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Abstract

The Standard Genetic Code (SGC) is robust to mutational errors such that frequently occur-

ring mutations minimally alter the physio-chemistry of amino acids. The apparent correlation

between the evolutionary distances among codons and the physio-chemical distances

among their cognate amino acids suggests an early co-diversification between the codons

and amino acids. Here we formulated the co-minimization of evolutionary distances

between codons and physio-chemical distances between amino acids as a Traveling Sales-

man Problem (TSP) and solved it with a Hopfield neural network. In this unsupervised learn-

ing algorithm, macromolecules (e.g., tRNAs and aminoacyl-tRNA synthetases) associating

codons with amino acids were considered biological analogs of Hopfield neurons associat-

ing “tour cities” with “tour positions”. The Hopfield network efficiently yielded an abundance

of genetic codes that were more error-minimizing than SGC and could thus be used to

design artificial genetic codes. We further argue that as a self-optimization algorithm, the

Hopfield neural network provides a model of origin of SGC and other adaptive molecular

systems through evolutionary learning.

Introduction

Limits of natural selection

Discoveries by Alfred Wallace and Charles Darwin in the 19th century established natural

selection as the primary mechanism of evolutionary adaptation [1,2]. The Modern Synthesis

and the more recent Neutral Theory of molecular evolution reaffirm the supremacy of natural

selection as the only evolutionary mechanism capable of deterministic, directional changes

against a backdrop of stochastic, directionless evolutionary forces including mutation, genetic

drift, and recombination [3–5]. Yet theories of natural selection and population genetics offer

limited explanations on the apparent evolutionary trend towards increasing organizational

complexity of living systems, as evident [6] in the repeated emergence of complex and robust

structures and molecular processes including molecular pathways, subcellular structures,

multicellularity, sexual reproduction, embryonic development, sociality, and self-regulating
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ecosystems [7,8]. A major weakness of Darwinian natural selection and population genetic

analysis is its inability to specify testable algorithmic steps, to replicate with simulation, or to

predict the future outcomes of organic complexity [9,10].

In recent years, computational and algorithmic learning emerged as a major contender

to bridge the epistemological gap between the feasibility of organismal complexity foretold

by the theory of natural selection and its algorithmic plausibility [9–12]. Algorithmic learn-

ing, defined as the process of creating internal representations (e.g., as memories or

genomes) of external regularities through “concrete computation that takes a limited num-

ber of steps”, applies equally well to understand the biological origins of cognition and

adaptation [10]. For example, the Multiplicative Weights Update learning algorithm has

been shown to be equivalent to natural selection on genotypes in asexual populations and

on individual alleles in sexual populations [13,14]. By quantifying the degree of computa-

tional complexity of the problems imposed by environments, computational learning has

not only the potential to generate complex adaptations but also to predict the limit and

adverse consequences of adaptations [10].

Evolutionary connectionism

Computational learning is at the heart of a new evolutionary paradigm termed “evolutionary

connectionism”, which posits a theoretical equivalence between learning algorithms and evo-

lutionary processes leading to the emergence of complex adaptations [11,15]. Central to evolu-

tionary connectionism is the concept of correlational or associative learning first proposed by

Donald Hebb in understanding the spontaneous origin of neural networks capable for mem-

ory [16]. The Hebbian rule, known colloquially as “cells that fire together, wire together”, is

now postulated as a general pattern-generating mechanism in living systems beyond neural

systems. For example, the origin of developmental pathways and other gene regulatory net-

works may be a consequence of following genomic analogs of the Hebbian rule that “genes

that are selected together wire together” and “genes that function together junction together”

[17]. Bacterial operons, consisting of tandemly arranged and co-transcribed genes, may be a

physical manifestation of the Hebbian rule in shaping genome structure (“genes that function

together locate together”).

Despite (or perhaps because of) its simplicity, the Hebbian correlational learning has

considerable power in generating adaptive and robust features in living systems beyond

neural networks. First, as an unsupervised learning algorithm, Hebbian learning is efficient

in finding locally optimal solutions without the need to search through a prohibitively large

number of possible solutions and test these solutions individually, as is necessary in the pro-

cess of natural selection. Second, as a distributed algorithm, Hebbian learning occurs locally

between directly interacting entities (neurons or genes) while nonetheless leading to emer-

gence of system-level optimal structures (neural or gene networks). It is not necessary to

hypothesize that the system-level phenotypes (e.g., developmental processes or gene net-

works) are themselves direct targets of natural selection. Third, by discovering and encod-

ing trait correlations, Hebbian learning results in networks with foresightedness and

robustness [11].

For the time being, however, evolutionary connectionism has primarily been a conceptual

framework. It remains unclear how extensively Hebbian learning–relative to natural selection

and other learning algorithms–operates in shaping molecular and cellular structures beyond

neural systems. It is desirable and indeed necessary to test claims of evolutionary learning in

the context of a specific molecular system with computational, statistical and biological

evidence.

Self-optimization of genetic codes
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Origin of genetic code

Here we test the hypothesis that the standard genetic code may have been evolved predomi-

nantly through a self-learning rather than a natural-selective process. The standard genetic

code (SGC, Fig 1A), with which 64 possible combinations of triple nucleotides (“codons”)

encode 20 canonical amino acids and the translational stop signal, underlines much of the

robustness of organisms against deleterious mutations. For example, single-nucleotide muta-

tions occurring at the 3rd codon position typically result in no change of amino acids. Such

properties of SGC are called “error-minimization”, referring to the fact that SGC is non-ran-

domly structured to minimize disruptions by DNA mutations to protein sequences, structures,

and functions.

