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Abstract: Although crashes involving hazardous materials (HAZMAT) are rare events compared with
other types of traffic crashes, they often cause tremendous loss of life and property, as well as severe
hazards to the environment and public safety. Using five-year (2013–2017) crash data (N = 1610)
from the Highway Safety Information System database, a two-step machine learning-based approach
was proposed to investigate and quantify the statistical relationship between three HAZMAT crash
severity outcomes (fatal and severe injury, injury, and no injury) and contributing factors, includ-
ing the driver, road, vehicle, crash, and environmental characteristics. Random forest ranked the
importance of risk factors, and then Bayesian networks were developed to provide probabilistic
inference. The results show that fatal and severe HAZMAT crashes are closely associated with
younger drivers (age less than 25), driver fatigue, violation, distraction, special roadway locations
(such as intersections, ramps, and bridges), higher speed limits (over 66 mph), midnight and early
morning (12:00–5:59 a.m.), head-on crashes, more than four vehicles, fire/explosion/spill, poor light-
ing conditions, and adverse weather conditions. The overall prediction accuracy of 85.8% suggests
the effectiveness of the proposed method. This study extends machine learning applications in a
HAZMAT crash analysis, which would help develop targeted countermeasures and strategies to
improve HAZMAT road transportation safety.

Keywords: hazardous material road transportation; crash severity; random forest; Bayesian network

1. Introduction

Because of the fast and widespread expansion of urbanization and industrialization,
the demand for hazardous materials (HAZMAT) has increased substantially in recent years.
According to the 2017 commodity flow survey [1], over 2.9 billion tons of HAZMAT were
moved in the U.S. by all transportation modes in 2017. As one of the most prevalent
transportation modes for HAZMAT movement, highway transportation accounted for over
60% of all HAZMAT shipments in the U.S. Although crashes involving HAZMAT are rare
events and the number of HAZMAT crashes is relatively small when compared with gen-
eral traffic crashes, these types of crashes often result in more severe injuries. In 2019, a total
of 5005 large trucks were involved in fatal crashes in the United States, of which, 120 (2.4%)
were carrying HAZMAT [2]. A ten-year (2012–2021) summary of HAZMAT-related inci-
dents compiled by the U.S. Department of Transportation shows that HAZMAT highway
transportation accounted for 100% of the fatalities and 74.02% of injuries [3].

Due to the special physical and chemical properties of HAZMAT, especially the
potential risk of explosion, fire, and spillage during an accident, catastrophic crashes
involving HAZMAT road transportation are often referred to as low probability with high
consequence [4]. These crashes usually lead to tremendous loss of life and property, and

Int. J. Environ. Res. Public Health 2022, 19, 4002. https://doi.org/10.3390/ijerph19074002 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph19074002
https://doi.org/10.3390/ijerph19074002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://doi.org/10.3390/ijerph19074002
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph19074002?type=check_update&version=1


Int. J. Environ. Res. Public Health 2022, 19, 4002 2 of 22

the hazards to the environment and public safety should not be neglected. For example, the
overall economic effects of class 3 (flammable and combustible liquids) HAZMAT incidents
in 1996 were about USD 459 million, including injuries and fatalities, cleanup costs, property
damage, evacuation, product loss, traffic delays, and environmental damage [5]. Since
HAZMAT road transportation crashes pose a significant threat to the environment, public
health and safety, and community well-being, it is important to identify why, where, and
how HAZMAT crashes occur.

Researchers often rely on crash data and statistical regression models to identify possi-
ble risk factors associated with crash frequency and severity. With the rapid development
and widespread application of data mining and machine learning techniques in trans-
portation safety research, more researchers are focusing on data-driven safety analyses
to discover the underlying patterns and heterogeneous relationships in the safety data.
Concentrated study areas include real-time crash prediction, crash analysis, crash severity
analysis, and others. Machine learning approaches (such as neural networks, decision
trees, support vector machines, etc.) have been proven to have comparable or superior
performance compared with traditional statistical models in crash data analyses [6]. How-
ever, a limited number of studies have applied these methods in HAZMAT crash severity
prediction. The present study aims to contribute to safer HAZMAT road transportation by
focusing on the following objectives:

1. Analyze the crash characteristics and identify the contributing factors that influence
HAZMAT road transportation crashes.

2. Quantify the associations between risk factors and different HAZMAT crash
severity outcomes.

3. Investigate the role of machine learning approaches in the application of HAZMAT
crash severity prediction.

Using five-year (2013–2017) HAZMAT crash data, a two-step machine learning-based
method was proposed by combing random forest and a Bayesian network to identify the
risk factors and show how these factors affect HAZMAT crash severity. In this study,
three injury severity levels (fatal and severe injury, injury, and no injury) were entered as
response variables, while driver, road, vehicle, crash, and environmental characteristics
were analyzed as the explanatory variables. The proposed approach integrates the variable
importance ranking of random forest and the crash severity prediction and interpretability
of Bayesian network. Various performance measurements (including accuracy, precision,
sensitivity, specificity, F-score, and receiver operating characteristic curves) were utilized
for model validation and prediction evaluation. This study will assist transportation
management agencies and policymakers in developing targeted countermeasures and
strategies to reduce HAZMAT crashes and improve HAZMAT road transportation safety.

2. Literature Review

Many studies in the past have conducted HAZMAT crash analyses. Statistical analy-
ses and regression models are the most commonly used approaches to identify the crash
characteristics. These methods include crash survey and descriptive analyses [7–9], Poisson
regression models [10], fixed and random parameters ordered probit models [11,12], ordered
logistic models [13,14], and mixed logit models [15]. For example, Oggero et al. [7] investi-
gated 1932 HAZMAT transportation crashes by road and rail from the beginning of the
20th century to 2004. The results showed that the most frequent crash types were releases,
followed by fires, explosions, and gas clouds. Shen et al. [9] collected detailed descriptions
of 708 HAZMAT road transportation crashes in China from 2004 to 2011. The findings indi-
cated that freeways, early morning (4 a.m. to 6 a.m.) and midday hours (10 a.m. to 12 p.m.),
human-related errors, and vehicle-related defects were the contributing factors of these
crashes. Some studies also utilized discrete choice models to further quantify the relation-
ship between risk factors and HAZMAT crash severity. Uddin and Huynh [10] analyzed
1173 HAZMAT crashes in California from 2005 to 2011. Fixed and random parameters
ordered probit models were developed to investigate the risk factors that affect crash injury
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severity. The results showed that male occupants, truck drivers, crashes in rural areas,
dark–unlighted conditions, dark–lighted conditions, and weekdays were associated with a
higher likelihood of major injuries. Xing et al. [12] conducted a comprehensive analysis of
1721 HAZMAT crashes in China between 2014 and 2017. By considering the unobserved
heterogeneity in the crash data, a random-parameters ordered probit model was developed
to investigate the impacts of contributing factors on the HAZMAT crash severity. The
following variables were found to be associated with increased injury severity: type of
HAZMAT (such as compressed gas, explosive, and poison), driver behavior (including
misoperations, fatigue, and speeding), roadway features (tunnel, slope, county road, and
dry road surface condition), winter, dark lighting conditions, more than two vehicles,
rear-end crashes, and explosions.

