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Multiple sclerosis (MS) is a complicated disease characterized by heterogeneous pathology that varies across individuals. Accurate
identification and quantification of pathological changes may facilitate a better understanding of disease pathogenesis and
progression and help identify novel therapies for MS patients. Texture analysis evaluates interpixel relationships that generate
characteristic organizational patterns in an image, many of which are beyond the ability of visual perception. Given its promise
detecting subtle structural alterations texture analysis may be an attractive means to evaluate disease activity and evolution. It
may also become a new tool to assess therapeutic efficacy if technique issues are resolved and pathological correlates are further
confirmed. This paper describes the concept, strategies, and considerations of MRI texture analysis; summarizes applications of
texture analysis in MS as a measure of tissue integrity and its clinical relevance; then discusses potentially future directions of
texture analysis in MS.

1. Introduction

Multiple Sclerosis (MS) is characterized by heterogeneous
histopathology including inflammatory infiltrates, demyeli-
nation, remyelination, axonal damage, and gliosis [1]. Con-
sequences of irreversible structural injury eventually lead
to progressive physical disability and functional impairment
[2]. T2 lesion number and volume are commonly used to
evaluate disease activity and burden [3], which however
are pathologically nonspecific and correlate only moderately
with clinical outcomes. Accurate identification and quantifi-
cation of pathological changes may facilitate a better under-
standing of disease pathogenesis and progression and help
identify novel therapies for MS patients.

Structural abnormalities that appear regular may be ex-
tracted by visual inspection while complex patterns of pa-
thology that are commonly encountered in medical images
are difficult to interpret and require the employment of ad-
vanced analysis techniques [4]. As an emerging quantitative
approach, texture analysis demonstrates promise to detect
subtle structural alterations that are not perceivable on
conventional magnetic resonance imaging (MRI). This paper
describes the concept, strategies, and considerations of MRI

texture analysis; summarizes the potential of texture analysis
as a measure of tissue structural property and the clinical
relevance; then discusses possible future directions of MRI
texture analysis in MS.

2. The Concept

Texture analysis is an image postprocessing approach that
extracts quantitative information from a digital image based
on mathematical analysis: it can be applied to any image and
is used in fields as diverse as medicine and geology [5–8]
(Figure 1). A two-dimensional (2D) MR image is a digitized
picture of elements (pixels), characterized by spatial location
and gray-level intensities. MRI texture analysis evaluates the
organizational pattern of image pixels that is unique to the
underlying substrates in a tissue. Texture features are, in fact,
mathematical parameters that describe the distribution of
gray-level intensities to reflect the structural regularity of
the imaged tissue [9]. Consequently the structural property
of a tissue determines the nature of its texture, which
is inevitably affected by histopathological development.
Intuitively, texture can be described as smooth or rough,
regular or irregular, fine or coarse.
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Figure 1: Overview of general texture analysis pipelines in the MRI of MS.

3. Approaches

Numerous strategies have been proposed for the examina-
tion of image texture. Depending on the particular meth-
od used to assess interpixel relationships, a variety of ded-
icated texture features can be derived. Both statistical and
spatial frequency-based approaches are used preferably in
neurological imaging applications including MS, which are
described below (Table 1). Note that the mathematical basis,
calculation procedure, and feature extraction strategies of
these texture analysis methods have been discussed compre-
hensively in previous publications and are not discussed in
detail in this paper.

3.1. Statistical Approach. This approach attempts to charac-
terize image texture using statistical parameters. First-order
statistics (i.e., mean and variance of gray level, mean and
variance of gradient) provides a global assessment of pixel
distribution and is relatively intuitive and self-explaining.
Second- or higher-order statistics characterizes local texture
properties in an image which is based primarily on the cooc-
currence matrix (GLCM) [7] and run-length matrix (RLM)
[10].

The GLCM method has been investigated heavily since
its first introduction by Haralick et al. in 1973 [7] and has
demonstrated considerable promise in MRI texture analysis.
In brief, the GLCM method computes the joint probability
of two pixels which have particular (cooccurring) gray-level
values, with a distance d (d = 1, . . . ,n pixels in a dimension)
apart along a given direction (0, 45, 90, and 135 degrees)
(Figure 2). Fourteen parameters can be derived from each
GLCM, which collectively reflect the homogeneity, local
contrast, correlation, and complexity of an image.

