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Abstract
Background: Empirical binding models have previously been investigated for the energetics of
protein complexation (ΔG models) and for the influence of mutations on complexation (i.e.
differences between wild-type and mutant complexes, ΔΔG models). We construct binding models
to directly compare these processes, which have generally been studied separately.

Results: Although reasonable fit models were found for both ΔG and ΔΔG cases, they differ
substantially. In a dataset curated for the absence of mainchain rearrangement upon binding, non-
polar area burial is a major determinant of ΔG models. However this ΔG model does not fit well
to the data for binding differences upon mutation. Burial of non-polar area is weighted down in
fitting of ΔΔG models. These calculations were made with no repacking of sidechains upon
complexation, and only minimal packing upon mutation. We investigated the consequences of more
extensive packing changes with a modified mean-field packing scheme. Rather than emphasising
solvent exposure with relatively extended sidechains, rotamers are selected that exhibit maximal
packing with protein. This provides solvent accessible areas for proteins that are much closer to
those of experimental structures than the more extended sidechain regime. The new packing
scheme increases changes in non-polar burial for mutants compared to wild-type proteins, but does
not substantially improve agreement between ΔG and ΔΔG binding models.

Conclusion: We conclude that solvent accessible area, based on modelled mutant structures, is
a poor correlate for ΔΔG upon mutation. A simple volume-based, rather than solvent accessibility-
based, model is constructed for ΔG and ΔΔG systems. This shows a more consistent behaviour.
We discuss the efficacy of volume, as opposed to area, approaches to describe the energetic
consequences of mutations at interfaces. This knowledge can be used to develop simple
computational screens for binding in comparative modelled interfaces.

Background
Macromolecular complexation is key to many biological
processes, and has been a subject of experimental study
for many decades. The last few years have seen significant

advances in high throughput detection of protein-protein
interactions, for example with yeast two hybrid [1] and
affinity purification methods feeding into analysis by
mass spectrometry [2]. These laboratory advances have
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led to a new area of bioinformatics analysis, interpreting
the data in terms of interaction networks, and putting
such networks in a biological context [3]. At the same
time, structural biology continues to visualise interfaces at
atomic resolution [4,5], whilst computational biology
addresses whether proteins can be docked into the correct
complexes [6,7], and develops models for the prediction
of binding affinities [8]. These are fundamental questions,
combining the physico-chemical properties of atomic
interactions with biological activity.

Docking of two proteins is determined by complementa-
rity of shape and of pairwise interactions within shape-
matched patches [9]. Methods for predicting mainchain
alteration are still relatively poor, so that successful dock-
ing methods have been largely restricted to proteins for
which there is little conformational change between the
complexed and uncomplexed forms [10]. The issue of
sidechain rotameric variation upon complexation can
also cause problems [11], necessitating the development
of methods to sample sidechain conformers [12]. There
are promising advances in the handling of conforma-
tional variation, for both sidechains and mainchain,
which simulate variation and show that the correct solu-
tion can be identified in a cluster of well-packed configu-
rations [13,14].

Computational research in protein docking inevitably
overlaps studies that construct models for binding affini-
ties, through the common use of force-fields. One partic-
ularly important growth area is the assessment of binding
potential for proteins that are homologous with the con-
stituents of characterised complexes i.e. comparative
modelling of complexes based on known interfaces
[15,16]. Whereas comparative modelling of individual
domains based on homology demonstrates the fold for
the sequence of interest, albeit with variations that may
not be easy to model, similar modelling applied sepa-
rately to non-covalently linked components must address
the question of whether a viable interface is maintained.
If effective algorithms can be developed in this area, then
structural bioinformatics, combined with structural biol-
ogy, will be a valuable complement to the high through-
put experimental methods for determining protein-
protein interactions. The question of what features deter-
mine interfacial stability had been extensively studied. A
recurring theme is the importance, in many cases, of bur-
ied non-polar area [17]. This simple observation, along
with the complexity and computational scale of attempts
to calculate free energies of binding by simulation, has led
to the development of empirical binding models [8].
These involve the separation into terms that each repre-
sent some physical feature or combination of features,
and which are linearly combined and the relevant weights
determined through fitting to a test set of experimental

data. Terms reflect properties such as: the hydrophobic
effect/buried non-polar surface area; electrostatic interac-
tions; van der Waals interactions; sidechain rotameric
entropy; rotational and translation entropy of complexa-
tion. The limitations of such models, especially the lack of
a simulation component, are counteracted by their poten-
tial to detect trends through fitting to experimental data.

There is also widespread interest in modelling the influ-
ence of mutations at interfaces, which in biological terms
could map for example to the role of single nucleotide
polymorphisms in complexes [18]. Binding models have
been derived from fitting to measured differences in bind-
ing energies for mutant complexes relative to wild-type
[19,20]. In the current work, we denote models for bind-
ing in complexes as ΔG models, and those for differences
(upon mutation) between complexes as ΔΔG models.
Since ΔG and ΔΔG models use the same range of terms,
apart from cancellation of rotational/translational
entropy, it is of interest to compare them. This is the sub-
ject of the current study.

An important property of interfaces is the degree to which
conformation changes between the complexed and
uncomplexed forms. We have restricted our dataset of
wild-type proteins to those for which there is no evidence
in the literature for mainchain changes, and for mutant
proteins the assumption is made that the backbone does
not change. With regard to sidechains, we make use of a
mean field technique adapted previously in our labora-
tory [21], from earlier work [22]. With this method the
probability of a rotamer is higher where it can fit with a
larger number of neighbouring sidechain rotamers, at a
given van der Waals tolerance. Thus higher probability
values, in this framework, tend to select rotamers with
higher solvent accessibility, and conversely lower proba-
bility generally maps to lower solvent accessibility.
Rotamer prediction is more difficult for sidechains with-
out structural constraints [23], and prediction accuracy
reduces in these cases for commonly-used methods such
as SCWRL [24]. In the current work we study the effect of
differential modelling of interfacial changes, using either
the higher solvent accessibility scheme ("HighSA"), or in
the lower solvent accessibility ("LowSA") scheme. Com-
parison with accessible solvent areas in experimental
structures suggests that the more compact, LowSA, config-
urations may give a more appropriate representation.