Although there is a consensus on the adaptiveness of SGC [20–25], the molecular processes

that led to its origin remain controversial [20,22,24,24–31]. Natural selection, in conjunction

with chemical processes during early history of life, has been the most frequently argued

hypothesis to explain the origin of the highly optimized and nearly universal SGC [26,30,32].

However, the selective mechanism tends to be slow and inefficient because it implies that SGC

emerges from competition among cells equipped with random genetic codes [33]. More con-

tentiously, because the protein translation machinery is a complex subcellular system consist-

ing of, among others, tRNAs, aminoacyl-tRNA synthetases (aaRSs) and the ribosome, the

selective hypothesis raised the question whether (and how) natural selection operates at the

level of individual genes, the subcellular system, or the cell system as a whole. For example, it

has been argued that the apparent adaptiveness of SGC may have risen as a by-product of

incremental evolution through codon capture, during which structurally similar aaRSs tend to

Fig 1. Codon wheels showing (A) the standard genetic code (SGC) and (B) a Hopfield-optimized genetic code. Bases are arranged (from center outward) in the

order of 1st, 2nd, and 3rd codon positions. Within each of these three rings, the four bases are cycled clockwise in the order of “AGCT” to minimize the number of

transversions. The codon wheel represents the shortest mutation path and is modeled as the time dimension in the Traveling Salesman Problem (TSP) representation of

the genetic codes. In the 4th ring, amino acids are colored according to a physio-chemical classification [18]. In the 5th ring, amino acids are colored by the Kyte-

Doolittle measure of hydrophobicity [19].

https://doi.org/10.1371/journal.pone.0224552.g001
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recognize phylogenetically similar tRNAs and physio-chemically similar amino acids [6,12,34–

36]. Regardless, neither the selective hypothesis nor the incremental evolution hypothesis

directly addresses the algorithmic processes by which error-minimizing capacity of SGC may

have evolved. Besides being of considerable evolutionary interest, the design principle and

algorithmic origin of SGC are of practical importance for reengineering the genetic code to

create synthetic therapeutic proteins using non-canonical amino acids [37,38].

Here, we explore the possibility of an evolutionary origin of SGC through self-optimization.

The search for optimal genetic codes by using learning algorithms is not new and studies have

concluded that SGC is far from being globally or even locally optimal [20,24–26,31,39–41].

Our specific objective is to test if evolutionary connectionism (and the Hebbian learning rule

in specific) could lead to error-minimizing genetic codes.

Models & methods

Hopfield network & traveling salesman problem

Hopfield neural network is an algorithmic model of associative memory that implements the

Hebbian learning rule [42]. A Hopfield neural network, consisting of symmetrically connected

neurons, is capable of storing, retrieving, and restoring memories when activities of individual

neurons are determined by the Hebbian learning rule [42,43]. For example, in a binary Hop-

field network where each neuron’s activity takes the value of either 1 or -1, the connection

weight (wi,j) between a pair of neurons is increased if their activities (xi and xj) are positively

correlated (both 1 or both -1) and decreased if negatively correlated (one 1 and the other -1).

Once connection weights are specified, a random initial state the network would evolve

towards a locally stable state where the following definition of the network energy is at the

minimum [43]:

E ¼ �
1

2

P
i;jwi;jxixj ð1Þ

As such, while the neuron activities are determined at local levels through interactions with

each other, the neural network as a system displays collective, emergent behavior mimicking

associative memory. The network is able to, for example, retrieve a complete state from incom-

plete inputs or recover a correct state from inputs with errors. The system is also robust in the

sense that the network functions well even when some of the neurons are removed, mimicking

a damaged brain and indicating encoded information redundancy [43].

Besides being a powerful model of associative memory, Hopfield network is an efficient

algorithm for solving combinatorial optimization problems, such as the traveling salesman

problem (TSP), which is to find the shortest tours to cover N cities while visiting each city

once [44]. Instead of being a memory device, here the Hopfield network was used as a compu-

tational tool to search for combinatorial optimal states. To solve the TSP, for example, a Hop-

field network is simulated with N2 neurons, each representing the probability of a city being

visited at a tour position. An energy function is defined to reflect both the constraints (e.g.,

each city to be visited once and the salesman can visit only one city at a time) and a measure-

ment to be minimized (e.g., the tour length). When initialized with arbitrary activities, the net-

work progressively reaches a minimum representing a locally shortest path as the energy

function converges to a stable local minimum [44,45].

The original Hopfield-Tank algorithm was found difficult to replicate as the number of cit-

ies increased and a more efficient algorithm using neural normalization and simulated anneal-

ing was proposed [46]. The mean field of a neuron representing city X visited at tour position i

Self-optimization of genetic codes
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is defined as:

EXi ¼ dp

P
Y 6¼XvYi

þ
P

Y 6¼XdXYðvY;iþ1 þ vY;i� 1Þ ð2Þ

, where dp is a penalty experimentally adjusted to ensure that only one city can occupy a tour

position and vXi is the probability of city X at tour position i. Values of vxi’s are assumed to

obey a Boltzman distribution at any given simulated temperature T: vXi / e� EXi=T . At each itera-

tive updating step, the neuron outputs are normalized to sum up to one so that each value rep-

resents a true probability:

vXi ¼
e� EXi=T

P
je
� EXj=T ð3Þ

Finding a valid path depends on the temperature T and the penalty dp. As the temperature

increases, neuron outputs become increasingly uniform (vXi!1/n). As the temperature drops

to a critical value (T0), the neurons anneal to a steady low-energy state representing a stable,

locally minimal-energy mapping between the cities and tour positions. Both the critical tem-

perature T0 and dp that lead to valid tours were experimentally determined by simulations as

in all other Hopfield solutions of the TSP [46]. The initial values of vXi influence whether the

network converges. To ensure convergence, we used initial voltage values of 0.5 plus a random

number in between -0.1 and +0.1 and dp = 0.7.