The RLM method [9, 10] quantifies image texture in
a similar manner as the GLCM approach. Basically, a gray
level run dictates the number of times two or more pixels
having the same value in a preset direction, and the RLM
is the matrix of run-length frequency occurring in an image
in each (generally 4) direction considered. Features derived
from RLM represent fine (long runs) or coarse texture (short
runs) of an image.

3.2. Spatial Frequency-Based Approach. Pixel patterns that
create a unique texture in an image also generate a unique
frequency distribution at the spatial scale of the pattern.
Specifically, fast changing gray level values represent high
frequency content. Conversely, low frequencies relate to slow
changing or no change gray-level values [9]. Ideally, the fre-
quency content held in an image can be calculated using
the Fourier transform (FT). However, the FT cannot isolate
frequency profiles specific to individual spatial locations [11,
12]. Moreover, the determination of slow or fast gray-value
changes also depends on the scale that is utilized to examine
the image. For instance, an image area would demonstrate
little variations if analyzed by a large scale (or from a far
distance) whereas an area would yield detailed information
if identified by a small scale (or from a close distance).

A few advanced transforms have been developed trying to
characterize localized frequencies specific to each pixel loca-
tion. One of the versatile approaches is the wavelet transform
(WT) which characterizes multiscale frequency content (i.e.,
wavelet coefficients) at each spatial location of an image [13].
This flexibility allows the WT to decompose image texture
scale specifically which is ideal for a tissue of heterogeneous
pathology. Nonetheless the WT is computationally expensive
and lack of intuitive [8]; it has yet no direct applications in
MS. The Stockwell transform (ST) is a recent advancement
in spatial frequency analysis [11, 14]. While analog to the
WT for its multiresolution ability, the ST is a Fourier-based
analysis that provides unique frequency spectra (Figure 3)
at all pixel locations of an image. Moreover, rotationally
invariant information can be obtained by eliminating the
angular variance of image texture using the polar form of ST
(PST) [15], which is a gifted advantage as medical images are
prone to movement artifacts (Figure 3).

4. Considerations

While texture analysis is potentially a new tool to identify
subtle structural changes in a tissue, there are concerns re
In theory, differences in acquisition parameters, imaging
sequences, and the homogeneity of radio-frequency (RF)
field cause alterations in pixel arrangements and therefore



International Journal of Biomedical Imaging 3

Table 1: Overview of common texture analysis approaches in MS.

Assessment Utility

Statistical approach

First-order Global assessment of pixel distribution Self-explanatory yet lack of detail

Second-order

Gray-level cooccurrence matrix (GLCM)
Joint probability of two pixels having
cooccurring gray level values at a given
distance and direction

Multiple properties of a texture
(coarseness, correlation, contrast), less
sensitive to larger scales

Run length matrix (RLM)
The number of times two or more pixels
having the same value in a preset direction

Several properties of a texture
(coarseness), less sensitive to larger scales

Spectral approach

Fourier transform
Entire frequency profile, using sinusoid
basis functions

Useful for signals without temporal
changes

Wavelet transform
Scale-based frequency content, using a
deformable localizing “mother” wavelet as
basis function

Multiscale analysis; less intuitive and can
be computation-expensive

Stockwell transform
Scale-based frequency content, using fast
Fourier transform and a flexible Gaussian
localizing window

Fourier-based multiscale frequency
content; computation time varies by
image size and algorithm

MRI texture. This potential limit is drawing much attention
and has partially confounded the clinical use of texture
analysis. On the other hand, few recent studies argued that
MRI texture analysis is relatively tolerant to the imaging
variables and support further investigation [16–18].