Although conventional statistical methods have been proven effective in examin-
ing the relationships between HAZMAT crash severity and explanatory variables, they
cannot reveal the underlying patterns and interplay of various factors [16]. In recent
years, machine learning techniques, such as Bayesian networks [16–20], clustering [21,22],
support vector machines [23], decision trees [4,24], random forests [25,26], and association
mining rules [27,28] have been widely used for crash data analysis. These non-parameter
approaches do not require assumption among explanatory variables, and they have been
identified as having greater flexibility in supporting in-depth crash analysis and safety
decision-making. For example, Ma et al. [16] collected 839 HAZMAT crashes in China
from 2015 to 2016 to explore the impact of risk factors on crash occurrence. The study
found that the Bayesian network’s posterior probability can serve as an effective tool for
identifying the important factors (including HAZMAT type, crash location, driver, environ-
ment, and vehicle factors) and the combination of crash factors. Zhao et al. [18] applied
Bayesian networks to prioritize the factors contributing to HAZMAT crashes. Human
factors, the transport vehicle, and facilities, and packing and loading of the HAZMAT
were the three most influential factors in HAZMAT transportation crashes. By comparing
four statistical and machine learning methods for crash severity prediction, Iranitalab and
Khattak [22] concluded that the nearest neighbor classification has the best prediction
performance in total and more severe crashes. Hong et al. [27] applied the association
mining rules to discover the risk factors contributing to crashes involving HAZMAT ve-
hicles on expressways. The results illustrated that male drivers, single-vehicle crashes,
daytime, clear weather conditions, and mainline segments were closely related to HAZMAT
vehicle-involved crashes.

However, despite the machine learning methods mentioned above yielding relatively
good performance results on crash severity modeling, HAZMAT injury severity prediction
was not a key focus. Some of the approaches may not explain the relationship between con-
tributing factors and reflect the underlying crash mechanism. The application of Bayesian
networks in causal analysis can provide probability inference for crash severity under
multiple factors. This study proposed a two-step machine learning-based approach for
HAZMAT crash severity analysis and prediction. Random forest was used as a preliminary
tool to rank the importance of influencing factors on HAZMAT crash severity. Bayesian
networks were used to further identify the relationship between risk factors and HAZMAT
crash severity, predict the probability distribution of severity outcomes, and provide a
decision-making basis for HAZMAT crash risk reduction.

3. Materials and Methods
3.1. Crash Data

Five-year crash data (2013–2017) involving HAZMAT road transportation in North
Carolina, Ohio, and Washington were retrieved from the Highway Safety Information
System (HSIS). HSIS is a roadway-based system that contains highway patrol-reported
data on a wide range of crashes and other relevant information, including occupants,
vehicles, roadways, and traffic volume (annual average daily traffic, AADT) involved in
the crash. Data from the various datasets (crash data, roadway data, and vehicle data) were
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matched and merged with the unique crash identification number, county route number,
and milepost information.

The crash severity was recorded using a KABCO injury scale in the HSIS database:

• Fatality (K);
• Severe or incapacitating injury (A);
• Evident or non-incapacitating injury (B);
• Possible or compliant injury (C);
• Property damage only (O).

In this study, severity levels K and A were combined as fatal and severe crashes,
severity levels B and C were grouped as injury crashes. These data combinations en-
sured that each injury severity level had a sufficient number of observations. Researchers
frequently use similar strategies to ensure sufficient sample sizes for data analyses and
model estimations [11,15,21,29,30].

Based on the availability and suitability to explain the injury severity of HAZMAT
road transportation crashes, a total of 25 potential influencing factors were selected as
explanatory variables. These factors were further classified into five categories: driver, road,
vehicle, crash, and environmental characteristics. The crash records with missing values
for the investigated factors were removed from the final dataset for model development.

A total number of 1610 HAZMAT crashes were included in the final dataset. Based
on the previously defined three injury severity levels in this study, there were 106 (6.6%)
fatal and severe injury crashes, 405 (25.2%) injury crashes, and 1099 (68.2%) no injury
crashes. Table 1 provides an overview of the descriptive statistics of the HAZMAT road
transportation crashes.

Table 1. Characteristics of HAZMAT road transportation crashes by severity.

Variables Number of
Crashes

Fatal and
Severe

Injury Crashes

Injury
Crashes

No Injury
Crashes

Percentage of
Total

Driver characteristics
Driver age

Less than 25 49 10.20% 30.61% 59.19% 100%
25–35 262 8.02% 21.76% 70.22% 100%
36–45 415 5.78% 27.23% 66.99% 100%
46–60 682 5.87% 25.22% 68.91% 100%

over 60 202 7.92% 23.76% 68.32% 100%
Driver gender

Male 1546 6.79% 24.97% 68.24% 100%
Female 64 1.56% 29.69% 68.75% 100%

Distraction
Yes 62 1.61% 43.55% 54.84% 100%
No 1548 6.78% 24.42% 68.80% 100%

Fatigue
Yes 10 10.00% 40.00% 50.00% 100%
No 1600 6.56% 25.06% 68.38% 100%

Improper operation
Yes 379 5.01% 24.27% 70.72% 100%
No 1231 7.07% 25.43% 67.50% 100%

Speeding
Yes 140 6.43% 35.71% 57.86% 100%
No 1470 6.60% 24.15% 69.25% 100%

Violation
Yes 77 5.19% 42.86% 51.95% 100%
No 1533 6.65% 24.27% 69.08% 100%
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Table 1. Cont.