Algorithm to generate optimal genetic codes using TSP

TSP model of SGC origin. We modeled a genetic code as a tour in the Traveling Sales-

man Problem (TSP) so that it could be optimized by using a Hopfield neural network. We

hypothesized that the optimal genetic code minimized the total distance of a tour of 20 amino

acids from one codon to next, analogous to a tour of N cities by a salesman from one time

point to the next. To make the codons equivalent to the linearly ordered time points in a TSP,

it was necessary to generate a linearly ordered sequence of codons that minimizes the cumula-

tive mutational distance between codons (see “codon wheel” below).

To represent genetic codes as a TSP, we first constructed a Hopfield network consisting of

21 x 21 neurons, the activity of each of which representing the probability of an amino acid

(“cities”) at a tour position. We measured distances between two amino acids (X and Y) as the

Euclidean distance: dXY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

iðXi � YiÞ
2

q

, where i stands for one of the physio-chemical indi-

ces (either hydrophobicity, polarity, volume, or isoelectric point; Table 1). To remove effects of

difference in magnitudes when combining multiple indices, we rescaled each index by normal-

izing the values to a mean of zero while maintaining the standard deviation. Values for stop

codons were arbitrarily assigned to be an outlier (greater or less than two standard deviations

from the mean).

Second, the neural network was initialized with uniformly distributed random activities

centered at 0.5 [44]. The network was then optimized by following the simulated annealing

algorithm with preset values of dp (e.g., dp = 0.7) and T (e.g., T = 0.1), determined experimen-

tally to maximize the proportion of valid tour paths (Eqs 2 & 3) [46]. Each resulting optimal

tour path was checked for validity to ensure that all amino acids were covered and each amino

acid was visited only once. Invalid paths were discarded and valid paths were saved for further

analysis.

Third, we mapped the amino acids from an optimal path produced by the Hopfield net-

work to the 64 possible codons. Because there are more codons than amino acids it was neces-

sary to assign multiple codons to a single amino acid.
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Codon wheel. We constructed a linear order of codons with minimal evolutionary dis-

tances by following known molecular evolutionary principles. First we gave preference to

mutations at the 3rd codon position and then to those at the 1st codon position, followed by

those at the 2nd codon position, reflecting increasing evolutionary distances of nucleotide sub-

stitutions from the 3rd, to the 1st, and to the 2nd codon positions. Second, for mutations intro-

duced to the same codon positions, we gave preference to transitions over transversions,

reflecting the fact that transitions occur more frequently than transversions [22]. Following

these two rules, a linear sequence of codons, created by cycling the four bases at each codon

position in the order of, e.g., “AGCTTCGA”, to minimize the total number of transversions,

were uniquely defined and shown as a circular codon wheel (Fig 1). Note that the codon wheel

could alternatively be defined by any of the other three possible transversion-minimizing base-

cycling sequences: “AGTCCTGA”, “GACTTCAG”, or “GATCCTAG”. The resulting optimal

codes would vary but be similar in having the shortest cumulative amino acid distances. Fig 1B

shows one of such optimal codes.

To assign multiple codons to the same amino acid, we started with an arbitrary codon in a

codon wheel (e.g., “AAA”) and traveled clockwise through all codons, while labeling each

codon with an integer determined by the order of distinct amino acid to which this codon is

assigned according to SGC (Fig 1). In other words, we assigned each codon an “SGC address”.

For example, starting from “AAA” in a codon wheel shown in Fig 1, the codons were labeled as

“AAA” (1), “AAG” (1), “AAC” (2), “AAT” (2), “GAT” (3), “GAC” (3), “GAG” (4), “GAA” (4), and

so forth and ended with “ATT” (19), “ATC” (19), “ATG” (20), and “ATA” (21). This way, an

Table 1. Amino acid indices.

1-letter code 3-letter code Polaritya Hydrophobicitya Volumea Iso-electric pointa

A Ala 7.0 (-0.1672) 1.8 (0.7638) 31 (-1.067) 6.00 (-0.02972)

C Cys 4.8 (-1.043) 2.5 (1.002) 55 (-0.5477) 5.07 (-0.5561)

D Asp 13.0 (2.221) -3.5 (-1.039) 54 (-0.5694) 2.77 (-1.858)

E Glu 12.5 (2.022) -3.5 (-1.039) 8.3 (-1.559) 3.22 (-1.603)

F Phe 5.0 (-0.9631) 2.8 (1.104) 132 (1.120) 5.48 (-0.3241)

G Gly 7.9 (0.1910) -0.4 (0.01531) 3 (-1.674) 5.97 (-0.0467)

H His 8.4 (0.3900) -3.2 (-0.9373) 96 (0.3402) 7.59 (0.8703)

I Ile 4.9 (-1.003) 4.5 (1.682) 111 (0.6651) 6.02 (-0.0184)

K Lys 10.1 (1.067) -3.0 (-0.8693) 119 (0.8384) 9.74 (2.087)

L Leu 4.9 (-1.027) 3.8 (1.444) 111 (0.6651) 5.98 (-0.04104)

M Met 5.3 (-0.8437) 1.9 (0.7978) 105 (0.5352) 5.74 (-0.1769)

