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INTRODUCTION
Repair and brain augmentation
approaches, such as brain-machine inter-
faces, neural stimulation and other neural
prostheses, have experienced a rapid devel-
opment during the last decade (Nicolelis
et al., 2003; Lebedev and Nicolelis, 2006).
Still, only few of these methods target the
fine microcircuitry of the brain (Jones and
Rakic, 2010; Opris et al., 2012a). Here, it
is highlighted the potential employing of
inter-laminar recording and microstim-
ulation of cortical microcircuits to build
neural prostheses for repair and augmen-
tation of cognitive function. In the future,
such microcircuit-based prostheses will
provide efficient therapies for patients
with neurological and psychiatric disor-
ders. Moreover, it is implied that neural
enhancement approaches can be applied
to inter-laminar microcircuits across the
entire cortex.

CORTICAL MICROCIRCUITS
As proposed by Mountcastle, the pri-
mate neocortical circuitry has a modular
architecture that subserves a multitude of
sensory (visual, auditory, touch), motor,
cognitive (attention, memory, decision)
and emotional functions (Mountcastle,
1957, 1997; Opris and Bruce, 2005;
Shepherd and Grillner, 2010). These
modules are composed of elemen-
tary building blocks formed by vertical
arrangements of cortical neurons, called
minicolumns (Szentágothai and Arbib,
1975; Mountcastle, 1997). Within mini-
columns, cortical neurons are aggregated
into six horizontal layers (or laminae):
three supra-granular layers (L1-L3), a
granular layer (L4) and two infra-granular
layers (L5/L6) (Figure 1A). The gran-
ular layer receives sensory input from

thalamus (Constantinople and Bruno,
2013). The supra-granular layers consist
of small pyramidal neurons that form a
complex network of intra-cortical connec-
tions, particularly the connections to the
infra-granular layers of larger pyramidal
neurons that generate most of the output
from cerebral cortex to other parts of the
brain (Buxhoeveden and Casanova, 2002).
According to this three stratum functional
module, infra-granular layers execute the
associative computations elaborated in
supra-granular layers (Buxhoeveden and
Casanova, 2002; Casanova et al., 2011).

Here, the focus is on inter-laminar
cortical microcircuits formed by inter-
connected pyramidal neurons from the
supra-granular and infra-granular layers
(Thomson and Bannister, 2003; Opris
et al., 2011, 2012a,b, 2013). These micro-
circuits receive input from neurons in layer
L4, which project to L2/3, or through
direct thalamic projections to the supra-
granular layers in the higher-order cortical
areas. Neurons in L2/3 then project top-
down to L5, where they target specific
types of pyramidal cells and inhibitory
interneurons. Some L5 neurons project
back to L2/3 neurons, forming an inter-
laminar loop (Weiler et al., 2008) or
back to L4, targeting mostly interneurons
(Thomson and Bannister, 2003). The out-
puts from cortical microcircuits, cortico-
striatal projections arise mostly from L5,
whereas cortico-thalamic projections arise
from L6.

Cortical microcircuits are strikingly
similar across the neocortex (hence the
term “canonical microcircuits”). It has
been suggested that such repeatability
in the microcircuit pattern plays a key
role in reducing the errors of encoding
(Bastos et al., 2012). Some characteristics

of microcolumns are specific to particular
cortical areas. For example, the thickness
of L4 is different across areas (DeFelipe
et al., 2012). It is most prominent in sen-
sory areas and the thinnest in the motor
cortex. There are also area-specific differ-
ences in the topographic connectivity of
microcircuits with their cortical and sub-
cortical projection areas (Das and Gilbert,
1995; Kritzer and Goldman-Rakic, 1995;
Opris et al., 2013).