Variables Number of
Crashes

Fatal and
Severe

Injury Crashes

Injury
Crashes

No Injury
Crashes

Percentage of
Total

Road characteristics
AADT (vehicle/day)

Less than or equal to 15,000 588 10.03% 28.57% 61.40% 100%
15,001–50,000 587 5.28% 23.68% 71.04% 100%

50,001–100,000 211 3.79% 25.12% 71.09% 100%
Over 100,000 224 3.57% 20.09% 76.34% 100%
Alignment

Straight-level 1148 5.92% 24.13% 69.95% 100%
Straight-grade 240 7.50% 25.83% 66.67% 100%

Curve-level 94 10.64% 29.79% 59.57% 100%
Curve-grade 128 7.81% 29.69% 62.50% 100%

Crash location
Highway Section 1103 6.71% 23.84% 69.45% 100%

Intersection 342 6.43% 30.70% 62.87% 100%
Ramp 43 4.65% 16.28% 79.07% 100%
Bridge 41 9.76% 31.71% 58.53% 100%
Other 81 4.94% 20.99% 74.07% 100%

Divided road
Yes 884 5.66% 24.10% 70.24% 100%
No 726 7.71% 26.45% 65.84% 100%

Number of lanes
Less than or equal to 2 478 10.88% 30.13% 58.99% 100%
Less than or equal to 4 717 4.88% 24.27% 70.85% 100%

Over 4 415 4.58% 20.96% 74.46% 100%
Road surface condition

Dry 1246 7.06% 24.24% 68.70% 100%
Wet 271 4.43% 32.10% 63.47% 100%
Ice 86 6.98% 17.44% 75.58% 100%

Other 7 0.00% 14.29% 85.71% 100%
Speed limit (mph)

Less than 30 76 0.00% 11.84% 88.16% 100%
30–45 438 3.88% 22.83% 73.29% 100%
46–55 470 9.36% 31.91% 58.73% 100%
56–65 450 6.67% 24.67% 68.66% 100%

over 66 176 8.52% 19.89% 71.59% 100%
Road type
US route 346 7.80% 23.99% 68.21% 100%
Interstate 620 4.84% 21.94% 73.22% 100%

State route 453 7.51% 28.04% 64.45% 100%
Non-state route 191 7.85% 30.89% 61.26% 100%

Setting
Urban 784 9.18% 26.66% 64.16% 100%
Rural 826 4.12% 23.73% 72.15% 100%

Vehicle characteristics
Gross weight (lbs.)

Less than or equal to 10,000 58 3.45% 15.52% 81.03% 100%
10,001–26,000 168 4.17% 26.79% 69.04% 100%

over 26,000 1384 7.01% 25.36% 67.63% 100%
Vehicle type

Single-unit truck 389 5.14% 29.31% 65.55% 100%
Truck/trailer 199 5.53% 23.12% 71.35% 100%
Truck/tractor 24 8.33% 20.83% 70.84% 100%

Tractor/semi-trailer 758 8.71% 23.22% 68.07% 100%
Tractor/doubles 35 2.86% 25.71% 71.43% 100%

Other 205 2.93% 26.83% 70.24% 100%
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Table 1. Cont.

Variables Number of
Crashes

Fatal and
Severe

Injury Crashes

Injury
Crashes

No Injury
Crashes

Percentage of
Total

Vehicle defect
Yes 596 5.54% 21.64% 72.82% 100%
No 1014 7.20% 27.22% 65.58% 100%

Number of vehicles
1 385 5.19% 24.68% 70.13% 100%
2 1093 5.95% 23.15% 70.90% 100%
3 98 14.29% 42.86% 42.85% 100%

Greater than or equal to 4 34 20.59% 44.12% 35.29% 100%
Crash characteristics

Collision type
Head-on 31 41.94% 38.71% 19.35% 100%
Rear-end 344 5.81% 35.47% 58.72% 100%

Angle 224 9.38% 30.80% 59.82% 100%
Sideswipe 433 3.70% 16.86% 79.44% 100%

Single vehicle 385 5.19% 24.68% 70.13% 100%
Other 193 8.29% 17.62% 74.09% 100%

Crash hour
12:00–5:59 a.m.0:00–5:59 174 8.62% 31.03% 60.35% 100%

6:00–11:59 a.m. 569 7.03% 24.43% 68.54% 100%
12:00–5:59 p.m. 631 5.86% 25.20% 68.94% 100%
6:00–11:59 p.m. 236 5.93% 22.46% 71.61% 100%

Fire/explosion/spill
Yes 124 11.29% 37.90% 50.81% 100%
No 1486 6.19% 24.09% 69.72% 100%

Environmental characteristics
Lighting conditions

Daylight 1159 5.87% 24.50% 69.63% 100%
Dusk/dawn 72 12.50% 26.39% 61.11% 100%

Dark—street lights 123 4.88% 33.33% 61.79% 100%
Dark—no street lights 256 8.98% 23.83% 67.19% 100%

Weather
Clear 1125 6.67% 23.91% 69.42% 100%

Cloudy 218 6.88% 29.36% 63.76% 100%
Rain 164 1.83% 30.49% 67.68% 100%
Fog 18 16.67% 38.89% 44.44% 100%

Snow 85 11.76% 17.65% 70.59% 100%

Bold and italic texts represent the five major categories. Bold texts represent the subcategories in each major group.

3.2. Random Forests

Random forest is a machine learning method that ensembles a large number of decision
trees. It is used to solve both classification and regression problems. A bootstrap sample and
an out-of-bag (OOB) validation strategy are used to train each tree. The optimal variables
at each split are identified from a random subset of all variables. The global prediction of
random forests is based on a majority vote on the predictions of each classification tree. It
is a popular method for evaluating the significance of explanatory variables and variable
selection in recent years [20,31,32]. Compared to many other commonly used classifiers,
this method has proved to be performed very well and robust to overfitting [31]. Random
forests were applied in this study to prioritize the importance of influencing factors on
HAZMAT crash severity and reduce the redundancy of variables.

