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Abnormal phenotypic switch of vascular smoothmuscle cell (VSMC) is a hallmark of vascular disorders such as atherosclerosis and
restenosis. And this process has been related to remodeling of L-type calcium channel (LTCC).We attempted to investigate whether
fluvastatin has any effect on VSMC proliferation and LTCC𝛼

1C subunit (LTCC𝛼
1C) expression as well as the potential mechanisms

involved. The VSMCs proliferation was assayed by osteopontin immunofluorescent staining and [3H]-thymidine incorporation.
The cell cycle was detected by flow cytometric analysis. The activity of RhoA was determined with pull-down assay. MAPK activity
and LTCC𝛼

1C expression were assessed by western blotting. We demonstrated fluvastatin prevented the VSMCs dedifferentiating
into a proliferative phenotype and induced cell cycle arrest in the G0/G1 phase in response to PDGF-BB stimulation. Fluvastatin
dose-dependently reversed the downregulation of LTCC𝛼

1C expression induced by PDGF-BB. Inhibition of ROCK, ERK, or p38
MAPK activation largely enhanced the upregulation effect of fluvastatin (𝑃 < 0.01). However, blockade of JNK pathway had no
effect on LTCC𝛼

1C expression. We concluded LTCC𝛼
1C was a VSMC contractile phenotype marker gene. Fluvastatin upregulated

LTCC𝛼
1C expression, at least in part, by inhibiting ROCK, ERK1/2, and p38 MAPK activation. Fluvastatin may be a potential

candidate for preventing or treating vascular diseases.

1. Introduction

Vascular smooth muscle cells (VSMCs) show the unique
ability of undergoing a well-known phenotypic switch from
differentiated, contractile cells to a proliferating phenotype,
a process essential for restenosis, atherosclerosis, and hyper-
tension. VSMCs normally exist in a quiescent, differentiated
state in the blood vessel wall expressing a unique repertoire
of contractile proteins, calcium ion channels, and signaling
molecules that are necessary for their contractile properties
[1]. Under the pathological conditions, VSMCs lose the
contractile phenotype, which is associated with the silencing
of contractile marker gene expression and the upregulation
of genes that facilitates other cellular functions, such as
proliferation and migration [2].

L-type calcium channel (LTCC) serves as a critical
pathway gating the influx of Ca2+ into the cytoplasm from
the extracellular space. LTCC are heteroligomeric complexes
consisting of 5 subunits (𝛼

1
, 𝛼
2
, 𝛽, 𝛾, and 𝛿). The LTCC 𝛼

1C
(LTCC𝛼

1C) subunit functions as a voltage sensor, drug recep-
tor, and Ca2+-selective pore. An increase in [Ca2+]i initiates
VSMCs contraction, which is a key process of excitation-
contraction coupling [3]. Convincing data suggests that cell
proliferation abolishes the expression of LTCC and reex-
pression of LTCC𝛼

1C parallels the reappearance of contrac-
tile phenotype marker [4–6]. Substantial evidence shows
that platelet derived growth factor (PDGF) induces VSMCs
proliferation through the mitogen-activated protein kinase
(MAPK) and the Rho associated protein kinase (ROCK)
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pathways [7]. However, there is a paucity of information
available on the specific signal pathway involved in the
PDGF-mediated regulation of LTCC𝛼

1C expression.
It is well known that statins, HMG-CoA (3-hydroxy-

3-methyl-glutaryl coenzyme A) reductase inhibitors, exert
pleiotropic properties. And they can inhibit VSMCs prolif-
eration [8]. Wagner et al. reported lovastatin could induce
VSMC differentiation and prevented the downregulation of
contractile protein expression [9]. And our previous studies
indicated fluvastatin regressed resistant vessel remodeling,
ameliorated vasodilatation function in rats [10], and inhibited
VSMCs migration [11]. However, the direct evidence regard-
ing the effects of fluvastatin on the expression of LTCC𝛼

1C in
VSMCs and the exactmechanism involved is still unavailable.
Therefore, we investigate the effect of fluvastatin on LTCC𝛼

1C
expression in response to PDGF and further explore the
potential underlying mechanisms.