INTER-AREA CONNECTIVITY
Cortical microcircuits are connected into
a macro-network by cortico-cortical con-
nections, which link areas within the same
hemisphere, as well as between hemi-
spheres (Van Essen et al., 1982). This
super network subserves the “perception-
to-action” cycle—a group of processes that
handle environmental stimuli and con-
vert them into actions (Romo et al., 2002;
Fuster and Bressler, 2012). Microcircuits
within the same hemisphere are intercon-
nected (from low level sensory to high
level associative processes) through hori-
zontal connections in lamina 2/3, span-
ning over many cortical areas (Das and
Gilbert, 1995; Kritzer and Goldman-Rakic,
1995; Fuster and Bressler, 2012).

Inter-area connectivity of cortical
microcircuits preserves spatial topog-
raphy suggesting a column-to-column
match from one area to another (e.g.,
Figure 1B schematics of V1 projections
to prefrontal area 46 through the dor-
sal visual stream; Goldman-Rakic, 1996).
Additionally, the topography is preserved
within minicolumns owing to the inter-
laminar projections (Opris et al., 2013).
Interhemispheric connectivity is formed
by neural interconnections of lamina 3b
(Jones et al., 1979; Van Essen et al., 1982).
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FIGURE 1 | Inter-Laminar Microcircuits across the Neocortex. (A) Cortical
minicolumn with pyramidal cells labeled in dark blue for supra-granular
layers and red for infra-granular layers. Stellate cells in layer 4 are colored
in pink. The “curtain of inhibition” is depicted by interneurons, colored in
yellow. (B) Primate brain showing the cortical mantle split in cortical layers
and minicolumns. Minicolumn across neocortex work cooperatively to
translate perception into complex action. (C) Interlaminar recording of
pyramidal cells and MIMO stimulation model. Rasters and peri-event
histograms in blue and red depict the activity of supra-and infra-granular

layers. Cross-correlation show that inter-laminar firing increased following
the presentation of targets compared to pre-target epoch. Recording array
with the MIMO model for recording in layer 2/3 and stimulation in layer 5.
Stimulation effect compare the population tuning for MIMO stim (red) vs.
layer 5 prefrontal cortical activity (dark blue dotted line). Overall MIMO
stimulation effect (red) is significantly greater than no-stim and the chance
level (with permission from Opris et al., 2012a,b, 2013). (D) Nanoarray for
recording neural activity in cortical layers and minicolumns (with
permission from Alivisatos et al., 2013). ∗∗p < 0.001, ANOVA.

MICROCIRCUITS AND COGNITION
Recent research conducted in non-human
primates indicates that a variety of sen-
sory, motor and executive functions
emerge from the interactions between
frontal, parietal, temporal and occipi-
tal cortical microcircuits (Atencio and
Schreiner, 2010; Buffalo et al., 2011;
Takeuchi et al., 2011; Hansen et al., 2012;
Opris et al., 2012a,b, 2013; Hirabayashi
et al., 2013a,b; Mahan and Georgopoulos,
2013). Moreover, several augmentation
approaches based on microcircuits have
been implemented. These advances have
been possible owing to the development
of new multi-electrode arrays (MEA) fit-
ted for recordings from neural elements
of cortical columns (Moxon et al., 2004).
Thus, MEAs with linear or bi-linear geom-
etry have been successfully employed for
simultaneous recordings from supra- and
infragranular cortical laminae in adjacent
minicolumns, resulting in unprecedented
insights into the function of cortical
microcircuits (Mo et al., 2011; Opris et al.,
2011, 2012a,b, 2013).

A number of recent publications sug-
gest that cortical microcircuits perform
elementary computations while cognitive
functions are sub-served by a broader net-
work comprising multiple cortical areas
(Fuster and Bressler, 2012). For example,

elementary computations related to exec-
utive control are performed by microcir-
cuits in the prefrontal cortex (Opris et al.,
2012a,b), whereas microcircuits of the
temporal cortex maintain long term mem-
ory (Takeuchi et al., 2011; Hirabayashi
et al., 2013a). Prefrontal microcircuits are
in a unique and privileged position at
the top of sensory-to-motor hierarchy net-
work because they coordinate a multitude
of stimuli, perceptions, biases and actions
related to such functions as attention, deci-
sion making, and working memory. As
such, prefrontal microcicuits integrate and
synthetize signals over a broad spectrum of
perceptual stimuli and various modalities.
This integration is performed in supra-
granular layers, whereas the output of the
infra-granular layers provides selection-
related signals, which are sent back to the
infra-granular layers and the other areas
comprising the network. As a matter of
fact, signals can reverberate within inter-
laminar loops. Thus, cortical microcircuits
for long term memory in entorhinal cor-
tex and hippocampal formation employ
such reverberating signals (Takeuchi et al.,
2011) to integrate relevant information
over time (Fuster, 2001).

