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Recent studies have identified the critical role of microbiota in the pathophysiology of
autoimmune liver diseases (AILDs), including autoimmune hepatitis (AIH), primary biliary
cholangitis (PBC), and primary sclerosing cholangitis (PSC). Metagenomic studies reveal
significant decrease of gut bacterial diversity in AILDs. Although profiles of metagenomic
vary widely, Veillonella is commonly enriched in AIH, PBC, and PSC. Apart from gut
microbiome, the oral and bile microbiome seem to be associated with these diseases
as well. The functional analysis of metagenomics suggests that metabolic pathways
changed in the gut microbiome of the patients. Microbial metabolites, including short-
chain fatty acids (SCFAs) and microbial bile acid metabolites, have been shown to
modulate innate immunity, adaptive immunity, and inflammation. Taken together, the
evidence of host–microbiome interactions and in-depth mechanistic studies needs
further accumulation, which will offer more possibilities to clarify the mechanisms of
AILDs and provide potential molecular targets for the prevention and treatment in
the future.
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INTRODUCTION

Autoimmune liver diseases (AILDs) are chronic inflammatory conditions of the liver, including
autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis
(PSC) (Biewenga et al., 2020). Poor understanding of etiology makes the diagnosis and treatment
of patients with AILDs challenging. In recent years, increasing studies have been focusing on
microbiota-host interactions. Imbalanced microbial communities have been suggested to be related
with aberrant immune response (Shi et al., 2017). Relationships have been established between the
microbiome and autoimmune diseases, such as systemic lupus erythematosus (Katz-Agranov and
Zandman-Goddard, 2017), inflammatory bowel disease (Franzosa et al., 2019), and rheumatoid
arthritis (Bergot et al., 2019). Particularly, intestinal microbiome and liver could communicate
through the biliary tract, portal vein, and systemic circulation, given the special anatomic and
physiological relationships of liver and gut. Studies have discovered that liver diseases are intimately
linked to the microbial communities of the human gut (Seki and Schnabl, 2012; Miyake and
Yamamoto, 2013; LaRusso et al., 2017). Besides bacteria, the involvement of fungus and chlamydia
has also been demonstrated in AILDs (Abdulkarim et al., 2004; Wang et al., 2017). Moreover,
various metabolites of gut microbiome have been shown to participate in immune development
and regulation (Levy et al., 2017).
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Since the microbiota plays an important role in the
development of the innate and adaptive immune system (Zheng
et al., 2020), further study on the interaction between the
diseases and microbiota may provide new insights on the
etiology and management of AILDs. With the development of
high throughput DNA sequencing, the diversity of the human
microbiome has been greatly appreciated. The meta-omics
approach, which consists of metagenomic, metatranscriptomic,
and metabolomic analysis, has allowed for a more comprehensive
characterization of the human microbiome (Zhang et al.,
2019). Metagenome, a DNA sequencing method, aims to
catalog all the genes from the samples (Wang et al., 2015).
Metagenome reveals only the microbial composition of the
community. The metatranscriptome could record expressed
transcripts of the active members under a set of environmental
conditions (Shakya et al., 2019). Changes in the composition or
function of the gut microbiota lead to metabolite alterations.
Through metabolomics, specific bacterial metabolic pathways
and metabolites can be defined (Medina-Cleghorn and Nomura,
2014). Apparently, the microbiome is a rising star in the
exploration for the prevention, diagnosis, and treatment of
AILDs. Thus, we summarize a review of microbiome associated
with AILDs from metagenomics and metabolomics, which may
be the key for further understanding of the etiology and
management of AILDs.