2. Materials and Methods

2.1. Cell Culture and Treatment. VSMCs were isolated from
the thoracic aortas of spontaneously hypertensive rats by the
modified explant technique of Champbell in our laboratory
as described previously [12–14]. And the experimental proce-
dures were approved by the Animal Care andUse Committee
of Fujian Medical University. Briefly, cells were grown in
DMEM (Dulbecco’s modified Eagle medium). VSMCs were
identified by immunostaining procedures using anti-smooth
muscle 𝛼-actin antibody. And the third passage cells were
used for experiments. When cells reached 80%–90% con-
fluence, they were put to serum-free starvation for 24 h to
synchronize the cell cycle. To study the time-response of Flu
on proliferation and LTCC𝛼

1C expression, quiescent VSMCs
were incubated with 10 𝜇g/L PDGF-BB, in the absence or
in the presence of 10−5M fluvastatin. Then VSMCs were
collected every 4 h till 24 h. To investigate the dose response
of Flu on cell proliferation and LTCC𝛼

1C expression, VSMCs
were preincubated with Flu (gift from Novartis Pharma AG,
Switzerland) at the graded concentrations (10−4M∼10−8M)
for 0.5 h before the addition of PDGF and incubated for 24 h.
To determine the role ofMAPK pathways in PDGF-mediated
effects on LTCC𝛼

1C expression, confluent quiescent VSMCs
were pretreated with the specific ERK1/2 inhibitor (PD98059,
20𝜇mol/L), p38 MAPK inhibitor (SB203580, 10 𝜇mol/L),
JNK inhibitor (SP600125, 50𝜇mol/L), or ROCK-I/II inhibitor
(Y27632, 10 𝜇mol/L) for 1 h, and/or Flu (10−5M) for 0.5 h
before the addition of PDGF and incubated for 24 h. To test
whether Flu affected theMAPK activity in response to PDGF,
VSMCswere culturedwith or without fluvastatin (10−5M) for
24 h and then treated with PDGF (10 𝜇g/L) for 5, 15, 30, and
60min.

2.2. Immunofluorescent Staining for Osteopontin and RhoA
Expression as well as [3H]-thymidine(TdR) Incorporation Anal-
ysis for Proliferation in VSMCs. Considering osteopontin was
a biomarker of proliferation, osteopontin in VSMCs (1 : 200,
Abcam) was detected with immunofluorescent staining. Mean-
while, for localization of RhoA (ras homolog family mem-
ber A) expression, immunofluorescence for the anti-RhoA

(1 : 100; Abcam) was performed in VSMCs. Additionally, cell
proliferation was evaluated by [3H]-thymidine incorpora-
tion to determine DNA synthesis. 1 𝜇Ci/ml [3H]-thymidine
(Amersham) was added to each well. Incorporated radioac-
tivity was measured using a Betaplate scintillation counter.

2.3. Flow Cytometry Analysis of Cell Cycle. Cells density was
adjusted to 1.0 × 106 cells/cm3 and preincubated with flu-
vastatin (10−5M) for 0.5 h before the addition of PDGF-BB
(10 𝜇g/L) and incubated for 24 h. Cells incubated with PDGF-
BB alone served as control. Then the cells were harvested
and fixed with 70% ethanol and incubated with RNase A
(20mg/L) and propidium iodide (50mg/L) for 1 h in the dark.
The stained cells were determined using a flow cytometer in
combination with Flow Jo software.

2.4. Western Blotting Analysis for the Activity of MAPK and
LTCC𝛼

1C Protein Expression. VSMCs were lysed in RIPA
buffer (50mM Tris-Cl, pH 8.0, 150mM NaCl, 1% Non-
idet P-40, 0.5% sodium deoxycholate, 0.1% SDS, 100 𝜇g/mL
phenylmethyl-sulfonyl fluoride, and 2 𝜇g/mL aprotinin). The
suspension was incubated on ice and then centrifuged
(14 000 g, 10 minutes, 4∘C). Protein concentrations were
measured by Bradford assay with bovine serum albumin as
a standard. 60 𝜇g protein supernatants were used for elec-
trophoresis. Primary antibodies were used at the indicated
dilutions as follows: LTCC𝛼

1C, 1 : 200 (Alomone); 𝛽-actin,
1 : 1000; anti-p-p38 MAPK, 1 : 1000; anti-total-p38 MAPK,
1 : 1000; anti-p-JNK, 1 : 1000; anti-total-JNK 1 : 1000; anti-p-
ERK1/2 (1 : 1000); and anti-total-ERK1/2 (1 : 1000); all were
from Cell Signalling Technology (Danvers, MA). The inten-
sity of the bands was quantified by densitometry. Blots were
representative of at least three experiments.