Mayerhoefer et al. [16] assessed the impact of variance
in acquisition parameters (number of acquisitions, repe-
tition time, echo time, sampling bandwidth, and spatial
resolution) to texture indices and pattern discrimination.
Texture features were increasingly sensitive to the variation
of acquisition parameters in images with increasingly spatial
resolution. However, the variation in imaging parameters
had little impact on texture measurements if the image
had sufficient spatial resolution. Meanwhile, GLCM-derived
texture parameters outperformed the other statistical and
WT ones. In another study of similar purpose, Harrison
et al. [17] evaluated whether texture analysis was sensitive
to image acquisition and processing protocols by assessing
differences between three types of imaging sequences, two
anatomical levels of interest, three sequential slices, and two
methods of delineation of regions of interest (ROIs). A total
of 280 statistical and WT-based parameters were extracted
from lesions, WM regions further away from lesions (WM),
WM regions adjacent to lesions (NAWM), cerebrospinal
fluid (CSF), and basal ganglia of 38 patients with either MS
or clinically isolated syndrome (CIS). The authors showed
that MRI texture analysis provided an excellent distinction
between tissues of interest (96–100% accuracy). There was
no significant difference in the results of texture-based
classification between imaging sequences, anatomical levels,
or between temporal imaging slices within tissue. Moreover,
Savio et al. [18] have studied the effect of slice thickness to
texture analysis of MS lesions and the NAWM. The signal
intensity of three 1-mm consecutive slices was averaged to
simulate a 3-mm slice that is commonly utilized in clinical
imaging. There were moderate differences in the distribution

of texture values between 1-mm and 3-mm slices, which
nonetheless did not compromise the classification results
(lesion versus NAWM) even using different slice thickness
between training and test datasets.

The robustness of texture analysis seems to be indicated
by these investigations. However, the impact of imaging fac-
tors was assessed based on the accuracy of texture-associated
classifiers. While it is a popular approach in computer-as-
sisted diagnosis, the classification step may have compli-
cated the evaluation process and added difficulty for inter-
pretation. Direct comparison of texture characteristics may
be helpful in the future to clarify this issue. Furthermore, it
has not been fully investigated whether texture measures are
portable between imaging centers; some researchers [19, 20]
suggest that the use of test objects at different MRI scanners
may be a practical means for feature normalization.

5. Applications

5.1. Characterization of Structure Properties. While patho-
logically different, the activity of many MS lesions cannot
be distinguished on conventional MRI based on their
appearances. Using a texture-based segmentation approach,
Yu et al. [21] examined the feasibility of texture analysis to
differentiate activity levels of 32 lesions from 8 relapsing-
remitting (RR) MS. Forty-two features were extracted from
first- and higher-order (GLCM and RLM) statistics from
each lesion. By referencing the status of gadolinium (Gd)-
enhancement, texture analysis based on T2-weighted MRI
(T2W) allowed an accurate classification of both active
(88%) and nonactive lesions (96%). As an exception to most
texture analysis studies, features from RLM demonstrated
better discrimination potential than that from GLCM. In
addition, new evidence showed that a texture-based pattern
recognition system was able to differentiate MS lesions from
other neurological abnormalities on MRI [22].
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Figure 2: Schematic demonstration of texture analysis in the T2-weighted MR image from an MS patient (top) using a statistical method
(gray-level cooccurrence matrix, GLCM). Areas of a focal lesion (box in the right) and the contralateral NAWM are delineated respectively,
where texture analysis is conducted. Shown are different GLCMs computed at 0 degree based on the small sample subregions from the lesion
(bottom right) and the NAWM of the patient.

Despite the dominance of multifocal pathology, diffuse
abnormalities are observed in the normal appearing white
matter (NAWM) and gray matter (NAGM) of MS patients
[23]. Recently, J. Zhang et al. [24] assessed the texture
property of MS lesions, NAWM, and normal WM from 16
patients and 16 controls and compared the segmentation
ability of joint statistical and spectral features (>200) with
that of GLCM features alone. The classification accuracy
based on combined sets of texture parameters was superior
(100%) compared to GLCM features only between MS
lesions and NAWM or normal WM; however, the classifi-
cation power was compromised (58.33%) in an attempt to
differentiate NAWM from normal WM. The disadvantage of
statistical texture analysis to detect NAWM abnormality was
also implicated in a previous study [25], which compared the
texture of frontal NAWM in 41 MS patients with the texture
of normal WM at the same region of the brain in 10 controls.
No texture difference was identified, which was presumably
due to limited resolution of MR images.