Suppose there are M input variables in the original dataset D. X = {x1, x2, · · · , xn}
is a training set and Y = {y1, y2, · · · , yn} are the responses. Bootstrapping refers to the
process of selecting a random sample of m variables repeatedly (B times) with the training
set (m < M) being replaced. The remaining out-of-bag (OOB) samples of the training set
were not used in the tree generation but to obtain an estimation of unbiased errors. Train a
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classification tree fb based on the selected random sample Xb, Yb and choose the best split
variable. The prediction error f̂ can be calculated by averaging the predictions from all the
individual trees:

f̂ =
1
B ∑B

b=1 fb(x′) (1)

Each tree classifier iterates over every unutilized feature in the set D during each
training process and generates a classification result for the target variables based on the
OOB samples through majority voting. If a single or a few variables are particularly strong
predictors for the response variables, they will be selected in many tree classifiers. The
random forests calculate the feature importance by rearranging the errors before and after
classification. The average of a variable’s overall decrease in node impurity is defined
as the mean decrease in Gini. In the random forests, it is weighted by the proportion of
samples at the node for each individual decision tree. A higher value of mean decrease in
Gini indicates higher variable importance. The Gini impurity and mean decrease in Gini
can be calculated as follows:

Gini = 1−∑C
i=1 p2

i (2)

VI(xj) =
1
B
(1−∑B

b=1 Gini(j)b) (3)

The number of classes in the target variable is represented by C, and the proportion of
this class is represented by pi, Gini(j) represents the Gini index for variable xj.

3.3. Bayesian Networks

Bayesian networks integrate principles from graph theory and Bayes’ probability the-
ory to extract correlations between independent and dependent parameters for probabilistic
inference. As a result, Bayesian networks can model intercorrelated independent param-
eters and explain the heterogeneous impacts on various HAZMAT crash injury severity
levels through variable changes. A directed acyclic graph (DAG) represents a joint proba-
bility distribution over a set of parameters in a Bayesian network structure [33]. It captures
the statistical relationships and extracts all interactions between independent and depen-
dent parameters. A set of variables V = {x1, x2, · · · , xn}, n > 1 is represented by nodes
in a DAG, with the edges representing the direct dependencies between these variables.
Bp = {p(xi |pa (xi), xi ∈ V)} is a set of probability tables. In Bayesian networks, pa(xi)
represents the set of antecedents or parents of xi, (i = 1, 2, · · · , n). The joint probability
distribution over V in Bayesian networks can be calculated as:

P(x1, x2, · · · , xn) = ∏n
i=1 p(xi |pa (xi)) (4)

Each node in the graph represents a conditional probability table with the state of the
variable. Given the states of a node’s parents, this table contains the node probabilities of
being in a specific state. Bayesian networks are usually unknown and need to be developed
via expert knowledge or a given dataset.

3.3.1. Structure Learning of Bayesian Networks

The K2 algorithm is utilized to develop the original DAG of Bayesian networks
for parameter learning. Based on a predetermined order of nodes, the K2 algorithm
heuristically searches and recovers the most likely underlying structure. This algorithm
starts with the assumption that a node does not have any parents. The addition of the
parents keeps on when it increases the likelihood of the resulting structure. This process
continues until adding of a single parent no longer increases the probability. The following
equation describes the K2 algorithm [34]:

P(G, D)= P(G)∏n
i=1 ∏qi

j=1
(ri−1)!

(Nij+ri−1)! ∏ri
k=1 Nijk! (5)
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D is a random data sample D = {d1, d2, · · · , dn}, G is the Bayesian network structure,
P(G) is the prior probability for a structure G, n is the numbers of nodes, qi is the states of
ith node’s parents, ri is the ith node’s mutual exclusive states, and Nijk denotes the ith node
is in the kth state while its parents are in the jth state, where Nij = ∑ri

k=1 Nijk.

3.3.2. Parameter Learning of Bayesian Networks

The expectation–maximization (EM) algorithm is a widely applicable method for
iteratively calculating maximum likelihood (ML) estimates. It can be used to solve various
problems with incomplete data or a small sample size. In particular, the EM algorithm
greatly simplifies the problem of fitting finite mixture models through ML. The EM algo-
rithm has many attractive features, such as numerical stability, simplicity of implementation,
and reliable global convergence [35]. Past studies [36,37] have shown its effectiveness in
Bayesian network parameter learning. In general, the EM algorithm consists of three steps:

1. Assign an initial value for the model parameter. Given the observation variable
Y = {Y1, Y2, · · · , Yn}, the hidden variable Z = {Z1, Z2, · · · , Zn}, P(Y, Z|θ) is the joint
distribution, P(Z|Y, θ) is the conditional probability distribution. θ represents the
maximum likelihood parameter, which is quantified by the log-likelihood function:

LD(θ) = log ∑Z P(Y, Z|θ) (6)

2. E-step: in the ith iteration, the value of the current model parameter becomes
θi, given the observed data Y and θi, calculate the conditional expectation of the
log-likelihood function.

Q(θ|θ i) = Eθi [logP(D|θ)|θi , Y] (7)

3. M-step: based on the joint probability distribution estimation in the E-step, find an
updating parameter θi+1 that maximizes the expected log-likelihood.

θi+1 = argmax
θ

Q(θ|θi ) (8)

Repeat steps 2 to 3 until the model coverages. Each iteration ensures that the like-
lihood will increase, and the algorithm eventually converges to a local maximum of the
likelihood function.