2.5. RhoA Pull-Down Assay. Active RhoA was isolated using
the Rho activity binding domain of rhotekin as described by
Ren and Schwartz [15]. Briefly, cells were preincubated with
fluvastatin (10−5M) for 0.5 h before the addition of PDGF-BB
(10 𝜇g/L) and treated for 24 h.Then those cells were lysedwith
buffers and incubated with 40 𝜇g of GST-RBD (Cytoskeleton,
Acoma Street, Denver, USA) for 1 hour. After binding, the
samples were washed with lysis buffer three times. Pulled-
down proteins that are activated Rho (GTP-bound Rho) were
fractionated on 12% SDS-PAGE and immunoblotted with
polyclonal Ab against RhoA (Santa Cruz Biotechnology, CA,
USA). The total cell lysates were also blotted with Ab for
RhoA as a loading control. The level of activated RhoA was
determined after normalization with the total RhoA present
in the same cell lysates.

2.6. Statistical Analysis. All data was expressed as the mean
± SEM unless otherwise indicated. Group comparisons were
performed with Student’s 𝑡-test (2-sample test) or one-way
analysis of variance using SPSS 13.0. All reported probability
values were 2-tailed, and a 𝑃 value of 0.05 was considered as
statistical significance.
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Figure 1: Effects of Flu onVSMCs proliferation analyzed by immunofluorescent staining and [3H]-thymidine uptake. Primary cell culture (a);
expression of 𝛼-smooth muscle-actin in VSMCs as depicted by immunofluorescent staining (b). Enhanced osteopontin expression, nuclear
division (arrow), and increased cell density were noted in VSMCs treated with PDGF (c). Reduced osteopontin fluorescence, spindle-shape
appearance was observed in VSMCs by coincubation of fluvastatin and PDGF (d). Flu inhibited [3H]-thymidine incorporation in a time- and
concentration-dependent manner (e, f). Results represented as mean ± SEM of 3 independent experiments in triplicate. ∗𝑃 < 0.05 versus
blank control and #

𝑃 < 0.05 versus cells incubation with PDGF. Flu: fluvastatin; PDGF: platelet derived growth factor; and M: mol/L.

3. Results

3.1. Fluvastatin Inhibited the Phenotype Switching and Prolif-
eration of VSMC Elicited by PDGF. VSMCs were adherently
cultured using Petri dishes (Figure 1(a)). As depicted by
immunofluorescent staining, 𝛼-smooth muscle-actin was
positive, suggesting those cells were smooth muscle cells

(Figure 1(b)). Alternatively, the fluorescence intensity of
osteopontin (proliferate phenotype marker) was markedly
enhanced in VSMCs treated with PDGF for 24 hs (Fig-
ure 1(c)), while it was attenuated by being cocultured
with PDGF and 10−5M Flu (Figure 1(d)). Strikingly, VSMCs
exposed to PDGF exhibited mostly flattened, fibroblastic
appearance, nuclear division, and increased cell density.
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Figure 2: Fluvastatin inhibits cell cycle progression as detected by flow cytometry. VSMCs were incubated for 24 hrs with vehicle (a), PDGF
(b), or Flu and PDGF (c). Bar graph illustrating the percentage of cells in G0/G1, S, and G2/M phase by the indicated medication (d). Results
represented as mean ± SEM of 3 independent experiments in triplicate. ∗𝑃 < 0.05 versus blank control. #𝑃 < 0.05 versus PDGF stimulated
cells. Flu: fluvastatin; PDGF: platelet derived growth factor.

However, VSMCs cotreated with fluvastatin and PDGF were
characterized by spindle-shape morphology and by reduced
cell numbers.

Cell proliferation was further confirmed by [3H]-thymi-
dine DNA incorporation. PDGF caused time-dependently
a substantial increase in [3H]-thymidine incorporation in
VSMCs, which reached the maximum at the time point of
24 h. It was increased by 6.8-fold compared to blank controls
(𝑃 < 0.05, Figure 1(e)). And this effect was prevented by
coadministration of 10−5MFlu and PDGF. Conversely, [3H]-
thymidine uptake changed insignificantly by fluvastatin treat-
ment, as compared to blank controls.