In addition to the question of how to repack sidechains,
there is also the issue of which sidechains to repack. In a
minimal scheme for repacking, using the experimental
rotamers where possible, wild-type complexes are not
repacked at all, and mutations are modelled simply by
rotamer selection for the mutated amino acid. Such struc-
tural models we denote as "Minimal". In contrast, it is
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also possible to repack all sidechains for all molecules, so
that the packing can (in principle) change upon complex-
ation and/or upon mutation. We label such schemes as
"Complete". Thus Minimal-HighSA packed wild-type
complexes in ΔG models are simply the structures from
the experimentally-determined complexes, and for muta-
tions in ΔΔG models would simply be modelling of the
mutated residue with the most solvent accessible rotamer,
in the free and complexed states. Complete-LowSA takes
low solvent accessibility rotamers, and repacks all
sidechains, in both free and uncomplexed states.

Our results show that the importance of buried non-polar
surface for ΔG models is not reflected in ΔΔG models,
when using HighSA packing (Minimal or Complete). We
examine the effect of Complete-LowSA packing, allowing
for greater environment-specific relaxation. Although the
magnitude of calculated non-polar burial differences
between wild-type and mutants is increased, the Com-
plete-LowSA packing does not significantly improve con-
sistency between ΔG and ΔΔG models. A key factor in the
inconsistency is that changes in non-polar burial upon
mutation can be either positive or negative, in compari-
son with the experimental ΔΔG values in our dataset that
are almost exclusively unfavourable upon mutation. This
is true for all packing schemes used, presumably reflecting
inaccuracies in predicting conformation upon mutation
and/or that structure is more fluid than can be represented
by single conformers.

The inconsistency of ΔG and ΔΔG models is substantially
reduced when a simple volume-based representation of
interfacial changes replaces the area-based description.
We discuss this result in the context of comparative mod-
elling for protein-protein interfaces.

Results and discussion
Non-polar surface area dominates ΔG binding models (no 
sidechain repacking)
A set of protein-protein complexes with known structures
and binding energies was collated as described in the
Methods section. We ascertained that there was no evi-
dence for substantial mainchain conformational change
in these complexes through a survey of the literature.
Although structures for the uncomplexed components
were not used in calculations, in several cases these were
used for assessment of conformational change. Table 1
lists the set of wild-type complexes used in the current
study, together with their complexation energies.

Figure 1 shows best fit models for the wild-type com-
plexes, setting ΔGROT-TRANS to zero. Table 2 gives the model
weights corresponding to Figure 1, and with models cal-
culated for ΔGROT-TRANS = 10 kJ/mole, investigating the
range derived from experiment [25]. There is very little dif-
ference in models at 0 or 10 kJ/mole for ΔGROT-TRANS, and
this is generally true throughout this work. The Methods
section describes modelling of ΔGSC-ROT according to a
Locked scheme (sidechains free in separated components
and fixed in the interface), and an Unlocked scheme (free

Table 1: Wild-type complexes and binding energies.

Protein A Protein B ΔG (kJ/mole) PDB Ref

BPTI Chymotrypsin -44.96 1CBW [49]
Barnase Barstar -79.50 1B27 [50]
Subtilisin Carlsberg OMTKY3 -59.31 1R0R [51]
Rap1A Raf1 -35.98 1C1Y [52]
Ras Byr2 -38.45 1K8R [53]
Fv D1.3 Fv E5.2 -45.48 1DVF [54]
Fv D1.3 HEWL -45.10 1VFB [55]
BPTI Trypsin -75.16 2PTC [49]
HyHEL10 Fab HEWL -56.21 3HFM [56]
RalGDS Ras -35.15 1LFD [57]
Subtilisin Carlsberg Eglin C -54.76 1CSE [58]
IM9 Colicin E9 -78.62 1EMV [59]
HyHEL5 Fab HEWL -59.36 1YQV [60]
SGPB OMTKY3 -61.45 3SGB [61]
Ribonuclease Inhibitor Angiogenin -87.15 1A4Y [62]
N9 Neuraminidase NC10 Fab -48.50 1NMB [63]
Subtilisin BPN' SSI -61.33 2SIC [64]
Thrombin Thrombomodulin -53.09 1DX5 [65]
Ribonuclease A Ribonuclease Inhibitor -76.30 1DFJ [62]
Kallikrein A BPTI -51.83 2KAI [66]

Protein constituents of the complexes are given, with the following abbreviations: OMTKY3, turkey ovomucoid third domain; HEWL, Hen Egg 
White Lysozyme; BPTI, Bovine Pancreatic Trypsin Inhibitor; IM9, Immunity Protein 9; SGPB Streptomyces griseus protease B; SSI, Streptomyces 
Subtilisin Inhibitor.
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at all points). Comparing Figure 1 panels (a) and (d), and
also Table 2, whilst there are some differences between the
Locked and Unlocked interfacial sidechain models for
ΔGSC-ROT, with somewhat better performance for the
Locked case, the overall domination by ΔGASA-NP is com-
mon. Figure 1(c) shows that Locked ΔGSC-ROT values are,
as expected, substantially larger than the Unlocked
sidechain ΔGSC-ROT values, but with little correlation
between them. Table 2 indicates that the best fit model
uses a negative (unphysical) weight for Unlocked interfa-
cial sidechain ΔGSC-ROT. Generally, several of the weights
reported in Table 2 are negative. Where these are of small
magnitude they will have little contribution to a binding

model, and larger magnitude negative weights are likely to
result from anti-correlation with other features that have
large and positive weights. Table 3 shows correlations
between calculated properties, and between calculated
properties and experimental binding energies. The corre-
lation shown in Figure 1(b) and the weights in Table 2
make it clear that buried non-polar area dominates the ΔG
binding model [17].