Great potential of texture analysis has also been demon-
strated using spectral features derived from the PST. In a
longitudinal study, Y. Zhang et al. [26] analyzed the texture
of new enhancing lesions in comparison with chronic lesions
and the NAWM on T2W MRI from 10 RRMS patients.
The texture in contrast-enhancing lesions was significantly
coarser than that in chronic lesions or the NAWM on the
same imaging slice; it improved gradually thereafter only
in the acute lesions. The texture in chronic lesions re-
mained relatively stable over time, as did the texture in the
NAWM. This study also showed that the recovery of acute
lesions seemed to be associated with the degree of coarse
texture during enhancement. Using a similar method, Y.
Zhang et al. [27] investigated whether texture was different
between new acute T1 hypointense lesions (acute black
holes, ABHs) that persist and those that resolve over time.
The ABHs were classified as transient (tABHs), suggesting

repair [28], or persistent (pABHs), reflecting destruction
[29] based on their eventual T1 MRI appearance (isointense
or hypointense) 5–8 months later. The tABHs demonstrated
significantly finer texture than the pABHs when first seen on
T1W MRI. These intriguing data suggest that inflammatory
demyelination generates a heterogeneous signal manifesting
as coarse texture, whereas organized tissue generates a
homogeneous signal manifesting as fine texture (the texture
of repairing tissue or the NAWM).

5.2. Clinical Relevance. The demonstration of clinical rele-
vance is important for a potential imaging measure as part
of the validation process. Mathias et al. [30] performed
texture analysis on T2W MRI of the spinal cord from
40 MS patients (10 each of RRMS, primary progressive
MS, secondary progressive MS, and benign MS) and 10
controls. Eight texture features (4 first-order and 4 GLCM
statistics) were extracted from the entire cross-sectional
area of the segmented spinal cord. Mean texture features
were significantly different between all patients and normal
controls and between normal controls and patient subgroups
except for benign MS. In particular, while not all significant,
MRI texture was generally coarser (i.e., increased entropy
and decreased angular second moment) in MS patients than
in controls, which was identified before detectable spinal
cord atrophy. Moreover, two texture features (mean gradient
and mean gray level) correlated significantly with disability
as assessed by the Expanded Disability Status Scale (EDSS)
in MS subjects. The authors suggested that texture analysis
might be a potential tool to monitor changes associated
with patient disability; however, the reproducibility and
sensitivity of texture measurements must be improved.
Similarly, by analyzing the GLCM texture of magnetization
transfer ratio (MTR, a potential measure of tissue injury)
maps of the brain from 23 controls, 38 patients with CIS
and 35 patients with MS, Tozer et al. [31] found that
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Figure 3: Texture analysis of the same image demonstrated in Figure 2 using a spectral method (polar Stockwell transform, PST). The
PST spectra were first calculated as radius and orientation in polar coordinate (middle figure with arrows in circle); then a 1-dimentional
spectrum (texture curve) was obtained by integrating frequencies along the radial direction for each frequency and pixel. Plots in the right
side of the figure demonstrate the average texture curve of central 5 × 5 pixels in the lesion (right box) and the contralateral NAWM of the
patient. Note that the amplitude of the low-frequency range appears greater (coarser) in the lesion than in the NAWM (arrows).

the texture in MS differed from CIS and controls but did
not differ between the later two groups. Furthermore, GM
MTR texture correlated with neurological disability and WM
MTR texture was associated with cognitive measures in
MS. In the future, more studies of texture analysis for its
capacity to characterize GM pathology would be desirable
as conventional MRI is suboptimal to define GM plaques,
which however demonstrated considerable pathological and
clinical relevance [32, 33].