N Asn 10.0 (1.027) -3.5 (-1.039) 56 (-0.5261) 5.41 (-0.3637)

P Pro 6.6 (-0.3264) -1.6 (-0.3930) 32.5 (-1.035) 6.30 (0.1401)

Q Gln 8.6 (0.4696) -3.5 (-1.039) 85 (0.102) 5.65 (-0.2278)

R Arg 9.1 (0.6686) -4.5 (-1.380) 124 (0.9466) 10.76 (2.665)

S Ser 7.5 (0.03184) -0.8 (-0.1208) 32 (-1.046) 5.68 (-0.2108)

T Thr 6.6 (-0.3264) -0.7 (-0.08676) 61 (-0.4178) 6.16 (0.06085)

V Val 5.6 (-0.7243) 4.2 (1.580) 84 (0.08035) 5.96 (-0.05236)

W Trp 5.2 (-0.8835) -0.9 (0.1548) 170 (1.943) 5.89 (-0.09198)

Xb Stop (-1.5993) (1.672) (-1.5833) (-2.6562)

Y Tyr 5.4 (-0.8039) -1.3 (0.2909) 136 (1.207) 5.66 (-0.2222)

a Raw values were obtained from[47] Haig D, Hurst Land normally scaled indices are in parenthesis. Stop signal was excluded from normalization.
b Stop signal, arbitrarily assigned values that are the least polar, most hydrophobic, largest in volume, and most negatively charged so that its distances from amino acids

are greater than the distance between any two amino acids.

https://doi.org/10.1371/journal.pone.0224552.t001
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optimal amino-acid path generated by a Hopfield network could be assigned to 64 codons

based on tour positions. For example, if Lysine (K) has a tour position of 4 in a TSP path, it

will be assigned to two codons “GAG” and “GAA”, both of which have an “SGC address” of 4

(although Lysine codons are “AAA” and “AAG” in SGC). Note that the SGC addresses of

codons were arbitrarily assigned as long as they follow the order of a codon wheel. If tour posi-

tions of amino acids were random (i.e., not optimized by Hopfield network), this scheme is

equivalent to a random permutation of amino acids among synonymous codon blocks [26]. A

Hopfield-optimized tour path of amino acids, on the other hand, is expected to maximize the

chance that similar amino acids are assigned to similar codons. In all cases, the choice of the

initial codon determines the identity but not the error rate of the evolved codes.

Statistical analysis of genetic codes

Randomized genetic codes. To test optimality of SGC and simulated genetic codes, we

generated random codes as statistical controls by permuting the 20 amino acids and the stop

signal among the 21 synonymous codon blocks [26]. This randomization scheme is a stringent

test of code optimality. It maintains the same codon degeneracy as in SGC while removing any

correlation that might exist between amino acids and codon blocks [26].

Code optimality measured by mutational error. We quantified optimality of each code

by calculating errors (i.e., changes in an index value) caused by single-nucleotide substitutions

[47]. The mutational error of a code, a measure of overall code fitness, was the average error

across all pairs of single-mutation codons [26]:

D ¼

P61

i¼1

P9

j¼1
wjXi � Xjj

n
ð4Þ

, where i was the source codon, j was the destination codon (stop codons excluded) differing

from the source codon by a single nucleotide, w was the transition/transversion ratio, which

was set to 5 (Fig 2), Xi and Xj were the physio-chemical values of the two amino acids associ-

ated with the two codons, and n was the total number of one-nucleotide neighboring codon

pairs. Statistical significance of the error of a code was assessed by the proportion of random

codes with an equal or smaller error. Errors were also calculated individually at the three

codon positions and for transitions and transversions separately as a way to estimate if errors

were minimized at individual codon positions and for transition or transversion.

Phylogenetic analysis

To explore biological basis of the self-learning algorithm, we inferred early evolutionary events

during the origin of SGC using the tRNA sequences of Pyrococcus furiosus strain DSM_3638, a

model hyperthermophilic archaebacterium. We downloaded the structurally aligned P. furio-
sus tRNA gene sequences from tRNAdb [48]. Redundant sequences were removed and an

approximate maximum likelihood phylogenetic tree was obtained with FastTree using default

settings [49]. Using the BpWrapper BIOTREE utility, branches with low bootstrap support

(<0.7) were collapsed and the tree was rooted at the midpoint [50]. The phylogenetic tree was

plotted using the APE package on the R/RStudio platform [51].We used phylogenetic autocor-

relation to test co-diversification of tRNA sequences with their cognate amino acids. Phyloge-

netic autocorrelation is a measure of association of a variable with a phylogeny, in the same

way as spatial autocorrelation being a measures of the influence of a variable by geographic dis-

tances [52,53]. We use the gearymoran function in the ADE4 package to calculate Moran’s I

with an amino acid index (e.g., polarity) and obtained its statistical significance with Geary’s

randomization protocol [54].
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Results

Two sources of error minimization in SGC

There are a total of 263 pairs of amino-acid encoding codons that differ by a single base. These

codon pairs could be categorized into six types according to the position of the differing base

and whether it is a transition (A/G or C/T) or transversion (A/C, A/T, G/C, or G/T). Transi-

tions occur more frequently than transversions, known as the transition/transversion muta-

tional bias. When the error magnitude (measured by e.g., amino-acid polarity; Table 1)

between two codons in SGC were plotted for each of the six categories, it was apparent that

mutations at the 3rd codon position caused the least errors, followed by the 1st codon position

and then by the 2nd codon position (red boxes in Fig 2A). This was largely due to codon degen-

eracy by which multiple codons code for the same amino acid, which decreased in the order of

the 3rd, 1st, and 2nd codon positions and was over-represented by transitions. Codon degener-

acy, however, is not itself adaptive because some form of degeneracy is inevitable for any

genetic code consisting of more codons than amino acids.