4. Results and Discussions
4.1. Variable Selection

Correlation analysis was conducted with Cramer’s V statistics for variables listed
in Table 1. Cramer’s V statistics measure the strength of association among categori-
cal variables, ranging from 0 to 1 [38]. A higher value indicates a stronger association.
Calculation of Cramer’s V statistics was completed in SPSS Statistics 27. The variable
correlation matrix is shown in Figure 1. Divided roadway and number of lanes were
highly associated with AADT (the correlation coefficients are 0.628 and 0.737, respectively,
p-values are less than 0.05). Number of lanes, road type, and speed were strongly associ-
ated with divided roads with Cramer’s V statistics of 0.644, 0.676, and 0.638, respectively
(p-values are less than 0.05). There was a significant association between road surface con-
ditions and weather (0.601, p-value is less than 0.05). Previous studies have also confirmed
this relationship [39,40].
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The variable importance ranking obtained by random forests is shown in Figure 2.
The collision type (28.90), number of vehicles (27.64), the occurrence of fire/explosion/spill
(24.49), crash location (22.08), and lighting condition (21.78) were identified as the five
most crucial variables. Driver gender and gross vehicle weight have a limited impact
on the HAZMAT crash severity as these two factors have the mean decrease Gini values
of 0.80 and 3.10, respectively. The top 18 factors accounted for 90% of cumulative mean
decrease Gini values. Based on the correlation analysis results and the variable importance
ranking, number of lanes, road type, divided roadway, road surface conditions, setting,
vehicle gross weight, and driver gender were eliminated from the potential risk factors
due to their limited impacts on the HAZMAT crash severity, and to avoid collinearity
between the independent variables. Therefore, 18 factors (collision type, number of vehicles,
fire/explosion/spill, crash location, lighting condition, AADT, driver age, fatigue, weather,
vehicle defect, violation, hour, distraction, speeding, alignment, speed limit, improper
operation, vehicle type) were selected as influencing factors for Bayesian network structure
learning, model development, and conditional probability inference.
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4.2. Bayesian Network Development

Genie 2.0 software was utilized to establish the Bayesian network structure and esti-
mate the parameters with the EM algorithm. The initial DAG was developed based on the
18 significant variables identified by random forests. To investigate the interdependency
between contributing factors and HAZMAT crash injury severity, the initial DAG was
completed using the K2 algorithm. Modification of the Bayesian network structure was
performed based on expert knowledge afterward. Eight experts within the HAZMAT
road transportation field (three experts from universities, two experts from engineering
consulting companies, and three experts from road safety research centers) filled in a ques-
tionnaire. The initial Bayesian network structure developed by the K2 algorithm based on
the collected data were distributed to the experts. The relationship between HAZMAT crash
severity and the risk factors was reviewed by the experts. A direction is considered effective
if more than five experts confirm the causality. By collecting the opinions from experts
and updating the DAG accordingly, the final structure was determined. Figure 3 shows
the graphical structure of Bayesian networks. The nodes reflect variables, and the edges
reflect the direct dependencies between the target node (HAZMAT crash injury severity)
and the variables in the graph. The prior probability distribution P(xi) of each variable
after parameter learning is shown in histograms of Figure 4.
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4.3. Bayesian Network Inference Results and HAZMAT Crash Characteristics Analysis

Based on the developed Bayesian network model and the inference results, the proba-
bility distributions of HAZMAT crash occurrence are illustrated in Table 1. Setting evidence
of the variables used in the development of the Bayesian network model provides indi-
cations to the values of variables contributing to HAZMAT crash occurrence and injury
severity. For each variable in the Bayesian network model, the probability of a value for a
specific variable was set to 1.0 (also referred to as setting evidence), while the other values
of the same variable were assigned to 0.0. As a result, the conditional probability tables
of Bayesian networks can be used to calculate the related probability of HAZMAT crash
injury severity, which could identify the most significant contributing values or variables
to the HAZMAT road transportation crash injury severity outcomes and the underlying
crash mechanism. Given HAZMAT crash occurrences, Table 1 shows the Bayesian network
probability inference results for the contributing factors’ influence on the three levels of
crash injury severity (fatal and severe injury, injury, and no injury).

4.3.1. Driver Characteristics

The results shown in Table 2 indicate that assigning the value “less than 25” of the
variable “driver age” a probability of 1.0, the probability of fatal and severe injury HAZMAT
crashes changes from 0.1239 to 0.2187 (an increase of 76.5%), while the probability of
injury crashes changes from 0.2602 to 0.3348 (an increase of 28.7%). The younger drivers
(age less than 25) were found to be suffered more fatal and severe injuries in HAZMAT
crashes. Older drivers (over 60) were also found to be more likely to experience fatal and
severe injuries of HAZMAT crashes with a probability of 0.1527 (23.3% increase). These
findings are consistent with findings from previous research. According to Tavris et al. [41]
and Ma et al. [16], younger drivers were substantially more prone to involve in severe and
fatal HAZMAT crashes. Drivers between 55 and 65 years old were found to be more likely
experience severe injuries [42].

Table 2. Bayesian network probability inference results for HAZMAT road transportation crash severity.

Variables

Probabilities When Setting Evidence

Fatal and Severe
Injury Crashes

Injury
Crashes

No Injury
Crashes

Proportion distribution 0.1239 0.2602 0.6158
Driver characteristics

Driver age
less than 25 0.2187 0.3348 0.4464

25–35 0.1423 0.2329 0.6248
36–45 0.1169 0.2760 0.6071
46–60 0.1058 0.2596 0.6345

over 60 0.1527 0.2472 0.6001
Distraction

Yes 0.1620 0.2761 0.5619
No 0.1224 0.2596 0.6180

Fatigue
Yes 0.2112 0.2865 0.5022
No 0.1234 0.2601 0.6165

Improper operation
Yes 0.1240 0.2622 0.6225
No 0.1236 0.2539 0.6138

Speeding
Yes 0.1572 0.3017 0.5410
No 0.1208 0.2563 0.6230

Violation
Yes 0.1920 0.2877 0.5203
No 0.1205 0.2589 0.6206
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Table 2. Cont.

Variables

Probabilities When Setting Evidence

Fatal and Severe
Injury Crashes

Injury
Crashes

No Injury
Crashes

Road characteristics
AADT (vehicle/day)

Less than or equal to 15,000 0.1201 0.2684 0.6114
15,001–50,000 0.1263 0.2445 0.6292

50,001–100,000 0.1271 0.2660 0.6069
over 100,000 0.1246 0.2745 0.6009
Alignment

Straight-level 0.1210 0.2585 0.6204
Straight-grade 0.1232 0.2595 0.6174

Curve-level 0.1245 0.2604 0.6152
Curve-grade 0.1318 0.2683 0.5999

Crash Location
Highway Section 0.1111 0.2492 0.6397

Intersection 0.1503 0.2896 0.5601
Ramp 0.1639 0.2786 0.5575
Bridge 0.1582 0.2548 0.5870
Other 0.1490 0.2791 0.5719