Non-polar surface is a minor feature in ΔΔG binding 
models (minimal sidechain repacking, Minimal-HighSA)
Empirical binding models generally target either com-
plexes or differences between wild-type and mutant com-

ΔG models with Locked and Unlocked interfacial sidechains, Minimal-HighSAFigure 1
ΔG models with Locked and Unlocked interfacial sidechains, Minimal-HighSA. Binding models are fit to wild-type 
ΔGEXP, and Minimal-HighSA implies no repacking for wild-type systems. (a) Model fit with ΔGSC-ROT calculated for Locked 
interfacial sidechains and ΔGROT-TRANS = 0 (R2 = 0.69). (b) Correlation between ΔGEXP and Δ(ASA-NP) (R2 = 0.55). (c) Poor 
correlation (R2 = 0.12) between ΔGSC-ROT calculated with Locked and Unlocked interfacial sidechains. (d) Model fit with ΔGSC-

ROT calculated for Locked interfacial sidechains and ΔGROT-TRANS = 0 (R2 = 0.61). For plots with equivalent y and x quantities, 
the line y = x is shown.
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plexes, but not both. We are interested in whether ΔG and
ΔΔG models show the same relative importance of model
features. Figure 2 shows results for ΔΔG models, where the
rotation/translation term cancels between wild-type and
mutant systems. Again reasonable fits are obtained,
although this time the Unlocked interfacial sidechain
entropy term gives a slightly better model than the locked
term (compare panels (a) and (b) of Figure 2). As for the
wild-type calculations, these two terms do not correlate
well (not shown). A major difference to ΔG models (Table
2) is that non-polar surface area has a small weight, and a
poor correlation with the measured binding data (Table
4). The ΔΔGASA-P, ΔΔGIONIS-DESOLV and ΔΔGSC-ROT terms
correlate to such a degree that individually they can adopt
a large and unphysical weighting, with compensation by
the other features.

A ΔG binding model fits poorly to measured ΔΔG (minimal 
sidechain repacking, Minimal-HighSA)
Figure 3 demonstrates discrepancy between ΔG and ΔΔG
models. The ΔG model of Figure 1(a) (see also Table 2)
has been applied to the mutant complexes, and compared
with measured ΔG. Within clusters (representing the
mutant sets), the spreads of calculated ΔG are too small to
reproduce variation in the measurements. This issue of
model incompatibility is not resolved when a single ΔG

model is fit to ΔG data for wild-type and mutant com-
plexes (not shown). Some resolution of the discrepancy
could be achieved if assessment of buried non-polar area
were inaccurate in ΔG or ΔΔG models, and/or if the strat-
egies for mutant selection, and perhaps the systems
undergoing mutagenesis, emphasise other features over
non-polar properties. The second factor is unlikely to be
the whole story, since polar features are down-weighted in
the ΔG models. With regard to the first factor, the mean-
field packing algorithm has been modified such that
sidechain rotamers can be chosen that will tend towards
maximal packing with the rest of a protein (LowSA).

Repacking sidechains with the mean-field algorithm
Figure 4 shows the scheme for generation of mutant struc-
tures, using the various sidechain packing schemes that
are available, Minimal or Complete and HighSA or
LowSA. The previous Results sections referred to Minimal-
HighSA. Following the observation that buried non-polar
ASA dominates ΔG, but not ΔΔG (with Minimal-HighSA
binding models), we now consider the effect of using
Complete-LowSA repacking. We theorise that in models
of mutant structures, particularly those with replacement
by alanine, sidechains will relax into the space left by the
mutation. Since there may be different constraints on

Table 2: Weights for ASA-based binding models.

Model type ΔG ΔG ΔG ΔG ΔΔG ΔΔG ΔG ΔG ΔΔG ΔΔG

ΔGROT-TRANS 0 10 0 10 - - 0 0 - -
Un/Locked L L U U L U L U L U

Packing Scheme Minimal-HighSA Complete-LowSA

ASA-NP 0.73 0.79 0.60 0.65 0.07 -0.04 0.58 0.56 -0.31 -0.23
ASA-P -0.04 0.04 -0.08 0.02 -0.73 -0.67 -0.05 -0.11 -0.65 0.04
IONIS-FDDH -0.01 -0.04 0.15 0.13 0.21 0.08 0.10 0.10 0.17 0.16
IONIS-DESOLV 0.15 0.09 0.06 0.01 1.29 0.97 0.20 0.19 0.67 0.61
SC-ROT 0.12 0.10 -0.22 -0.30 -0.02 -1.61 0.03 -0.02 -0.50 -0.61
R2 correlation 0.69 0.64 0.61 0.58 0.61 0.64 0.69 0.68 0.54 0.55
Figure/Panel 1a - 1d - 2a 2b 6 - - -

Weights are either w for ΔG models or w' for ΔΔG models. U/L is Unlocked/Locked interfacial sidechains, applied to SC-ROT.

Table 3: Correlations (R) for ΔG model features in wild-type complexes, Minimal-HighSA packing

ΔASA-NP ΔASA-P ΔIONIS-FDDH ΔIONIS-DESOLV ΔSC-ROT Locked ΔSC-ROT Unlocked ΔGEXP

ΔASA-NP 1
ΔASA-P 0.57 1
ΔIONIS-FDDH 0.31 0.50 1
ΔIONIS-DESOLV 0.55 0.92 0.51 1
ΔSC-ROT L -0.46 -0.69 -0.25 -0.76 1
ΔSC-ROT U -0.39 -0.14 0.13 -0.24 0.35 1
ΔGEXP 0.74 0.45 0.42 0.54 -0.17 -0.31 1
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such relaxation in the complexed and uncomplexed
states, this could lead to changes in buried area.