If SGC does not minimize errors between neighboring codon blocks, one would expect the

mutational errors similar between SGC and a randomized code. In reality, errors in SGC (mea-

sured by, e.g., errors in polarity) were significantly reduced relative to the permuted codes for

transitions and transversions at the 1st codon position (p = 2.9e-2 and 8.7e-5 by t-tests) and

transversions at the 3rd codon position (p = 1.4e-5), while there was no significant error

Fig 2. Patterns of mutation-error minimization in SGC. (A) On the x-axis, single-nucleotide mutations between pairs of codons are categorized by codon positions

(1, 2, and 3) and by transitions (ti) or transversions (tv). The y-axis shows the errors caused by such mutations as quantified by the polarity index (Table 1). Points in red

(n = 263) were derived from SGC; points in black (n = 258) by a single round of random permutation of amino acids among the synonymous codon blocks. (B)

Distributions of amino-acid errors caused by single-nucleotide substitutions (calculated by Eq 4 with ti/tv = 5) from 1000 permuted codes. These error distributions

show SGC significantly reduces mutation errors for polarity (p = 0.010, t-test), hydrophobicity (p = 0.011), and volume (p = 0.048), but not for isoelectric points

(p = 0.648).

https://doi.org/10.1371/journal.pone.0224552.g002
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reduction at the 2nd codon position (Fig 2A). This pattern of error reduction indicates that

SGC minimizes errors caused by mutations at the 1st and 3rd codon positions in addition to

codon degeneracy at these positions. At the 2nd codon position, although there was neither

codon degeneracy nor significant error reduction relative to the random code, transitions

caused significantly less errors than transversions (p = 1.3e-3).

In sum, two sources of error minimization in SGC were identified: (i) SGC significantly

reduces mutation errors at the 1st codon position and transversion errors at the 3rd codon posi-

tion and (ii) at the 2nd and the 3rd codon positions, errors by transitions are significantly mini-

mized relative to those by transversions. These two rules were used to construct a codon wheel

that minimizes evolutionary distances between codons (Fig 1).

SGC co-minimizes errors in amino acid polarity, hydrophobicity, and

volume

We tested the overall errors of SGC relative to random codes for the four major amino acid

indices (Table 1). Results indicated that SGC significantly minimizes errors in polarity (p =
0.010, by t-test), hydrophobicity (p = 0.011), and volume (p = 0.048), but not iso-electricity

(p = 0.648) (Fig 2B). The co-minimization of polarity and hydrophobicity was not surprising

because these two indices were significantly anti-correlated with correlation coefficient -0.81,

according to a principle component analysis of the four indices (Fig 3A).

Hopfield-optimized genetic codes

There are 4 x 1084 possible genetic codes [55]. We used Hopfield networks to search for opti-

mal genetic codes with the goal of assessing the possibility that SGC may have originated by a

similar self-learning process. None of these codes was the SGC, but was comparable to the

SGC in terms of its optimality. First, we obtained optimal codes by minimizing the total dis-

tance measured by a single parameter. For example, a total of 856 valid paths were generated

from a run of 2500 rounds of simulations using amino acid distances determined by polarity.

Indeed, the polarity errors of the simulated codes decreased significantly relative to the ran-

dom codes and the mean error rate was close to that of SGC (-2.0 standard deviation from the

mean error of random codes) (Fig 4A). The errors for hydrophobicity, volume, and iso-elec-

tricity of simulated codes were incidentally reduced. Adding volume as an extra distance

parameter had similar error-reducing efforts to all four indices, while the decrease in volume

was the largest (-3.0 standard deviation from the mean error) (Fig 4B). Continuing by adding

iso-electricity as the 3rd parameter, the simulated codes improved upon the random codes for

all three measures of errors (Fig 4C). Finally, including all four parameters resulted in simu-

lated codes optimized for all parameters (Fig 4D).

It could be concluded from these simulations that Hopfield network optimized genetic

code in a highly sensitive manner depending on which and how many indices were included

in the distance function. Further, considering the large iso-electricity error rate of SGC (0.3

standard deviation greater than the random error, Fig 2B), we rejected the hypothesis that

SGC evolved by minimizing errors in isoelectric point. Indeed, it is most parsimonious to con-

clude that SGC evolved by minimizing the polarity error alone, with reduced errors in hydro-

phobicity and volume as incidental consequences (Fig 4A). This hypothesis was supported by

the fact that optimization with respect to hydrophobicity or volume alone resulted in poorer

match of errors between SGC and the simulated codes.

Next, we searched for simulated codes that were more optimal than SGC by plotting the

error rates grouped by individual codes (Fig 5). One such code with all four errors less than

-2.0 standard deviation away from the mean random errors was identified and its codon
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assignment was visualized with a codon wheel (Fig 1B). This Hopfield-optimized code was

more optimal than SGC in that, e.g., all non-polar amino acids were mapped to codons with

the 2nd codon position being a purine (A or G). Furthermore, all positively or negatively

charged amino acids were mapped to codons with the 2nd codon position being a thymine (T).

Most significantly, genetic codes similarly or more optimal than SGC were not a rarity but

emerged readily from a Hopfield network (Fig 5), suggesting that SGC was suboptimal in

error minimization.