Speed limit (mph)
less than 30 0.1399 0.1834 0.6767

30–45 0.1111 0.2273 0.6616
46–55 0.1216 0.3022 0.5761
56–65 0.1247 0.2732 0.6021

over 66 0.1533 0.2301 0.6166
Vehicle characteristics

Vehicle type
Single-unit truck 0.1223 0.2732 0.6045

Truck/trailer 0.1179 0.2494 0.6327
Truck/tractor 0.1317 0.2605 0.6078

Tractor/semi-trailer 0.1274 0.2529 0.6197
Tractor/doubles 0.1215 0.2636 0.6149

Other 0.1195 0.2726 0.6079
Vehicle defect

Yes 0.1266 0.2557 0.6177
No 0.1223 0.2629 0.6147

Number of vehicles
1 0.1149 0.2435 0.6416
2 0.1116 0.2512 0.6372
3 0.2357 0.3883 0.3760

Greater than or equal to 4 0.2995 0.3720 0.3285
Crash characteristics

Collision type
Head-on 0.3997 0.3028 0.2975
Rear-end 0.1157 0.3431 0.5412

Angle 0.1948 0.3311 0.4741
Sideswipe 0.0772 0.1954 0.7274

Single vehicle 0.0881 0.2325 0.6794
Other 0.1375 0.2223 0.6402

Crash hour
12:00–5:59 a.m. 0.1736 0.2992 0.5272
6:00–11:59 a.m. 0.1133 0.2510 0.6357
12:00–5:59 p.m. 0.1061 0.2470 0.6469
6:00–11:59 p.m. 0.1605 0.2892 0.5503

Fire/Explosion/Spill
Yes 0.2396 0.3347 0.4258
No 0.1143 0.2540 0.6317
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Table 2. Cont.

Variables

Probabilities When Setting Evidence

Fatal and Severe
Injury Crashes

Injury
Crashes

No Injury
Crashes

Environmental characteristics
Lighting condition

Daylight 0.1016 0.2447 0.6537
Dusk/dawn 0.2239 0.2937 0.4823

Dark—street lights 0.1650 0.3425 0.4926
Dark—no street lights 0.1770 0.2818 0.5412

Weather
Clear 0.1216 0.2592 0.6192

Cloudy 0.1259 0.2571 0.6170
Rain 0.1292 0.2634 0.6073
Fog 0.1294 0.2683 0.6023

Snow 0.1364 0.2700 0.5936
Bold and italic texts represent the five major categories. Bold texts represent the subcategories in each major group.

Driver behavior was found to significantly impact the HAZMAT crash severity. As
shown in Table 2 and Figure 5, the fatal and severe injury crash probability attributed to
driver fatigue is the highest among other driver behavior-related factors, changing from
0.1239 to 0.2112 (an increase of 70.45%). The model results also illustrate that violation
(the posterior probability is 0.1920, increasing by 54.9%), distraction (the posterior prob-
ability is 0.1620, increasing by 30.7%), and speeding (the posterior probability is 0.1572,
increasing by 26.9%) are closely associated with fatal and severe injuries in HAZMAT
crashes. In comparison, the fatal and severe injury crash probability caused by improper
operation is relatively lower. Previous researchers have found the association between
driver behavior and crash occurrence [13,16,18,27]. Xing et al. [12] and Luo et al. [19] both
found that driver fatigue and speeding significantly impact the HAZMAT crash injury
severity. One of the most prevalent causes of traffic crashes related to behavioral error is
driver inattention [43]. It is associated with impaired driving performance and significant
deficiencies in cognitive performance, both of which could have a negative impact on road
safety. Compared with passenger vehicle drivers, professional drivers are more frequently
exposed to longer driving distances and travel time, leading to a higher possibility of safety
risk for distraction and fatigue [44,45].
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4.3.2. Road Characteristics

The results shown in Table 2 indicate that by assigning the value “curve-grade” of
the variable “alignment” a likelihood of 1.0, the probability of fatal and severe injury
HAZMAT crashes changes from 0.1239 to 0.1318 (an increase of 6.4%). For HAZMAT
crashes occurring on locations other than highway sections, the Bayesian network model
results indicate that intersections, ramps, bridges, and other special road features increased
the likelihood of fatal and severe injuries by 21.3%, 32.2%, 27.6%, and 20.2%, respectively.
Higher exposed crash risks can be explained by the presence of additional interference
factors, conflict points, and potential risks (such as pedestrians, merging and diverging
maneuvers, vision obstruction).

As expected, higher speed limits (over 66 mph) were found to be closely related
to increased fatal and severe injury probabilities of HAZMAT crashes occurrence. The
posterior probability is 0.1533 (increasing by 23.7%). An interesting finding is that low speed
limits (less than 30 mph) also increase the likelihood of fatal and severe HAZMAT crashes
with a posterior probability of 0.1399 (an increase of 12.9%). One possible explanation could
be that the relatively lower speed limits are associated with urban streets, which involve a
more complex road environment and more interference factors.

4.3.3. Crash Characteristics

Table 1 and Figure 6 display the HAZMAT road transportation collision type pro-
portions across different crash severity levels. Among all HAZMAT fatal and severe
injury crashes and injury crashes, head-on crashes accounted for the highest percentage
(41.9% and 38.7%, respectively). As confirmed by Bayesian network models, head-on
crashes increase the likelihood of fatal and severe injury HAZMAT crashes by 222.5%
(the posterior probability is 0.3997), while it is 16.4% (the posterior probability is 0.3028)
for injury crashes. With a posterior probability of 0.1948, angle crashes were also found to
be highly related to fatal and severe injury HAZMAT crashes (increasing by 57.2%). On
the contrary, rear-end and sideswipe crashes decrease the probability of fatal and severe
injuries by 6.7% and 37.7%, respectively. When there was only one vehicle involved in a
HAZMAT crash, the probability of fatal and severe injury HAZMAT crashes decreased
by 28.9%. Head-on crashes were found to be more harmful than angle crashes in past
studies [17], as these types of crashes frequently resulted in fatalities or severe injuries.
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Figure 7 illustrates the crash hour distribution by collision type. The color inten-
sity represents the number of crashes. A substantial number of crashes occurred during
daytime (7:00 a.m.–4:00 p.m.), particularly for rear-end and sideswipe crashes. However,
based on Bayesian network model results, when setting a probability of 1.0 to the value
“12:00–5:59 a.m.” of the variable “crash hour,” the probability of fatal and severe injury
HAZMAT crashes changes from 0.1239 to 0.1736 (an increase of 40.10%), following by
nighttime (6:00–11:59 p.m.) with a posterior probability of 0.1605 (increasing by 29.5%).
Although many crashes occur during the daytime, crashes during midnight are more likely
to cause fatal and severe injuries. According to past studies [4,9,12,46], poor visibility at
night, fatigue, and distraction could be some of the potential causes.
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Regarding the crash consequences, the posterior probability of fire/explosion/spill
reached 0.2396, increasing the probability of fatal and severe HAZMAT crashes by 93.3%.
This result can be explained by the fact that the release of HAZMAT could cause im-
mediate poisoning and suffocation due to their properties, especially in urban areas
with high population density. This finding was also confirmed by other studies on
HAZMAT crashes [12,16].