The potential for LowSA prediction is shown with the
wild-type complexes in Figure 5(a), where the total ASA
values are shown for: experimental structures, Complete-
HighSA repacking and Complete-LowSA repacking.
LowSA gives an overall result more in accord with experi-
ment. Figure 5(b) shows an example for the barnase-bar-
star complex (1b27, [26]), where more sidechains packed
with Complete-HighSA protrude from the crystal struc-
ture molecular surface, than do those packed with Com-
plete-LowSA. In terms of predicted buried ASAs (polar
and non-polar combined), Figure 5(c) shows that for the
set of mutants used in this study, Complete-LowSA
repacking gives consistently more burial than does Com-
plete-HighSA. This result holds when mutant systems are
differenced to wild-type, and also whether the mutants are
to alanine or other amino acids (not shown). Therefore

the ΔΔGASA-NP and ΔΔGASA-P terms are larger (for a given
weighting) with Complete-LowSA packing than with
Complete-HighSA, and we next examined whether this
alters the discrepancy between ΔG and ΔΔG models.

Combining ΔG and ΔΔG binding models (Complete-LowSA 
sidechain repacking)
Table 2 lists the best fit models for Complete-LowSA pack-
ing applied to the wild-type complexes. The "Complete"
packing schemes allow for sidechain relaxation between
complexed and uncomplexed forms, including sidechain
repacking in the experimentally-determined structure of
the complex. Generally sidechains away from the interface
will pack similarly in the Complete-LowSA scheme in
complexed and uncomplexed forms, therefore cancelling
in the binding calculations. The ΔG models for Complete-
LowSA are not very different from those for Minimal-
HighSA. Models using Locked or Unlocked interfacial
sidechains for the rotameric entropy estimation are

ΔΔG models for Locked and Unlocked interfacial sidechains, Minimal-HighSAFigure 2
ΔΔG models for Locked and Unlocked interfacial sidechains, Minimal-HighSA. Binding models fit to ΔΔGEXP, for 
Minimal-HighSA repacking. (a) ΔGSC-ROT calculated for Locked interfacial sidechains (R2 = 0.61). (b) ΔGSC-ROT calculated for 
Unlocked sidechains (R2 = 0.64).

Table 4: Correlations (R) for ΔΔG model features (mutant and wild-type complexes differenced), Minimal-HighSA packing

ΔΔASA-NP ΔΔASA-P ΔΔIONIS-FDDH ΔΔIONIS-
DESOLV

ΔΔSC-ROT 
Locked

ΔΔSC-ROT 
Unlocked

ΔΔGEXP

ΔΔASA-NP 1
ΔΔASA-P -0.13 1
ΔΔIONIS-FDDH -0.06 0.11 1
ΔΔIONIS-
DESOLV

-0.22 0.87 0.11 1

ΔΔSC-ROT L -0.26 0.07 0.01 0.13 1
ΔΔSC-ROT U 0.08 -0.52 -0.35 -0.62 -0.11 1
ΔΔGEXP -0.18 0.55 0.30 0.74 0.29 -0.65 1
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almost identical for Complete-LowSA. Also, the differ-
ences between ΔGROT-TRANS = 0 and ΔGROT-TRANS = 10 calcu-
lations are again small (not shown).

Figure 6 shows the best-fit Complete-LowSA ΔG binding
model, derived for wild-type complexes, applied to ΔG
data for mutant complexes (with all molecules repacked
in the Complete-LowSA scheme). This is for rotameric
entropy estimated from Locked sidechains at the interface,
although the low weighting in the model means this will
have little influence, and with ΔGROT-TRANS = 0. Figure 6
can be compared directly with Figure 3 (the equivalent
Minimal-HighSA calculation), and it can be seen that
these plots are qualitatively similar. We had hypothesised
that the increase in buried non-polar surface area for
Complete-LowSA over Minimal-HighSA models, could
lead to greater consistency between ΔG and ΔΔG models.
This is not the case.

Recalculating ASA at lower solvent probe radius
Since ΔGASA-NP drives agreement for ΔG models, but not
for ΔΔG models (whichever sidechain packing is used),
we looked more closely at this property in the mutant
interfaces. From Figure 7(a), (b) it is apparent that both
Minimal-HighSA and Complete-LowSA schemes give a
spread of ΔΔ(ASA-NP) values around zero, albeit with
larger magnitude in the Complete-LowSA scheme. Since
ΔΔGEXP is almost exclusively of one sign, it is clear that
ΔΔGASA-NP will be down-weighted in a best fit linear
model. Figure 7(c) shows that the dual sign spread of
ΔΔ(ASA-NP) is largely negated when the solvent probe
radius is reduced from 1.4 Å to 0.5 Å, but the correlation

with ΔΔGEXP remains poor. These results indicate that
ΔΔGASA-NP, with the current repacking schemes, is not an
effective feature with which to understand ΔΔG binding
models. Visual inspection (not shown) reveals that rela-
tively large non-polar surfaces may be revealed upon
mutation, and whether or not these are solvent accessible
depends on the fine detail of packing differences between
a complex and its components. Whereas ASA-NP is the
most prominent feature in ΔG models, either it is not an
appropriate description for interfacial relaxation in
response to mutation, or current modelling of interfacial
relaxation is insufficient.