The Microbiome in Autoimmune Liver
Diseases
Metagenomics is a powerful tool that is helpful for the analysis
of microbial heterogenicity. It mainly includes two sequencing
strategies: amplicon sequencing, most often amplifying portions
of the hypervariable regions of 16S rRNA; or shotgun sequencing,
which sequences all given genomic DNA from a sample (Rausch
et al., 2019). The shotgun metagenomics sequencing can achieve
species-level and potentially strain-level of microorganisms
(Walsh et al., 2018). In contrast, relative abundances of bacterial
taxa derived from the general 16S rRNA is usually defined at the
genus level (Walsh et al., 2018).

Studies of the microbiota often focus on the bacterial diversity
in the feces of the patients. Collectively, alpha diversity of
fecal microbial showed a downward trend in most AILDs
patients, which was shown in Table 1 (Sabino et al., 2016;
Tang et al., 2018; Wei et al., 2020). However, a German
cohort study reported that the alpha-diversity of patients with
PSC was similar to controls (Ruhlemann et al., 2019). The
microbial communities of human gut were mainly composed
of Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria
at the phylum level (Dekaboruah et al., 2020). Firmicutes and
Proteobacteria were increased in both AIH and PBC, while
Bacteroidetes showed no significant difference in AIH and PBC
when compared to healthy control (HC) (Lv et al., 2020).
Remarkably, PSC was characterized by abundant Bacteroidetes
and Proteobacteria, whereas Firmicutes were underrepresented
(Sabino et al., 2016; Ruhlemann et al., 2019). However, different
results can be observed in salivary microbiome and bile
microbiome. Statistically significant differences in the phylum

level in Firmicutes, Bacteroidetes, and Proteobacteria of the
salivary microbiota among the PBC, AIH, and HC groups were
not detected (Abe et al., 2018), although the abundance of
Bacteroidetes, Firmicutes, and Fusobacteria was also lower in bile
microbiome of PSC patients. The abundance of Proteobacteria
was higher when compared with patients from the control group
(Tyc et al., 2020). These findings suggest that both gut and oral
microbiome may be involved in AILDs pathogenesis.

The Microbiome in Autoimmune Hepatitis
Microbiome studies are relatively rare in AIH. We only found
6 related articles in PubMed, which are shown in Table 2.
Wei et al. (2020) indicated increased abundance in Veillonella,
Klebsiella, Streptococcus, and Lactobacillus in AIH compared
to HC. Moreover, they created a model including Veillonella,
Lactobacillus, Oscillospira, and Clostridiales to distinguish AIH
from controls (Wei et al., 2020). Lachnospiraceae, Veillonella,
Bacteroides, Roseburia, and Ruminococcaceae were selected as the
AIH microbial biomarkers in another study (Lou et al., 2020).
They also reported a higher relative abundance of Streptococcus
in patients. In Africa, Elsherbiny et al. (2020) reported
that Faecalibacterium, Blautia, Streptococcus, Haemophilus,
Bacteroides, Veillonella, Eubacterium, Lachnospiraceae, and
Butyricicoccus were enriched in AIH. Given together, most
studies confirmed an overrepresentation of Veillonella in the
gut microbiota of AIH patients. Microbes enriched in gut
may aggravate the disease. However, no data support a causal
relationship between Veillonella and AIH. The actual strains
will need to be identified in future studies by shotgun
metagenomic sequencing.

Probiotics were believed to restore the composition of the
gut microbiome (Hemarajata and Versalovic, 2013). It can also
participate in regulating the immune system (Liu et al., 2018).
Bifidobacteria-based probiotics have been shown to confer health
benefits on the host by regulating gut microbiota (O’Callaghan
and van Sinderen, 2016). There is a depletion of Bifidobacterium
in AIH (Lin et al., 2015; Lv et al., 2020). Furthermore, patients
with lower Bifidobacterium failed to achieve remission (Lv et al.,
2020). Zhang et al. (2020) reported that Bifidobacterium lactis 420
have beneficial functions in alleviating experimental autoimmune
hepatitis. It suggested probiotics supplements may help to treat
AIH in the future.