Additionally, in the presence of PDGF, Flu resulted in
a dose-dependent inhibition of VSMC proliferation at the
graded concentrations from 10−5M to 10−8M (Figure 1(f)).
The lowest [3H]-thymidine incorporation was (3.9 ± 0.5) ×
103 counts⋅min−1 when Flu concentration was 10−5M. And in
the absence of PDGF, there were no significant changes in

[3H]-thymidine incorporation even when Flu was adminis-
trated at the concentration of 10−5M. VSMCs apoptosis was
observed when the concentration of Flu ranged from 10−4M
to 10−2M (data not shown).

3.2. Fluvastatin InducedCell Cycle Arrest inVSMCs Stimulated
by PDGF. The proportion of VSMCs in the G0/G1 phase was
decreasedwhen incubatedwith 10𝜇g/L PDGF for 24 h (33.8%
± 3.2% versus 66.7% ± 3.8% in vehicle VSMCs). Meanwhile,
the percentage of cells in the S phase was increased in the
PDGF incubation cells (49.2% ± 2.1% versus 29.6% ± 1.0%
in vehicle VSMCs). Additionally, Flu significantly reversed
the alterations of the VSMC cell cycle elicited by PDGF.
The percentage of cells in G0/G1 increased to 53.8% ± 4.2%,
while the cells in S phase decreased to 30.3% ± 2.8% when
cotreated with 10−5M Flu and 10 𝜇g/L PDGF (Figure 2). This
data indicated that Flu inhibited cell proliferation by inducing
cell cycle arrest at the G0/G1 phase.
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(b) Flu prevented the downregulation of LTCC𝛼1C expression induced by
PDGF-BB

Figure 3: Effects of Flu on the levels of LTCC𝛼
1C protein determined by western blot analysis. PDGF time-dependently inhibited LTCC𝛼

1C
expression, which could be prevented by fluvastatin. (a) Dose-effect response of PDGF stimulation on the LTCC𝛼

1C expression in VSMCs.
(b) Time-effect response of Flu on the LTCC𝛼

1C expression incubated by PDGF. 𝛽-actin served as the loading control. Data was represented
as means ± SE of 3 separate experiments conducted in triplicate. ∗𝑃 < 0.05 versus blank control and #

𝑃 < 0.05 versus cells incubation with
PDGF. LTCC𝛼

1C: L-type calcium channel 𝛼
1C subunit; Flu: fluvastatin; and PDGF: platelet derived growth factor.

3.3. PDGF Time-Dependently Inhibited LTCC𝛼
1C Expression

Which Could Be Prevented by Fluvastatin. To determine
whether the VSMC phenotype switching was associated
with the alterations in LTCC𝛼

1C expression, the protein
level of LTCC𝛼

1C was determined by western blot analysis.
PDGF suppressed the LTCC𝛼

1C protein expression time-
dependently and the peak effect occurred after PDGF stim-
ulation for 24 h (both 𝑃 < 0.01, Figure 3(a)). Exposure to
PDGF for 24 h decreased LTCC𝛼

1C protein expression by
74.7%, as compared with vehicle cells. In addition, fluvastatin
dose-dependently reversed the downregulation of LTCC𝛼

1C
expression elicited by PDGF-BB. And the most efficient Flu
concentration was at 10−5M. LTCC𝛼

1C protein expression
was increased by 2.72-fold in VSMCs cotreated with PDGF
and Flu, as compared to that in VSMCs incubated with PDGF
(Figure 3(b)).

3.4. MAPK or ROCK Inhibition Mimicked the Statin Effects
by Upregulating LTCC𝛼

1C Expression. To investigate a direct
role of MAPK and RhoA pathway in the PDGF-mediated
regulation of LTCC𝛼

1C expression, the specific pharmaco-
logic inhibitors, ERK1/2 inhibitor (PD98059, 20 𝜇mol/L),
p38 MAPK inhibitor (SB203580, 10 𝜇mol/L), JNK inhibitor
(SP600125, 50 𝜇mol/L), or Rho kinase inhibitor (Y27632,
10 𝜇mol/L), were pretreated for 1 h before PDGF administra-
tion. As shown in Figure 4, PD98059, SB203580, or Y27632
significantly attenuated but did not abolish the PDGF-
induced downregulation of LTCC𝛼