Volume-based solvation
We reasoned that a volume-based solvation function
would be less sensitive to the details of packing changes
than a solvent accessible area-based feature. This is con-
sistent with the more prominent role played by ΔGIONIS-

DESOLV in ΔΔG models, as opposed to ΔG models. Solva-
tion shell models have been investigated previously in the
context of solute/protein structure and stabilisation [27-
29]. Here we develop simple properties to replace Δ/
ΔΔGASA-NP and Δ/ΔΔGASA-P in the binding models, in
which solvation shell volumes are calculated for each
atom, on a grid. The volumes cover a shell of 2.8 Å thick-
ness around atomic van der Waals radii, and are assigned
polar or non-polar according to atom type. Then Δ (com-
plexation) and ΔΔ (mutant to wild-type and complexa-
tion differences) are calculated for GVOL-NP and GVOL-P.
This model affords a rapid calculation, and volume-based
features give the uniform sign behaviour expected for
mutants that generally involve reduction of sidechain size
(not shown), unlike the distribution of ΔΔ(ASA-NP) (Fig-
ure 7(a)).

Figure 8 compares Minimal-HighSA models for area and
volume-based features (Table 5), where models have been
fit to wild-type ΔG data and calculated and plotted for the
mutant ΔGs. The mutant data in both panels show an
unequal distribution around the ΔGCALC = ΔGEXP line,
since the 4 underlying systems are a subset of the 20 wild-
type complexes used to generate the area and volume-
based ΔGCALC models. A relatively flat spread of mutant
clusters for the area-based model is much less apparent
with the volume-based model, indicating a more consist-
ent modelling of variation within these clusters, although
R2 is not much different between the two panels of Figure
8. Further evidence of the effectiveness of volume-based
modelling is seen when comparing equivalent ΔG and
ΔΔG models in Tables 2 and 5. For Minimal-HighSA and
Locked interfacial sidechains, feature weights change
entirely between ASA-based ΔG and ΔΔG models (e.g.
with the non-polar ASA term going from dominating to
being insignificant). For volume-based models, it is actu-
ally the polar term that is more important, but this is

Wild-type complexes ΔG model applied to mutant com-plexes, Minimal-HighSAFigure 3
Wild-type complexes ΔG model applied to mutant 
complexes, Minimal-HighSA. The ΔG model fit to wild-
type complexes, with Locked interfacial sidechains and 
ΔGROT-TRANS = 0 applied to mutant complexes, all calcula-
tions with Minimal-HighSA packing (R2 = 0.66).
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Scheme for generation of mutant complexes and different sidechain packingFigure 4
Scheme for generation of mutant complexes and different sidechain packing.
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maintained on moving from ΔG to ΔΔG. Weight varia-
tions for ΔG and ΔΔG models with Complete-LowSA
repacking are more complex.

Looking at calculations with Minimal-HighSA repacking,
it appears that even simple volume calculations are cap-
turing common properties in the ΔG and ΔΔG processes,
a behaviour that has largely defeated the ASA-based calcu-
lations. The volume-based terms are particularly rapid to
calculate, and could provide the basis for simple, low res-
olution, computational screens of interface viability.

Table 6 shows ΔG and ΔΔG models derived using only
two volume-based solvation terms. The R2 values for Min-
imal-HighSA models with just two features are close to
those of the best fits for the more extensive Minimal-
HighSA models given in Table 5.

Our investigation of simple, empirical models for binding
that can generalise between ΔG and ΔΔG applications,
contrasts with interface-specific methods using quantita-
tive structure-activity relationships that highlight residues
of particular importance [31]. In practice both approaches

Complete-HighSA and Complete-LowSA sidechain packing comparedFigure 5
Complete-HighSA and Complete-LowSA sidechain packing compared. (a) Total ASA for wild-type complexes, cal-
culated for the experimental structures (wild-type), and repacking of all sidechains in the Complete-HighSA and Complete-
LowSA schemes. (b) Molecular surface of experimental structure (1b27 subunits A and D) for barnase (green) – barstar (pink), 
with Complete-HighSA (red) and Complete-LowSA (blue) repacked sidechains protruding. Drawn with the program Swiss-
PdbViewer [48]. (c) Correlation between Δ(ASA) (total buried surface area) in the complexes for Complete-HighSA and Com-
plete-LowSA repacking (R2 = 0.91).
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have the same overall aim, i.e. predictive capability for
protein-protein interactions; and the same constraints,
with sets of correlated features (Tables 3 and 4) and an
imprecise understanding of the underlying conforma-
tional and energetic framework. Our observation that vol-
ume-based terms perform better than area-based terms in
ΔΔG models highlights this latter problem. It is possible
that modified area-based terms, for example with confor-
mational sampling and weighting, could improve per-
formance.

Conclusion
We find that binding models, using minimal sidechain
repacking and ASA-based solvation terms, are quite differ-
ent depending on whether they are fit to data for ΔG
(wild-type complexes) or ΔΔG (modelled mutant com-
plexes differenced to wild-type complexes). Whereas bur-
ied non-polar area dominates the ΔG model (Figure 1,
Table 2), consistent with previous work [17], other inter-
actions assume much greater importance for the mutant
complexes (Figure 2, Table 2), and the ΔG binding model
does not reproduce the spread of ΔGEXP within mutant sets
(Figure 3).

Investigating whether different sidechain repacking could
alter this discrepancy, a scheme for packing sidechains
towards protein structure has been derived from a mean-
field framework (Figure 4). This method, which we label
Complete-LowSA since all sidechains (mutated or not)
are repacked, is promising in terms of a better agreement
with total ASA for experimental complexes, and in giving
larger buried surface areas upon complexation than the
Minimal-HighSA scheme (Figure 5). However, this does

not lead to significant increase in the importance of non-
polar buried area in best fit ΔΔG models, and there
remains a discrepancy between ΔG and ΔΔG models (Fig-
ure 6). Further analysis of ΔΔ(ASA-NP) revealed a spread
around zero that mitigates against fitting to ΔΔGEXP,
which is predominantly single sign (Figure 7). These
results indicate that either non-polar buried area is not
important for ΔΔG modelling, which would be surprising
given its role in ΔG modelling, or that we are not captur-
ing the complexity of sidechain (and potentially main-
chain) conformational rearrangement upon mutation.