Our group at Wake Forest University
in collaboration with Dr. Berger’s team at
USC and Dr. Gerhard’s group at University

of Kentucky, examined the executive func-
tion of prefrontal microcircuits (Opris
et al., 2012a,b, 2013). We trained rhe-
sus monkeys to select a target (spatial
or object) for hand movement, after a
memory delay, while the neural activity
in prefrontal microcircuits was recorded
(Figure 1C). Our electrode arrays were
specifically designed to record from neu-
rons located in both supra- & infra-
granular layers of adjacent minicolumns.
We analyzed correlated firing in neu-
rons from the supra- and infra-granular
layers. Interestingly, the extent of cor-
related firing was linked to the accu-
racy of monkey performance. Correlated
firing between cell pairs within single
minicolumns was higher during correct
selections and reduced in error trials
(Opris et al., 2012a). Thus, we discov-
ered that animals make errors when their
prefrontal cortical microcircuits do not
function properly when handle task rel-
evant information. Additionally, we dis-
covered that during the presentation of
the target and during the executive selec-
tion of the correct target, assemblies
of cell firing in prefrontal layers exhib-
ited similar tuning to target locations on
behavioral trials in which this informa-
tion was important. These studies pro-
vided a direct demonstration of real-time
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inter-laminar processing of information in
prefrontal microcircuits during decision-
making (Opris and Bruce, 2005; Opris
et al., 2012a).

COGNITIVE ENHANCEMENT
APPROACHES BASED ON
MICROCIRCUITS
Recent studies have demonstrated that
cognitive enhancement can be achieved
by microstimulation of specific elements
of cortical microcircuits (Opris et al.,
2001, 2013; Hampson et al., 2012). These
enhancement methods employed a multi-
input/multi-output (MIMO) Volterra
kernel-based non-linear dynamic model,
which was applied to the spatiotemporal
patterns of neuronal firing recorded in
prefrontal cortical layers L2/3 and L5 to
convert the firing of neurons in layer 2/3
into microstimulation patterns applied
to layer 5 (Berger et al., 2011; Hampson
et al., 2012). MIMO model is based on
the principle of multiplexing, where a
high rate signal is split into several low
rate signals, which are then sent to mul-
tiple recipients via multiple channels.
Using multiple channels of information
transfer MIMO model provides a more
reliable communication (Figure 1C, right
panel).

To perform cognitive augmentation,
inter-laminar recordings are analyzed via
a non-linear MIMO model, whose out-
put is then converted into patterns of
microstimulation (Berger et al., 2011).
In these studies, MIMO models used a
precise topographically matched stimula-
tion by extracting the patterns of firing
that relate to the successful behavioral per-
formance. This allowed the substitution
of task-related laminar L5 neuron firing
patterns with electrical stimulation in the
same recording regions during colum-
nar transmission from lamina L2/3 at the
time of target selection. Such stimulation
improved normal task performance, but
more importantly, recovered performance
after being impaired by a pharmaco-
logical disruption of decision making
(Hampson et al., 2012). Moreover, the
fact that stimulation-induced spatial pref-
erence (in percent correct performance)
on spatial trials that was similar to neu-
ral tuning indicated that inter-laminar
prefrontal microcircuits played causal
roles to the executive function (Opris

et al., 2005, 2013). These findings pro-
vided the first successful demonstration
of a microcircuit-based neuroprosthesis
designed specifically to restore or repair
disrupted cognitive function.