Fig 3. Hopfield network minimizes amino acid tour lengths. (Top left) First two principal components of the four amino acid indices (Table 1). The variances

explained by the 1st and 2nd principal components are 48.73% and 37.96% respectively. (Top right) Amino acid path of a Hopfield-simulated code optimized for polarity

and volume (tour lengths 32.2±4.4 in polarity error). (Bottom left) Amino acid path of a randomly permuted code (tour lengths 56.3±4.6, sample size 1000). (Bottom

right) Amino acid path of SGC (tour length 41.0).

https://doi.org/10.1371/journal.pone.0224552.g003
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Phylogenetic autocorrelations

So far we have shown that SGC was an unsurprising (and indeed suboptimal) outcome of a

Hebbian learning process when operating under the same set of biological constraints as in

SGC. Here we explored the possible biological basis of Hebbian learning during the origin of

SGC by examining footprints of early evolutionary events left in the gene sequences of the con-

temporary protein-translation system from the archaebacterium Pyrococcus furiosus.
Recognition of amino acids by codons–is mediated by tRNAs, each of which is ligated by

an aminoacyl-tRNA synthase (aaRS) at the acceptor stem to a specific amino acid according to

the anticodon sequence [56]. Unlike the aaRSs, tRNAs are structurally homologous, suggesting

a single common origin. Phylogenies of contemporary tRNA gene sequences show a general

monophyly of iso-accepting tRNAs (i.e., tRNAs recognizing the same amino acids) although

codon recruitments from different tRNA clades have occurred (Fig 6) [57]. Further, significant

phylogenetic autocorrelation of tRNA with the physicochemical properties of cognate amino

acids supports that expansion of iso-accepting tRNA groups to all twenty amino acids involved

Fig 4. Hopfield network minimizes mutation errors. We constructed a 21-by-21 TSP and searched for the shortest paths traversing the 20 amino acids and the stop

codon (21 “cities”) using Hopfield neural networks (see Methods). Distances between the “cities” were determined by either polarity alone (top row), or a combination

of 2, 3, and all 4 parameters (other rows). Valid paths (number in parenthesis) were mapped to the codon wheel resulting in simulated genetic codes. Each simulated

code was calculated for average single-mutation error rates based on each parameters (Eq 4). All error rates were normalized according to the mean and standard

deviation of random codes (as in Fig 2B) and their distribution were shown as density plots. While it is possible to obtain codes optimized for all four parameters

(bottom row), the most parsimonious codes with errors similar to SGC errors were generated with the Hopfield network that optimized for polarity alone (top row). An

alternative way to visualize reduced errors in Hopfield-optimized codes is to show each code as an amino acid tour in a 2-dimensional principal component space,

which shows significantly shorter tour lengths of Hopfield-optimized codes than those of permuted code and SGC (Fig 3).

https://doi.org/10.1371/journal.pone.0224552.g004
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similar tRNAs recognizing physio-chemically similar amino acids (Fig 6). This autocorrelation

is consistent with an early co-diversification for tRNA sequences and cognate amino acids.

Discussion

This study was motivated by the proposition of evolutionary connectionism that algorithmic

learning could lead to self-optimized, adaptive, and robust living systems [10,11]. Using the

origin of genetic code as a test case, we show that it is indeed plausible for an error-minimizing

genetic code to emerge through a Hebbian learning process without natural selection playing a

role at system levels.

TSP representations of genetic code

Our algorithm for finding optimal genetic codes consisted of two main steps. In the first step,

we formulated code optimization as a combinatory optimization problem of finding the short-

est paths traversing the 20 amino acids and the stop signal. This Traveling Salesman Problem

(TSP) formulation of the genetic code naturally lend itself to be solved with the Hopfield neu-

ral network, which is an implementation of the Hebbian learning rule [43,44]. In the second

step, we mapped the optimal tour positions emerged from the Hopfield network to a circular

sequence of codon–a codon wheel (Fig 1)–that are based on biological constraints present in

SGC (e.g., the codon degeneracy decreasing in the order of 3rd, 1st, and 2nd codon positions

and the size distribution of synonymous codon blocks). Note that there was no guarantee that

optimized genetic codes emerged from the Hopfield network would be as optimal as SGC.

This could be seen in randomly permuted codes, most of which showed higher error rates

Fig 5. Hopfield network yielded genetic codes more optimal than SGC. (Left Panel) In this alternative display of error rates of genetic codes, each code is represented

by a quadrilateral with vertices defined by the four errors. The black diamond represents the average errors of the permuted codes (n = 100). Note that the minimum

error (-3.6 standard deviation from the mean) is placed at the center for all four parameters so that the smaller a quadrilateral condenses towards the center the more

optimal a code is. (Right Panel) Gray quadrilaterals represent Hopfield-simulated codes (n = 52) optimized for polarity and volume (the same output used for Fig 4, 2nd

row). The simulated codes have generally less errors than randomized codes. Many are more optimal than SGC, one of which is highlighted in blue and its coding

pattern is shown with a codon wheel (Fig 1B).

https://doi.org/10.1371/journal.pone.0224552.g005
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than SGC although generated with the same set of SGC constraints including codon-degener-

acy, transition/transversion bias, and the size distribution of synonymous codons (Fig 2).

More tellingly, plenty of codes optimized by the Hopfield network and mapped to the same

codon wheel showed higher error rates than SGC (Fig 4).