4.3.4. Vehicle Characteristics

When it comes to the total number of vehicles involved in the HAZMAT crashes, more
than or equal to four vehicles increase the probability of fatal and severe injury crashes
by 141.7% (the posterior probability is 0.2995). It is reasonable that more vehicles would
result in more persons being involved in crashes, causing more injuries. The results are
consistent with the findings of [12,16,47]. Truck/trailer increases the probability of fatal
and severe crashes by 6.3%. Vehicle defects were not found to be highly associated with the
likelihood of fatal and severe injury crashes in this study.

4.3.5. Environmental Characteristics

The Bayesian network model results indicate that the likelihood of fatal and severe
injury HAZMAT crashes increases under dusk/dawn (80.7%), dark-lighted (33.1%), and
dark-unlighted (42.8%) conditions. These findings regarding lighting conditions are in line
with previous crash studies [17]. In addition, adverse weather conditions were associated
with an increased probability of fatal and severe injury HAZMAT crashes. Specifically, snow
increases the likelihood of fatal and severe injuries by 10.1%, with a posterior probability
of 0.1364. Poor visibility and the relatively lower road friction coefficient could cause
crashes and severe injuries.
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4.4. Model Validation

To measure the performance of the developed Bayesian networks, a confusion matrix
for multiclass classification was used to calculate the performance evaluation indicators,
including accuracy, precision, sensitivity, specificity, F-score, and ROC area. Table 3 displays
the confusion matrix, and the model performance measurements are defined as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(9)

Precision =
TP

TP + FP
(10)

Sensitivity =
TP

TP + FN
(11)

Specificity =
TN

FP + TN
(12)

F− score =
2× precison× sensitivity

precison + sensitivity
(13)

where true positive (TP) is an indicator that quantifies the number of true positive cases
that are accurately detected. For instance, it is the number of fatal and severe injury
HAZMAT crashes that are correctly identified as fatal and severe injury crashes in our
study. True negative (TN) is an indicator that quantifies the number of true negative cases
that are accurately detected, for example, the number of non-fatal and severe crashes that
are correctly identified as no injury or injury. False positive (FP) refers to the number
of predicted instances that are wrongly labeled as positive cases when they are actually
negatives, whereas False negative (FN) refers to the number of predicted instances that are
wrongly labeled as negative cases when they are actually positives.

Table 3. Confusion matrix for the Bayesian network.

Confusion Matrix
Predicted

Class 1 Class 2 Class 3 False Negative (FN) Sensitivity

Actual

Class 1 T11 F21 F31 F21 + F31
T11

T11+F21+F31

Class 2 F12 T22 F32 F12 + F32
T22

F12+T22+F32

Class 3 F13 F23 T33 F13 + F23
T33

F13+F23+T33

False positive (FP) F12 + F13 F21 + F23 F31 + F32 Overall Accuracy
T11+T22+T33

T11+T22+T33+F21+F31+F12+F32+F13+F23Precision T11
T11+F12+F13

T22
F21+T22+F23

T33
F31+F32+T33

The proportion of correctly classified cases is defined as accuracy, whereas sensitivity
is the proportion of cases accurately detected as positive cases out of all true positive cases,
and specificity represents the proportion of cases accurately detected as negative cases
out of all true negative cases. Nevertheless, there is a tradeoff between sensitivity and
specificity, so we calculated the weighted average of sensitivity and specificity, known
as F-score. The receiver operating characteristic (ROC) area is another commonly used
and effective tool for measuring the overall performance of classification models. The
sensitivity (true positive rate) versus 1-specificity (false positive rate) is represented by
ROC curves, with a maximum of 1.0 indicating a perfect test and a value of 0.50 indicating
a meaningless test.

This study applied a k-fold cross-validation strategy to validate the developed Bayesian
network models. The k-fold cross-validation method divides the data into k smaller sets,
with (k − 1) of the sets as training data. The remaining sets are utilized as testing data to
perform the model validation. This iteration is repeated for each of the k subsets, resulting
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in each subset being used (k − 1) times as training subset and exactly once as validation
subset. Ultimately, we averaged the classification accuracy and error rates over all k ex-
periments to calculate a single performance metric. The value of k is usually 10 in k-fold
cross-validation, which is adequate for most classification problems. In this study, five-fold
cross-validation was used to reduce computation time.

The overall Bayesian network estimation results are shown in Table 4. The accuracy
values are 96.4% for fatal and severe crashes, 85.9% for injury crashes, and 85.0% for no
injury crashes, respectively. In terms of sensitivity, it ranges from 69.4% (injury crashes)
to 89.8% (no injury crashes). All the HAZMAT severity categories show an acceptable
model prediction performance for predicting positive instances correctly in all actual pos-
itive instances. The proportion of instances correctly predicted as negative in all actual
negative instances is defined as specificity. The results show that the Bayesian network
model can classify 97.1% of fatal and severe injury crashes correctly, but its ability to
classify no injury crashes is relatively poor. Since the dataset is distributed in an imbal-
anced way, the accuracy, sensitivity, or specificity alone is somewhat misleading. This
study also used the area under ROC to measure the overall model performance. The
highest ROC index is 94.8%, achieved by the Bayesian network for fatal and severe injury
crashes classification as shown in Figure 8. The ROC index is 83.7% and 85.1% for classify-
ing injury crashes and no injury crashes, respectively. All three levels of crash severity were
successfully classified. The obtained ROC results demonstrate that the proposed combina-
tion of random forest and Bayesian network approaches accurately classifies HAZMAT
crash severity.

Table 4. Performance measurements for the Bayesian network model.