Of the features studied, ionisable group-based electrostat-
ics contributes relatively little in best fits to experimental
data, for both ΔG and ΔΔG models. Clearly there will be
instances where ionisable groups will contribute substan-
tially to interfacial energetics, and mediate processes such
as a physiological pH-dependence of binding. In general
though, studies of optimal predictors of interfacial pro-
pensity show that net charge is (in relative terms)
excluded, part of an overall tendency for ease of desolva-
tion at interfaces [30]. For most ΔG and ΔΔG models,
sidechain rotameric entropy plays a relatively small part
(Table 2), and where the weight is large may be partly due
to correlations with other properties (Tables 3, 4). In ΔΔG
models with ASA-based solvation, ΔΔGASA-P and ΔΔGIONIS-

DESOLV assume more importance. Polar solvation may be
reflecting overall burial change in the interface upon
mutation, rather than indicative of particular favourable
polar interactions. The effects of mutations on polar area
relative to non-polar area are somewhat different. The
polar area equivalent to the non-polar area data plotted in
Figure 7(a) (Minimal-HighSA) is qualitatively similar,
whereas the polar area equivalent to Figure 7(b) (Com-
plete-LowSA) is qualitatively different, being largely of a
single sign (not shown).

Empirical desolvation for ionisable groups, describing an
estimate of the entropy of water molecule liberation, is a
simple volume-based term. We therefore tested the capac-
ity for volume-based terms in general to account for solva-
tion changes in ΔΔG models, in place of area-based terms.
The volume solvation features assume importance in all
models, reducing the discrepancy between ΔG and ΔΔG
models (Figure 8). Volume-based models are part of the
molecular mechanics force-fields in some applications
[20,29], and ΔΔG models with volume-based solvation
terms have been used, in part for faster calculation
[19,20]. In the current work, we show that even a very
simple solvation shell model is effective in improving
consistency of ΔG and ΔΔG models. Surface area-based
modelling for ΔΔG fails since ASA is particularly sensitive
to relatively small conformational changes, even for single
site mutations. In contrast volume based models are less
sensitive, and a simple binding model for ΔG and ΔΔG

Wild-type complexes ΔG model applied to mutant com-plexes, Complete-LowSAFigure 6
Wild-type complexes ΔG model applied to mutant 
complexes, Complete-LowSA. The ΔG model fit to 
wild-type complexes, with Locked interfacial sidechains and 
ΔGROT-TRANS = 0 applied to mutant complexes, all calcula-
tions with Complete-LowSA packing (R2 = 0.73).
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can be constructed with just polar and non-polar volume-
based features. This could be useful in computational
assessment of the validity of comparative modelled inter-
faces, and our simple implementation is made available
for such analyses.

Methods
Binding data and protein structures
Protein complexes were selected where the literature and
structural databases give no evidence of major conforma-
tional change in the mainchain upon complexation, and
for which measured ΔG is available. The literature e.g. [31]
and various databases were used to search for binding
energies associated with complexation, the alanine scan-
ning energetics database (ASEdb, [32]), the protein-pro-
tein interactions thermodynamic database (PINT, [33]),

and the ProTherm thermodynamic database for proteins
and mutants [34]. Imposition of limited conformational
change led to the inclusion of just 20 complexes, which
are listed in Table 1 with their measured binding energies.
In cases where binding data are recorded for multiple con-
ditions, that most closely corresponding to our calcula-
tion conditions of 300 K, 0.15 M ionic strength, pH 7,
were chosen. The data in Table 1 were used to construct
ΔG binding models. In calculations, only structure files
(from the PDB, [4]) for the complex were used. All com-
ponents (free proteins and mutated proteins) were
derived from these coordinates.

For mutant data in ΔΔG model fitting, 4 of the systems
used in ΔG modelling were included. The restriction of no
major mainchain changes was therefore carried over to

ΔΔ(ASA-NP) does not correlate with ΔΔGEXP, and is of variable signFigure 7
ΔΔ(ASA-NP) does not correlate with ΔΔGEXP, and is of variable sign. (a) ΔΔ(ASA-NP) calculated with Minimal-HighSA 
packing does not correlate with ΔΔGEXP (R2 = 0.00), and can be positive or negative (red line drawn at ΔΔ(ASA-NP) = 0). (b) 
Qualitatively similar behaviour to that for panel (a) is seen for Complete-LowSA repacking (R2 = 0.02). (c) Reducing the solvent 
probe radius from 1.4 Å to 0.5 Å gives mostly uniform sign of ΔΔ(ASA-NP), but still poor correlation with ΔΔGEXP (R2 = 0.18).
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the mutants ΔΔG analysis. These systems, and the number
of mutants associated with each, are: barnase-barstar, 64
mutants; chymotrypsin-BPTI, 15 mutants; ralGDS-ras, 49
mutants; trypsin-BPTI, 15 mutants. Where mutants are
solely changes to alanine, no repacking is required in the
Minimal-HighSA or Minimal-LowSA schemes. Complete-
HighSA and Complete-LowSA schemes will repack all
sidechains.