1C expression (both 𝑃 <
0.01). Meanwhile, inhibiting ERK, p38 MAPK, or ROCK
activation largely augmented the upregulation effect of flu-
vastatin (𝑃 < 0.01). However, blockade of JNK pathway
had no effect on LTCC𝛼

1C expression. Together, these results
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Figure 4: Effects of MAPK or ROCK inhibition on LTCC𝛼
1C

expression after PDGF stimulation in VSMCs. LTCC𝛼
1C protein

expression was evaluated by western blot analysis. Data was
described as means ± SEM from three experiments performed in
triplicate. ∗𝑃 < 0.05 versus blank control and #

𝑃 < 0.05 versus
PDGF stimulated cells. MAPK: mitogen activated protein kinase;
ROCK: Rho associated protein kinase; LTCC𝛼

1C: L-type calcium
channel 𝛼

1C subunit; Flu: fluvastatin; and PDGF: platelet derived
growth factor.

indicated that the RhoA, ERK1/2, and p38 MAPK pathway
was involved in the regulation of LTCC𝛼

1C by fluvastatin in
VSMCs stimulated by PDGF.

3.5. Effect of Fluvastatin on PDGF-Induced Activation of MAPK.
VSMCs are known to acquire proliferative characteristics
through the MAPK pathway, of which extracellular signal
regulated kinase (ERK) 1/2, p38 MAP kinase, and c-Jun N-
terminal kinase (JNK) are key components that play critical
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Figure 5: Effect of Flu on PDGF-induced phosphorylation of ERK1/2, p38 MAPK, and JNK. Phosphorylation of ERK1/2, p38 MAPK, and
JNK was detected by western blotting using specific antibodies. Total ERK1/2, p38 MAPK, and JNK proteins were used as internal controls.
Quantification of band intensities from three independent experiments was determined by densitometry. Data was described as means ±
SEM from three experiments performed in triplicate. ∗𝑃 < 0.05 versus blank control and #

𝑃 < 0.05 versus cells incubation with PDGF. Flu:
fluvastatin; PDGF: platelet derived growth factor. ERK1/2: extracellular signal regulated kinase; MAPK:mitogen activated protein kinase; and
JNK: c-Jun N-terminal kinase.

roles in the VSMCs proliferation and cell cycle progression.
For this purpose, we testedwhether Flu affected the activity of
ERK1/2, p38 MAPK, and JNK in response to PDGF. VSMCs
were cultured with or without fluvastatin (10−5M) for 24 h
and then treated with PDGF (10𝜇g/L) for 5, 15, 30, and
60min. Upon PDGF-BB stimulation for 5–60min, ERK1/2,
p38MAPK, and JNK activationwas dramatically increased in
VSMCs, and cotreatment with PDGF and 10−5M Flu signifi-
cantly inhibited ERK1/2 and p38 MAPK activation in a time-
dependent manner (Figures 5(a)-5(b)). However, activation
of JNK was not affected by Flu in PDGF-stimulated VSMCs
(Figure 5(c)). Additionally, the total ERK1/2, p38MAPK, and
JNK levels were not altered by Flu. Collectively, these data

indicated that Flu could suppress the phosphorylation of
ERK1/2 and p38 MAPK elicited by PDGF.

3.6. Regulation of Membrane Localization and Activation of
RhoA by Fluvastatin. We next evaluated whether Flu could
inhibit the activation of the small G protein Rho caused
by PDGF. In the quiescent state, Rho binds to GDP and
resides in the cytosol. On activation, GDP-Rho is converted
to GTP-Rho and translocated to the membrane. In VSMCs
by indirect immunofluorescent staining, we observed a weak
diffuse cytoplasmic RhoA staining in unstimulated cells
(Figure 6(a)). Treatment with PDGF changed staining pat-
tern from diffuse cytosolic to membrane localized, indicating
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activation of RhoA. This change in RhoA distribution was
blocked by fluvastatin. Additionally, as indicated by pull-
down assays, GTP-bound Rho levels increased 2.37-fold after
incubation with PDGF for 24 hours, which were attenuated
by pretreatment with fluvastatin (Figure 6(b)).