Performance
Measurements

Fatal and Severe
Injury Crashes

Injury
Crashes No Injury Crashes

Accuracy 96.4% 85.9% 85.0%
Precision 67.5% 78.5% 88.1%

Sensitivity 82.4% 69.4% 89.8%
Specificity 97.1% 92.4% 75.4%

F-score 74.2% 73.7% 88.9%
Overall accuracy = 85.8%
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4.5. Implications of Study Findings

Based on the analysis results, this study highlights the need for targeted counter-
measures for various risk factors, including the driver, road, vehicle, crash, and envi-
ronmental characteristics. Transportation management agencies and policymakers may
directly use the results presented in Table 2 to reduce HAZMAT crashes and improve
HAZMAT road transportation safety. The following recommendations are provided for a
decision-making basis:

• Enhance safety education, training, and driver monitoring to reduce inappropriate
driving behavior, especially fatigue driving, distraction driving, violation, and speeding.

• Improve traffic management and supervision of special locations (such as intersections,
ramps, and bridges) with high crash probability on HAZMAT road transportation
route. Dynamic monitoring and rapid response system should be established to reduce
potential crash risks in these locations.

• HAZMAT carriers may prioritize the fleet management, scheduling, and routing
options to avoid the time of midnight or early morning, poor lighting conditions, and
adverse weather for potential increased crash risks.

• Spatially or temporally separate HAZMAT vehicles and other vehicles may effectively
reduce the fatal and severe injury crash probability, especially for head-on crashes. A
dedicated lane or designated time period may help reduce multi-vehicle crashes and
prevent post-crash HAZMAT release, fire, and explosion risk.

• Traffic management, safety education, and enforcement strategies must collaborate to
ensure safe HAZMAT road transportation.

The results obtained in this study also show that in addition to the prediction accuracy,
the combination of random forest and Bayesian networks can effectively quantify the
statistical relationships between HAZMAT crash severity and contributing factors. In
recent years, researchers have paid more attention to the prediction performance of machine
learning-based approaches compared with conventional statistical models in crash data
analysis. However, interpretability and lack of transparency have been critical issues. This
study contributes to the state of literature by revealing how the risk factors associated with
different levels of injury severity of HAZMAT crashes and by extending the application of
machine learning approaches in HAZMAT road transportation safety analysis.

5. Conclusions

HAZMAT road transportation crashes pose significant safety risks on public life,
properties, and the environment. Identifying the characteristics of HAZMAT crashes and
the risk factors that contribute to crash severity is crucial for HAZMAT crash reduction and
safety improvement. Using five-year crash data (N = 1610) from the HSIS database, this
paper proposes a two-step machine learning-based approach by combing random forest
and Bayesian network to quantify the statistical relationship between three HAZMAT crash
injury severity outcomes (fatal and severe injury, injury, and no injury) and contributing
factors. These factors include driver, road, vehicle, crash, and environmental characteristics.
Random forest ranks the importance of risk factors, and Bayesian networks are developed
to reveal the interdependency between the examined variables and provide probabilistic
inference. The main findings are as follows:

• Driver behaviors have a significant influence on the HAZMAT crash injury severity. It
is alarming to find that fatigue, violation, distraction, and speeding increase the proba-
bility of fatal and severe injury by 70.45%, 54.9%, 30.7%, and 26.9%, respectively. It
implies the importance of safety education programs and enhanced driver monitoring
and warning techniques to reduce risky driving behaviors.

• Special roadway locations (such as intersections, ramps, and bridges) and higher speed
limits (over 66 mph) pose increased fatal and severe HAZMAT crash risks. Identifying
zones with a higher possibility of crash risk, enhancing transportation management,
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and supervision in such locations, and setting up a dynamic response system might
reduce the occurrence of severe injury HAZMAT crashes.

• Among all HAZMAT collision types, head-on crashes increase the probability of fatal
and severe injury crashes by 222.5%. In contrast, sideswipe and single-vehicle crashes
significantly reduce the likelihood of fatal and severe injuries. When a HAZMAT crash
involves fire/explosion/spill, the probability of fatal and severe HAZMAT crashes
increases by 93.3%. In terms of the total number of vehicles involved in the HAZMAT
crashes, more than or equal to four vehicles would result in an increase of 141.7% of
the probability of fatal and severe injury crashes.

• Although 74.5% of the HAZMAT crashes occurred during daytime, crashes that occur
during midnight, early morning (12:00–5:59 a.m.), and night (6:00–11:59 p.m.) are more
likely to cause fatal and severe injuries. Poor lighting conditions (dusk/dawn, dark-
lighted, and dark-unlighted) and adverse weather conditions are closely associated
with fatal and severe HAZMAT crashes.

• By using a five-fold cross-validation strategy, the combined random forest and Bayesian
network models can effectively predict HAZMAT crash injury severity with an over-
all accuracy of 85.8%. Specifically, the relationship between variables is inherently
considered in the Bayesian network. The proposed model can provide reliable crash
severity prediction performance and reveal the complex interdependency between the
contributing factors.

This study provides an insight into the HAZMAT crash characteristics, discovers
how the contributing factors affect HAZMAT crash injury severity, and investigates the
underlying crash mechanism behind the HAZMAT crash data. The proposed method
presents a potential application of machine learning-based approaches in HAZMAT road
transportation safety analysis with relatively satisfying crash severity prediction accuracy
and interpretability. In addition, the study demonstrates a clear need to develop targeted
HAZMAT crash countermeasures. Enhancing driver safety awareness and education,
avoiding driver fatigue, distraction, and other improper driving behavior through in-cabin
detection devices and driving monitoring and warning systems, improving traffic manage-
ment on special locations with high crash probability on HAZMAT road transportation
routes, and promoting enforcement strategies should be implemented to reduce HAZMAT
crashes and ensure safe HAZMAT road transportation environments.

This study has several limitations that should be considered and improved in the
future. Firstly, the investigated contributing factors were limited to those available in the
HSIS database from 2013 to 2017. There were many missing values or attributes in the
crash records in different states. Secondly, the impact of releasing hazardous materials into
the surrounding population was not considered in this study. The population along the
HAZMAT transportation route should be included in a future study, and additional data
are needed to examine the environmental damage related to HAZMAT crashes. Thirdly,
the proposed model was developed and validated on the same dataset from HSIS. Future
work should also focus on model transferability to other crash databases.
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