In a more recent study, Loizou et al. [34] assessed the
texture of MS lesions and the NAWM from 38 patients with
CIS and normal WM from 20 volunteers and examined
the relationship between texture severity of MS lesions
and disease progression over approximately 2 years. T2
MRI texture was analyzed using an amplitude modulation-
frequency modulation (AM-FM) method, a technique with
similarities to the multiscale spectral analysis. Consisting
with other published reports, there was significant texture
difference between lesions, NAWM, and normal WM. More
interestingly, lesions of coarser texture at baseline associated
with more severe disability (EDSS > 2) accumulated over
2 years while lesions of finer texture at baseline were
found in patients who developed less disability (EDSS ≤
2). The AM-FM classifier based on medium frequency
instantaneous amplitude (relatively coarse texture) provided
the best segmentation results to these lesions (area under the
ROC curve = 0.76). The AM-FM features were proposed as

potential measures of lesion load and disability progression
in MS patients.

6. Future Directions

6.1. Pathological Correlates. It is hypothesized that patholog-
ical processes induce ultrastructural changes on the nanome-
ter to micrometer scale, which manifest as pixel pattern
changes on the millimeter scale of MR images. While it is not
validated in human subjects, pathological correlates of tex-
ture analysis has been demonstrated in animal models of MS.
Y. Zhang et al. [35] analyzed the texture of MS-like lesions on
7T T2W MRI in the spinal cord of mice with experimental
allergic encephalomyelitis (EAE, a model of MS) using the
PST. Increased PST texture was observed in EAE lesions
compared with the control tissue, which corresponded with
inflammation and demyelination. Moreover, texture analysis
was evidenced to detect remyelination in a cuprizone mouse
model of demyelination [36]. In that study, each mouse was
fed either with cuprizone to induce demyelination or with
normal diet as controls for 8 weeks. Texture analysis was
performed before (day 0) and 13, 29, 32, 41, and 56 days on
treatment. Yu et al. [36] showed that texture discrimination
functions classified myelinated (day 0) and demyelinated
(day 56) brain regions with near-perfect accuracy (95% and
98%, resp.). Furthermore, one of the texture parameters
from the RLM, the horizontal gray-level nonuniformity
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(HGLNU), varied in concordance with changes in the myeli-
nation status of four brain regions: the HGLNU im-
proved when reported remyelination occurred. While this
study was limited by correlating indirectly with histological
data inferred from literature, texture analysis appears to be
a potential measure of myelin integrity. Nonetheless, fur-
ther validation in MS subjects is necessary for a better under-
standing and interpretation of texture measurements in a
clinical context. As a common validating system for MRI
techniques, postmortem samples could be a great candidate;
in that way, pathological specificity of texture analysis can be
also investigated.

6.2. Evaluating Treatment Impact. Given its potential as a
sensitive measure of tissue integrity and the clinical rele-
vance, MRI texture analysis may be used to evaluate treat-
ment impact in both overt MS lesions and in the disease
prone NAWM. In this way, an integrated picture of ther-
apeutic efficacy can be obtained beyond the detectability
of lesion number and volume. In a feasibility study of 5
RRMS patients with active lesions, Y. Zhang et al. [37] in-
vestigated the texture of acute and chronic MS lesions and
the NAWM before and after minocycline treatment us-
ing the GLCM method. Compared with inactive lesions
and the NAWM, active lesions showed the greatest texture
abnormality and exhibited the largest texture changes over
6 months, although statistical analysis was not significant.
Recently, the promise of MRI texture analysis to identify
treatment effect has been demonstrated in patients with non-
Hodgkin lymphoma; [38] however, this is subject to further
investigation in MS subjects.

7. Conclusions

MRI texture analysis demonstrates great potential in the
study of MS. As an image processing strategy, texture analysis
shows promise to extract clinically meaningful information
from routine conventional MRI. Given its clinical relevance,
texture analysis may be an attractive means to characterize
disease activity and progression. However, the robustness of
texture analysis to imaging protocols must be clarified before
a significant clinical effect can be established. Furthermore,
despite the promising outcomes in animal models, patholog-
ical correlates of texture analysis are subject to confirmation
in MS subjects, whereby the role of texture analysis can be
further tested as a potential tool of evaluating treatment
benefits for MS patients.
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