Binding model
We employed an empirical binding model with contribu-
tions from the rigid body rotational and translational
entropy of complexation (ΔGROT-TRANS), buried non-polar
surface area (ΔGASA-NP), buried polar surface area (ΔGASA-

P), ionisable group charge interactions (ΔGIONIS-FDDH), a

term to approximate the free energy of water molecule lib-
eration upon ionisable group burial (ΔGIONIS-DESOLV), and
sidechain rotameric entropy (ΔGSC-ROT). Thus;

ΔGCALC = ΔGROT-TRANS + wASA-NPΔGASA-NP + wASA-PΔGASA-P + 
wIONIS-FDDHΔGIONIS-FDDH + wIONIS-DESOLVΔGIONIS-DESOLV + 

wSC-ROTΔGSC-ROT

where the various pre-multipliers (w) are the weights to be
adjusted in model fitting to experimental data. More
detail follows for the individual terms.

The rotational and translational entropy change associ-
ated with complexation of two rigid bodies has been stud-
ied experimentally and theoretically [25,35,36].

ASA-based and volume-based solvation ΔG models comparedFigure 8
ASA-based and volume-based solvation ΔG models compared. Calculations for ΔG of mutant complexes, using ΔG 
models fit to wild-type complex data, with ΔGSC-ROT calculated for Locked interfacial sidechains, Minimal-HighSA repacking and 
ΔGROT-TRANS = 0. (a) ASA-based polar and non-polar solvation terms (R2 = 0.66). (b) Volume-based solvation (R2 = 0.68). 
Although there is little difference in R2, the spread in ΔGCALC within mutant systems (i.e. based on the same wild-type) is larger 
with volume calculations.
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Table 5: Weights for volume-based binding models.

Model type ΔG ΔG ΔΔG ΔΔG ΔG ΔG ΔΔG ΔΔG

ΔGROT-TRANS 0 0 - - 0 0 - -
Un/Locked L U L U L U L U

Packing Scheme Minimal-HighSA Complete-LowSA

VOL-NP -0.12 -0.11 -0.31 -0.28 0.20 0.24 0.04 0.02
VOL-P 1.00 0.85 1.79 1.45 -0.03 -0.08 0.55 0.61
IONIS-FDDH 0.44 0.43 -0.01 -0.05 0.19 0.18 0.28 0.29
IONIS-DESOLV -0.19 0.11 0.26 0.23 0.17 0.26 0.30 0.35
SC-ROT -0.07 -0.49 -0.01 -1.04 -0.06 0.08 -0.24 -0.29
R2 correlation 0.46 0.50 0.62 0.64 0.64 0.66 0.64 0.66

Weights are w for ΔG model, w' for ΔΔG models. U/L is Unlocked/Locked interfacial sidechains, applied to SC-ROT.
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Measurements suggest that an entropy penalty corre-
sponding to a free energy in the range of 0–10 kJ per mole
of interacting species at 300 K is appropriate [25]. This is
a relatively small range compared with measured ΔG val-
ues (Table 1). Other computational work has set ΔGROT-

TRANS to zero [8]. We examine ΔGROT-TRANS at either 0 or 10
kJ/mole for each binding model, to test the sensitivity of
the model to this term. Models calculated at these ΔGROT-

TRANS values, for a given set of conditions, are very similar
(Table 2), so that the precise value is not a major consid-
eration in this study. We are neglecting the entropic term
associated with any changes in vibrational modes upon
complexation [37].

Non-polar and polar solvent accessible surface areas are
calculated with the program SACALC, developed in our
laboratory. Areas are then differenced between a complex
and the sum of its components, and multiplied by a factor
of 0.1 kJ/mole/Å2. This factor is within the range generally
assumed to represent the energetics of hydrophobic solva-
tion in empirical modelling [38,39]. The precise value is
not critical, since linear fitting will scale surface area terms
via the pre-multipliers. The same factor of 0.1 has been
used for polar surface area, and we include this feature in
part to allow for some approximate recognition of hydro-
gen-bonding potential. Detailed assessment of pairwise
hydrogen bonds, outside of the context of ionisable
groups, is not included. Additionally, explicit van der
Waals interactions are excluded. Both hydrogen bond and
van der Waals interactions, with a strong distance-
dependence over fractions of an Å, would be more appro-
priate if energy minimisation were carried out subsequent
to sidechain repacking from a discrete rotamer library. We
chose to develop binding models without energy minimi-
sation, and this relatively simple approach gives a broad
insight into differences between ΔG and ΔΔG models.
Both the non-polar and polar area terms, as defined, are
favourable for complexation when weights are positive.

Ionisable group interactions were derived from the pH-
dependence of electrostatic energy, with addition of a

constant of integration at an extreme pH [40]. The pH-
dependent electrostatics were calculated with in-house
programs using the FD/DH method that combines Finite
Difference Poisson-Boltzmann (FDPB, [41]) and Debye-
Hûckel (DH) interaction schemes [42]. Monte Carlo sam-
pling [43] was used to derive pKas [44] and the ionisable
charge distribution, from which electrostatic energy is
obtained [45]. Ionisable group energies are included with
the ΔGIONIS-FDDH term, and may be either favourable or
unfavourable for complexation.

We have previously introduced an empirical term to
account for the entropy of water liberation upon ionisable
group burial, using a comparison of calculated and meas-
ured pKas [46]. This analysis looked at hydration differ-
ences between ionised and neutral states. The significance
of this empirical parameter in pKa calculations was gener-
ally small, which was rationalised in terms of little overall
difference between water ordering in the ionised and neu-
tral states. Cysteine was an exception, consistent with rel-
atively little charge separation and reduced hydrogen-
bonding potential in the neutral state. The ΔGIONIS-DESOLV
term in the current study models change in burial of ion-
isable groups upon complexation, rather than ionised/
neutral form differences. In order to model the entropy
associated with hydration shell liberation (desolvation)
for ionisable groups, we used the derived cysteine value
from our previous work, since in this case the neutral form
has relatively little charge separation. Then ΔGIONIS-DESOLV
is this complete hydration shell value multiplied by the
change in hydration shell volume (calculated from FDPB
grids) upon complexation, with no other variation
between ionisable group types. As with other terms, the
weight derived by fitting to experimental data will indi-
cate relative importance. With liberation of solvating
water upon complexation, this term is expected to be
favourable for binding.