NEUROLOGICAL DISEASES AND
MICROCIRCUITS
Disruption of inter-laminar microcir-
cuits within cortical minicolums is a
signature of a broad spectrum of neu-
rological and psychiatric disorders, such
as autism (Casanova, 2013), schizophrenia
(Di Rosa et al., 2009), Alzheimer’s dis-
ease (Chance et al., 2011) drug addiction
(Opris et al., 2012a) and other disor-
ders. The use of both invasive MIMO
stimulation (Hampson et al., 2012)
and non-invasive transcranial magnr-
tic stimulation (TMS; Sokhadze et al.,
2012) are valuable potential options
to repair or treat such dysfunctions.
The multitude of deficits in a cortical
microcircuit involve the micro-anatomic
disconnections between layers or within
minicolumns (autism, schizophrenia,
Alzheimer), the intra- and inter-laminar
neuromodulation (drug addiction, aging),
the lack or excess of inhibition (ADHD,
depression), etc.

Microcircuit-based neuroprostheses,
such as MIMO based memory implants
(Berger et al., 2011), and decision chips
(Hampson et al., 2012) hold the promise
to provide treatment for neurological con-
ditions that result from compromised
microcircuits. Targeting cortical micro-
circuitry may be key to the development
of next-generation enhancement methods
and medical treatments.

FUTURE DIRECTIONS FOR
MICROCIRCUIT-BASED APPROACHES
An emerging approach with broad
implications for basic and clinical
neuroscience is based on optogenetic
stimulation (Gradinaru et al., 2007; Tye
and Deisseroth, 2012). Recent develop-
ments in optogenetics based on optical
manipulation of activity in neural circuits
with light-sensitive rhodopsins, such as
the Chlamydomonas channelrhodopsin-2
(ChR2) are now capable to stimu-
late the inter-laminar microcircuits at
millisecond-scale, with cell type-specific
effects of optical perturbations in non-
human primates (Diester et al., 2011; Han,

2012), opening up new possibilities for
repair and augmentation.

Recent developments in nanotechno-
logical tools and in the design and syn-
thesis of nano-materials have generated
optical, electrical, and chemical methods
that can readily be adapted for use in
neuroscience. Nanotechnology was instru-
mental to nanofabricated planar electrode
array (Figure 1D) for high-density neu-
ronal voltage recording (Du et al., 2011;
Suyatin et al., 2013). Leveraging micro-
and nanofabrication technology raises the
prospect for creating vastly greater num-
bers of electrodes and smaller, less invasive
implantable devices. A promising cate-
gory for brain microcircuits is the pla-
nar electrode array (Viventi et al., 2011;
Alivisatos et al., 2013), which is pat-
terned on a crystalline, ceramic, or poly-
mer support structure (Figure 1D). The
recording of neuronal activity with three-
dimensional (3D) microelectrode arrays
(Zorzos et al., 2012) represents a major
advance in brain activity mapping tech-
niques, by providing a tool to probe how
intra and inter-laminar/regional neural
circuits cooperate to process information.
Building prosthetic minicolumns as basic
modules to repair the damaged cortical tis-
sue will become a valuable approach in the
cognitive neuroprosthetics.

To trace the flow of neural signals in
the cortical microcircuits across neocor-
tex, or in the large scale brain networks,
analytical tools based on dynamic Bayesian
networks and Granger causality are avail-
able (Granger, 1969; Smith et al., 2006).
These methods allow to identify putative
causal interactions and population codes
within the neural circuits involved in per-
ception and behavior (Yu et al., 2004; Beck
et al., 2008).

Microcircuit-based augmentation
could be implemented in several corti-
cal areas, where different functions could
be enhanced. Thus, the prefrontal cor-
tical microcircuits involved in attention,
working memory, executive decisions
and conflict monitoring may be aug-
mented for autism (Casanova et al., 2010),
schizophrenia (Chance et al., 2011), drug
addiction (Opris et al., 2012a), Alzheimer’s
or attention deficit disorders.

In conclusion, a better understanding
of the function of inter-laminar microcir-
cuits across the neocortex is needed for the
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development of treatments for neurolog-
ical disorders, as well as for the develop-
ment of methods of brain augmentation.
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