Also using simulated annealing, DiGiulio et al [58] was able to achieve a code with an opti-

mality ratio of 51.7% with respect to polarity, whereas we found a code with an optimality

ratio of 48% with respect to polarity. Here we use DiGiulio’s optimality ratio: {Δ(Mean)−Δ
(SGC)}/{Δ(Mean)−Δ(Code)}×100, where Δ(Mean) is the average error in polarity associated

with a set of random code, Δ(SGC) is the error in polarity in the SGC, and Δ(Code) is the error

in polarity the given code. DiGiulio et al used simulated annealing to minimize error directly

without a neural network. On average 89.2% of our codes optimized for polarity were better

than SGC with respect to polarity. The method however does not always produce optimal

codes, as the simulated annealing method to solve the traveling salesman problem only finds

local minima, which sometimes improve on SGC and sometimes do not.

Together, these two algorithmic steps (i.e., the use of a Hopfield network and a codon

wheel) allowed us to establish that genetic code as optimal as SGC emerge quickly and without

natural selection. It is conceivable that these two steps be combined into a single TSP algo-

rithm. We have represented the genetic code as a 64 amino acids (with repetition)-by-64

codons TSP and set the distances between the same amino acids as zero. In practice, however,

optimal codes emerged from such a Hopfield network turned out to be not strictly comparable

to SGC (and its random permutations) because the size distribution of synonymous codon

blocks was not preserved. One way of preserving the codon block size distribution in SGC is to

number the codon blocks sequentially according to a codon wheel (Fig 1) so that a 21 amino

acid– 21 codon block TSP could be constructed. This representation would be equivalent to

the two-step algorithm we used because the “SGC address” of a codon was precisely the posi-

tion of the codon block containing this codon in a codon wheel.

Coevolving molecular network resembles a Hopfield network. TSP is perhaps the most

studied combinatorial optimization problem for which Hopfield network is one of numerous

heuristic searching algorithms [45,59]. Our choice of Hopfield network is motivated by its

embodiment of the Hebbian learning rule, a major self-organizing principle in evolutionary

learning [15]. Similar to Hopfield network being a computational implementation of the Heb-

bian rule (Eq 1), the molecular machinery associated with the genetic code may well be a bio-

logical analog of the Hopfield network. Mirroring a Hopfield neuron associating a city with a

specific tour position, each macromolecule (e.g., an tRNA) associates a codon with a amino

acid. Further resembling Hopfield neurons inter-connected with varying degrees of weights,

members of a macromolecule gene family (e.g., tRNAs and aaRSs) are related to each other

with varying degrees of phylogenetic distances (Fig 6). Quantitatively, the rate of increase in

the weight (wij) of connection between two Hopfield neurons (i and j) with correlated (r) activ-

ities xi and xj could be expressed as: dwij/dt~r(xi,xj) [43]. Similarly, a history of co-diversifica-

tion among tRNAs and amino acids creates phylogenetic auto-correlation between gene

sequences and amino acid physio-chemistry (Fig 6). The phylogenetic autocorrelation could

Fig 6. Molecular phylogeny of Pyrococcus furiosus tRNAs. Leaf nodes are labeled with the cognate amino acid names

and the anticodon sequences. Amino acid names are colored according to an amino acid physio-chemical

classification as in Fig 1 [18]. Only significantly supported branches (bootstrap value> = 0.7) are shown (see

Methods). Phylogenetic autocorrelation with amino acid indices are all significant (Moran’s I = 0.1973 with p = 8.1e-7

for polarity, I = 0.21517 with p = 1.6e-07 for hydrophobicity, I = 0.1593 with p = 6.0e-05 for volume, I = 0.1116 with

p = 2.4e-3 for isoelectricity), suggesting early co-diversification between tRNAs and physio-chemistry of cognate

amino acids.

https://doi.org/10.1371/journal.pone.0224552.g006
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be expressed as: dLij/dt~d(xi,xj), where Lij is the phylogenetic distance (i.e., tree length)

between two paralogs and d(xi, xj) is the codon or amino acid distance associated with the pair

of paralogs. Our Hopfield and Hebbian interpretations of the origin of SGC are consistent

with the codon capture hypothesis, which posits that primordial codon expansion followed a

phylogenetic path of minimum changes in amino acid physio-chemistry or exchangeability

[60–62]. Indeed, before developing his namesake network, Hopfield himself had proposed an

origin of SGC through co-diversification of tRNA molecules and their binding specificities

[63].

To summarize, the phylogenies of macromolecule gene families resemble Hopfield net-

works and may thus be considered a recapitulation of the self-optimizing process of the SGC.

Self-learning in evolution of multi-gene families

Molecular systems consisting of co-diversifying paralogs are not limited to the genetic code. In

fact, genome and gene duplications coupled with neo-functionalization or sub-functionaliza-

tion are a pervasive and predominant mechanism of evolutionary innovation [64–66]. For

example, duplications of the and the α- and β-hemoglobin genes have led to novel capacities

for binding oxygen and carbon dioxide [65]. Duplication and sub-functionalization of the

homeobox genes contributed to body plan diversification in bilaterian animals [67]. Vertebrate

olfactory sensing system consists of rapidly evolving members of the odorant receptors gene

family [68]. Hopfield himself proposed a neural computational model akin to his namesake

network that distributes odor recognition among a large number of sensory cells [69]. The

Major Histocompatibility Complex (MHC) loci responsible for adaptive immunity in verte-

brates consists of multi-gene families [70]. For the parasites, genomes of microbial pathogens

such as Trypanosoma and Borrelia are enriched with duplicated surface antigen genes for

defense against host immunity [71,72].