Finally in the binding scheme is modelling of free energy
changes due to alteration of sidechain rotameric entropy
upon complexation, ΔGSC-ROT. We use a method based on
mean-field packing of sidechains, with derived probabili-
ties (p) for rotamers based on packing opportunities
[21,22]. Sidechain rotameric entropy for each amino acid
is the sum over p*ln(p) for rotamers. Values are summed
over amino acids in a protein, differenced between free
and complexed states, and multiplied by RT = 2.5 kJ/mole
to give a free energy contribution, prior to weighting by
the pre-multiplier. Changes in sidechain rotameric
entropy are expected to be unfavourable for complexation
(restriction of sidechains).

We used two variations of the sidechain rotamer term. In
the first, rotamer packing differences upon complexation

Table 6: Weights for binding models with only volume-based 
features.

Model type ΔG ΔΔG ΔG ΔΔG

ΔGROT-TRANS 0 - 0 -

Minimal-HighSA Complete-LowSA

VOL-NP -0.13 -0.40 0.18 0.12
VOL-P 0.94 2.30 0.25 0.91
R2 correlation 0.43 0.61 0.43 0.49

Weights are w for ΔG models, w' for ΔΔG models.
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are calculated as described, with interfacial sidechains free
to explore different packings, even though energy calcula-
tion for other terms is based on a single conformer. This
variation is termed "Unlocked". In the second, interfacial
sidechains (in the complex) are modelled as fixed in the
conformation used for other components of the energy
calculation. Entropy changes will therefore be larger for
the second case, which is described as "Locked". These dif-
ferences are discussed in the Results section, although
generally the impact of the sidechain rotameric entropy
was low in the models, whichever scheme was used for
interfacial flexibility.

Binding differences model
We simply difference the binding model between wild-
type and mutant systems (ΔΔGEXP = ΔGEXP [MUT] - ΔGEXP
[WT]), with the rigid-body rotation and translation term
cancelling. A prime has been added to the weights, dem-
onstrating that we are allowing different fits for ΔG and
ΔΔG models.

ΔΔGCALC = w'ASA-NPΔΔGASA-NP + w'ASA-PΔΔGASA-P + w'IONIS-

FDDHΔΔGIONIS-FDDH + w'IONIS = DESOLVΔΔGIONIS-DESOLV + 
w'SC-ROTΔΔGSC-ROT

Model fitting
Multiple linear regression was used to determine the best
fit ΔGCALC and ΔΔGCALC models to experiment. This regres-
sion was performed with the built-in least squares func-
tion of the GNU Regression, Econometrics and Time-
series Library package (GRETL, [47]). The Solver function
in Microsoft Excel was also used to carry out linear regres-
sion. Weights are expected to be positive to make physical
sense, other than for ΔGIONIS-FDDH, which could be of
either sign with attractive or repulsive interactions to the
fore.

Sidechain repacking
Starting with an experimental structure for a wild-type
complex, there are questions of conformational change
and repacking for the uncomplexed components and
mutated proteins. Data selection should have eliminated
systems with large-scale mainchain conformational
changes, but sidechain rearrangement remains an issue.

The basis of our methodology is a mean-field program
developed [21] from earlier work [22]. This uses pairwise
packing of rotamers to derive probabilities for rotamers
within a sidechain, according to an allowed van der Waals
tolerance in the packing. Higher rotamer probability
means coexistence with a larger number of neighbouring
sidechain rotamers, and larger solvent accessibility
(HighSA). Conversely, the lower (but non-zero) probabil-
ity rotamers will tend to have lower solvent accessibility
(LowSA). Both of these packing schemes/rotamer selec-

tions are used in our studies of ΔG and ΔΔG models.
Another question for sidechain repacking is whether to
remain as close as possible to experimental (complex)
structure (Minimal repacking), or whether to allow
sidechain relaxations in response to complex separation
and mutation (Complete repacking).

Volume-based solvation
A simple volume-based solvation function was used to
replace the ASA-based analysis at some points in the work.
Thus, wVOL-NPΔGVOL-NP + wVOL-PΔGVOL-P was swapped into
the ΔGCALC equation in place of wASA-NPΔGASA-NP + wASA-

PΔGASA-P, with the analogous weighted terms also for the
ΔΔGCALC binding model. These volume solvation terms
are based on grid calculations of volumes around non-
hydrogen atoms that are filled or unfilled by neighbour-
ing atoms. Non-polar atoms and radii (Å) are C:2.0 and
S:1.9. Polar atoms and radii are O:1.5 and N:1.8. Volumes
for each atom are calculated with a 0.5 Å spaced grid and
a shell of thickness 2.8 Å beyond the atomic radius. These
calculations give numbers of grid points that are not cov-
ered by neighbouring atoms. In order to put the numbers
onto a scale roughly equating to that for ASA-based terms,
a multiplicative factor applied to the number of grid
points in the solvation shell of a C atom was equated with
the ASA energy for the same, unoccluded, atom. This mul-
tiplicative factor is 0.0042.

Availability and requirements
Project name: Intcalc

Project home page: http://www.bioinf.manchester.ac.uk/
intcalc/

The software used in this study is also available for down-
load from: http://personalpages.manchester.ac.uk/staff/
j.warwicker/resources.html

Operating system(s): Linux

Programming language: Perl, Fortran

License: GNU GPL

No additional restrictions for non-academic users.
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PINT: Protein-protein Interactions Database; ASEdb:
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Boltzmann; DH: Debye-Hückel; FD/DH: Finite Differ-
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rics and Time-series Library.
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