4. Discussion

In the present study, we found that (1) PDGF stimulation
inhibited LTCC𝛼

1C expression inVSMCs by activatingRhoA,
ERK1/2, and p38 MAPK pathways; (2) fluvastatin promoted
a more differentiated VSMC phenotype concurrent with the
upregulation of LTCC𝛼

1C expression via inactivating RhoA,
ERK1/2, and p38 MAPK pathways; and (3) LTCC𝛼

1C was
downregulated in the proliferating smooth muscle cells. It
was a contractile phenotype marker. To the best of our
knowledge, our investigation is the first to report the direct
effect and the underlyingmechanism of fluvastatin treatment
on LTCC𝛼

1C expression in vitro. Our results indicated that
PDGF suppressed LTCC𝛼

1C expression, which was similar
to the reports that L-type Ca2+ channel was lost when
quiescent VSMCs underwent a phenotypic switch to the
proliferating/synthetic state [16, 17]. Alternatively, our results
were partly substantiated by the investigations that fluvastatin
treatment prevented left atrium LTCC𝛼

1C subunit downreg-
ulation in atrial tachycardia dogs [18]. Our present findings
seemingly contradicted our previous investigations that, in
hypertrophic pulmonary arteries induced by monocrotaline,
atorvastatin downregulated LTCC𝛼

1C expression [19]. The

possible explanation for this discrepancymight be the lacking
of self-homeostatic regulation, neurohumoral regulation, and
vascular tone in vitro.This argument was supported by those
reports that the expression of the pore-forming 𝛼

1C subunit
of the CaV1.2 channel was elevated in arteries of hypertensive
animals compared to age-matched normotensive animals
[20, 21] while, in proliferating VSMCs in vitro, the LTCC𝛼

1C
expression was downregulated [22].

The mechanistic insights into the regulating the pheno-
typic switch of VSMC have been intensely studied. Our data
reveals that fluvastatin attenuates PDGF-induced LTCC𝛼

1C
expression, at least in part, by inhibiting ERK1/2 and p38
MAPKactivation. PDGF is known to induce cell proliferation
via a pathway involving PKC and small GTPases (Rho, Rac)
[23]; ROCK acts as an upstream regulator leading to the
activation of the MAPKs family, including p38 MAPK and
ERK [24]. PDGF represses the characteristic VSMC gene
expression by activating ERK1/2 and p38 MAPK pathways in
cultured VSMCs [5, 25]. HMG CoA catalyses the conversion
of HMGCoA tomevalonate which can then be further meta-
bolized to cholesterol. However, mevalonate is also the pre-
cursor of the isoprenoids, farnesyl pyrophosphate (FPP), and
geranylgeranyl pyrophosphate (ggPP) which plays a key role
in the lipid modification of small G proteins, such as Ras and
Rho. Depletion of isoprenoids by statins results in accumu-
lation of nonfunctional Rho GTPases in the cytoplasm [26].
Statins therefore not only block cholesterol synthesis but also
may inhibit the Ras andRho signaling pathways. Considering
that MAPK was the downstream molecules of isoprenoid
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pathway, it is not surprising that fluvastatin can upregulate
LTCC𝛼

1C expression via inhibiting MAPK signal pathway.
However, it should be noted that the inactivation of Rho or
MAPK could not fully abolish the PDGF-induced downregu-
lation of LTCC𝛼

1C expression, suggesting that other signaling
pathway(s) might be involved in the regulation of LTCC𝛼

1C
by PDGF.

In conclusion, our novel findings indicated that flu-
vastatin prevented the PDGF-induced downregulation of
LTCC𝛼

1C expression through the suppression of RhoA,
ERK1/2, or p38 MAPK signaling. Our data is encouraged to
unravel why calcium channel blockers are effective in unin-
jured arteries and at the early stages of disease but subse-
quently lose efficacy as the disease progresses and VSMCs
become progressively more dedifferentiated. Furthermore,
our findings indicate that statins induce a more differentiated
VSMC phenotype paralleling the increased L-type calcium
channels expression, which provide a rationale for the syner-
gistic effects of statins and calcium channel blockers to lower
blood pressure in hypertensive patients [27, 28]. Considering
that posttranslation modifications can alter the function of
ion channel without requiring the changes in protein expres-
sion, patch-clamp experiments will be necessary to further
verify the role of fluvastatin in calcium channel proper-
ties. Additionally, further studies are needed to clarify the
involvement of Rac1 and Cdc42 in the upregulation effects of
fluvastatin on LTCC𝛼

1C expression by PDGF.
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