In each of these cases, a complex adaptive molecular system has evolved from phylogenetic

co-diversification between genes and gene functions. The present work shows that Hopfield

network offers a way to simulate and perhaps to design artificial self-optimizing genetic

systems.
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59. Applegate D, Bixby R, Chvátal V, Cook W. The Traveling Salesman Problem. In: Princeton University

Press [Internet]. 2007 [cited 4 Mar 2019]. Available: https://press.princeton.edu/titles/8451.html

60. Davis BK. Evolution of the genetic code. Prog Biophys Mol Biol. 1999; 72: 157–243. PMID: 10511799

61. Osawa S, Jukes TH. Codon reassignment (codon capture) in evolution. J Mol Evol. 1989; 28: 271–278.

https://doi.org/10.1007/bf02103422 PMID: 2499683

62. Stoltzfus A, Yampolsky LY. Amino acid exchangeability and the adaptive code hypothesis. J Mol Evol.

2007; 65: 456–462. https://doi.org/10.1007/s00239-007-9026-8 PMID: 17896070

63. Hopfield JJ. Origin of the genetic code: a testable hypothesis based on tRNA structure, sequence, and

kinetic proofreading. Proc Natl Acad Sci. 1978; 75: 4334–4338. https://doi.org/10.1073/pnas.75.9.4334

PMID: 279919

64. Dittmar K, Liberles D. Evolution after Gene Duplication. John Wiley & Sons; 2011.

65. Graur D. Molecular and Genome Evolution. Sinauer; 2015.

66. Ohno S. Evolution by Gene Duplication. Springer Science & Business Media; 2013.

67. Holland PWH. Did homeobox gene duplications contribute to the Cambrian explosion? Zool Lett. 2015;

1: 1. https://doi.org/10.1186/s40851-014-0004-x PMID: 26605046

68. Hoover KC. Evolution of olfactory receptors. Methods Mol Biol Clifton NJ. 2013; 1003: 241–249. https://

doi.org/10.1007/978-1-62703-377-0_18 PMID: 23585047

69. Hopfield JJ. Odor space and olfactory processing: Collective algorithms and neural implementation.

Proc Natl Acad Sci. 1999; 96: 12506–12511. https://doi.org/10.1073/pnas.96.22.12506 PMID:

10535952

70. Naz R, Tahir S, Abbasi AA. An insight into the evolutionary history of human MHC paralogon. Mol Phy-

logenet Evol. 2017; 110: 1–6. https://doi.org/10.1016/j.ympev.2017.02.015 PMID: 28249742

71. Norris SJ. vls Antigenic Variation Systems of Lyme Disease Borrelia: Eluding Host Immunity through

both Random, Segmental Gene Conversion and Framework Heterogeneity. Microbiol Spectr. 2014; 2.

https://doi.org/10.1128/microbiolspec.MDNA3-0038-2014 PMID: 26104445

72. Taylor JE, Rudenko G. Switching trypanosome coats: what’s in the wardrobe? Trends Genet TIG.

2006; 22: 614–620. https://doi.org/10.1016/j.tig.2006.08.003 PMID: 16908087

Self-optimization of genetic codes

PLOS ONE | https://doi.org/10.1371/journal.pone.0224552 October 28, 2019 18 / 18

https://doi.org/10.1093/nar/gkn772
https://doi.org/10.1093/nar/gkn772
http://www.ncbi.nlm.nih.gov/pubmed/18957446
https://doi.org/10.1371/journal.pone.0009490
http://www.ncbi.nlm.nih.gov/pubmed/20224823
https://doi.org/10.1186/s12859-018-2074-9
http://www.ncbi.nlm.nih.gov/pubmed/29499649
https://doi.org/10.2307/2992183
https://doi.org/10.2307/2332142
https://doi.org/10.2307/2332142
http://www.ncbi.nlm.nih.gov/pubmed/15420245
https://doi.org/10.18637/jss.v022.i04
https://doi.org/10.3390/life7010007
http://www.ncbi.nlm.nih.gov/pubmed/28208827
https://doi.org/10.1038/sj.hdy.6801086
https://doi.org/10.1038/sj.hdy.6801086
http://www.ncbi.nlm.nih.gov/pubmed/18322459
https://doi.org/10.1126/science.279.5357.1665
http://www.ncbi.nlm.nih.gov/pubmed/9497276
https://doi.org/10.1006/jtbi.1994.1085
https://press.princeton.edu/titles/8451.html
http://www.ncbi.nlm.nih.gov/pubmed/10511799
https://doi.org/10.1007/bf02103422
http://www.ncbi.nlm.nih.gov/pubmed/2499683
https://doi.org/10.1007/s00239-007-9026-8
http://www.ncbi.nlm.nih.gov/pubmed/17896070
https://doi.org/10.1073/pnas.75.9.4334
http://www.ncbi.nlm.nih.gov/pubmed/279919
https://doi.org/10.1186/s40851-014-0004-x
http://www.ncbi.nlm.nih.gov/pubmed/26605046
https://doi.org/10.1007/978-1-62703-377-0_18
https://doi.org/10.1007/978-1-62703-377-0_18
http://www.ncbi.nlm.nih.gov/pubmed/23585047
https://doi.org/10.1073/pnas.96.22.12506
http://www.ncbi.nlm.nih.gov/pubmed/10535952
https://doi.org/10.1016/j.ympev.2017.02.015
http://www.ncbi.nlm.nih.gov/pubmed/28249742
https://doi.org/10.1128/microbiolspec.MDNA3-0038-2014
http://www.ncbi.nlm.nih.gov/pubmed/26104445
https://doi.org/10.1016/j.tig.2006.08.003
http://www.ncbi.nlm.nih.gov/pubmed/16908087
https://doi.org/10.1371/journal.pone.0224552

