATP
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on 3D cultures of prostate (22Rv1) and ER+ breast (MCF-
7) directly showed the importance of these cells’ ability to
evade their environment from eATP. We also found that A3R
inhibition by MRS-1220 inhibits growth in 3D culture of
both cell lines and a wide range of ER+ breast cancer cell
lines. Altogether, our data may support a model shown in
Figure 8. Osteocytes release ATP to the bone microenvironment
that inhibits colonization of ER+ breast and prostate cancers
through the activation of one or more ATP receptors. However,
in cells that have a greater ability to hydrolyze eATP to eADO
through ENTPD1 and NT5E expression, there is less eATP-
mediated inhibition. Instead, the generated eADO activates A3
receptor, enabling bone colonization. Future studies should be
done, utilizing technology such as siRNA or CRISPR-KO/KD,
to determine the direct role of ENTPD1, NTSE, and ADORA3
in cancer cell behavior.

There is a striking difference between breast and prostate
cancer bone metastases, with tumors from breast usually
displaying an osteolytic, bone destructive phenotype, while
tumors from prostate usually adopting an osteoblastic
phenotype with increased localized bone density (56). With

our data consistent between two very different phenotypes, it
is possible that skeletal metastases from other primary tumors
share some of the same vulnerabilities and mechanisms.

Bone metastasis is a usually fatal complication that can
occur with many cancer types. Unlike other locations, there
are treatments that target bone rather than the cancer cells.
So far, prophylactic bone metastasis trials have reported
mixed results (13, 57, 58). However, these drugs may not be
targeted at the right cohort of patients. Because of the long
time span in which a metastasis can occur, many available
genomic classifiers were designed to predict recurrence (59,
60). These often have limited predictive value for other
outcomes. Our data suggest that there may be gene(s)
in bone metastasis expression shared between cancers of
multiple primary sites. Thus, the ENTPD1/NT5E/ADORA3
signaling axis has the potential to be used as a biomarker
or therapeutic target to predict, prevent, or treat bone
metastases from multiple sites. Future work should focus on
the collection and analysis of this gene signature from primary
and bone metastatic cancer sites as well asfrom a broader
set of patients.

FIGURE 8

A proposed model of the role of purinergic signaling in breast and prostate cancer bone colonization. An estimated 42 billion human osteocytes
reside in a lacuna-canalicular network with an estimated surface area of 215 m2 and an extracellular volume of 24 ml (70). Connexin 43
hemichannel activity is promoted by bisphosphonate treatment and in response to shear stress such as seen in exercise, through which ATP is
released that usually inhibits breast and prostate cancer growth in bone through ATP receptor stimulation. However, CD39 and CD73 (encoded
by ENTPD1 and NT5E) work in concert to hydrolyze the extracellular ATP in the bone microenvironment to ADO, where it is able to activate A3
receptors and promote growth. Figure was made using BioRender.
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Inhibiting antibodies against CD39 (encoded by ENTPD1)
and CD73 (encoded by NT5E) have recently been developed
and are in clinical trials in an immunotherapeutic context
(19). Adenosine receptor antagonism, especially of A2A, is also
a promising immune stimulator (61, 62). Our data suggests
that a separate mechanism inhibiting CD39 and CD73 may be
particularly effective in treating or preventing bone metastasis
if used in combination with an A3 inhibitor. These classes
of drugs may have further enhancement in combination with
bisphosphonate treatment.

Preventing bone metastasis may also reduce metastases to
other locations. In the overwhelming majority of patients with
metastatic ER+ breast cancer, the initial presentation includes
bone (35), and most patients who first present with skeletal
metastases later develop metastases at other locations (63).
Genetic evidence of bone metastases seeding other metastases
has been found for both breast (64) and prostate (65–
67) cancer. The bone microenvironment has been shown in
experimental models to enhance the plasticity of ER+ breast
cancer cells (68) and strongly increase the ability of breast
and prostate cancer cells to colonize in the lung and other
organs from leg tumors (69). Thus, the importance of studying
and preventing bone metastasis may be even higher than is
currently appreciated.

Conclusion

A 3-gene signature composed of ENTPD1, NT5E, and
ADORA3 is associated with a greater chance of bone metastasis
in ER+ breast and prostate cancers. These genes are more
highly expressed in bone metastases than in other metastases
or primary tumors. These genes encode enzymes that hydrolyze
eATP to eADO, and an eADO receptor. In 3D culture, eATP
decreased spheroid sizes of MCF-7 and 22Rv1 ER+ breast
and prostate cancer cell lines. ATPγS, which is resistant to
hydrolysis, further decreased spheroid sizes. These cell lines are
sensitive to MRS-1220, a specific A3R inhibitor. ER+ breast
cancer cell lines are sensitive to adenosine receptor inhibition.
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