Except for gut microbiota, it is increasingly recognized
that the oral cavity microbiota could also affect the host
health (Arweiler and Netuschil, 2016). Dysbiosis of the oral
microbiota has been found to be related to the pathogenesis
of autoimmune diseases, such as inflammatory bowel diseases
and systemic lupus erythematosus (van der Meulen et al.,
2019; Elmaghrawy et al., 2020). There is a significant increase
in Veillonella in the oral microbiota of AIH patients when
compared with the HC, whereas Streptococcus is decreased
(Abe et al., 2018). However, Veillonella is closely related
to oral infectious diseases (Luo et al., 2020), which may
influence the result. More research is needed. Notably, the
change of Veillonella in oral bacterial community is consistent
with that of fecal in AIH patients, although the relationship
between the gut microbiota and the oral microbiota is still

Frontiers in Physiology | www.frontiersin.org 2 October 2021 | Volume 12 | Article 715852

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-715852 October 4, 2021 Time: 16:31 # 3

Zheng et al. Microbiome in Autoimmune Liver Diseases

TABLE 1 | Changes of gut microbiome in autoimmune liver diseases (AILDs).

Disease Alpha diversity Composition

AIH ↓ Firmicutes↓ Proteobacteria↑

PBC ↓ Firmicutes↓ Proteobacteria↑

PSC controversial Bacteroidetes and Proteobacteria↑ Firmicutes↓

unknown. We can look forward to seeing that Veillonella strain
may become a microbial marker in AIH.

The Microbiome in Primary Biliary Cholangitis
Primary biliary cholangitis is a chronic occult disease which can
progress to cirrhosis, and ultimately to liver failure and even
death (Hirschfield et al., 2018). Lammert et al. (2021) found that
fecal microbiota were related to the fibrosis and cirrhosis of PBC.
Therefore, the analysis of microbiota composition in patients
with PBC is meaningful. A study containing 60 UDCA treatment
naive PBC patients and 80 healthy controls found 12 bacteria
(Table 3) whose abundance changed in PBC compared with HC
in China. Haemophilus, Veillonella, Clostridium, Lactobacillus,
Streptococcus, Pseudomonas, Klebsiella, and an unknown genus
in the family of Enterobacteriaceae were increased, and
Bacteroidetes spp., Sutterella, Oscillospira, Faecalibacterium were
decreased in PBC (Tang et al., 2018). These altered genera
can help to discriminate PBC with HC (Tang et al., 2018).
The relative abundance of Streptococcus was reported to be
positively correlated with AST in alcoholic liver disease (Zhong
et al., 2021). Regrettably, its role in PBC needs to be explored.
Further, later study has reported that a decrease abundance of
Faecalibacterium was associated with treatment non-responders,
suggesting that Faecalibacterium may be beneficial for treatment
response in patients with PBC (Furukawa et al., 2020).
Another study from China also indicated more abundant genera
including Haemophilus, Veillonella, Lactobacillus, Streptococcus,
and Klebsiella in PBC (Lv et al., 2016). Besides Streptococcus and
Lactobacillus, Bifidobacterium was proved to be more abundant
in the PBC group compared with healthy control in Japanese
(Furukawa et al., 2020). In addition, this study observed a

significant reduction in the diversity of Clostridiales, which
included amounts of butyric acid-producing symbiotic bacteria
(Furukawa et al., 2020), although the findings above showed
gut microbiota was strongly related to PBC. Evidence above
also revealed that the change of microbial abundance is not
just limited to one specie. This makes it more difficult to
understand the potential mechanism between microbiome and
disease. Present studies of metagenomics of gut microbiota are
all from Asian patients and thus have certain limitations. In the
future, more metagenomics studies of PBC are needed to identify
the possible pathogens.

Gut microbiome is the hotspot in PBC research, whereas the
investigation of microbiology at other body sites is also going on.
As we all know, the biliary tract is traditionally considered sterile
or has few bacteria. Previous study has reported that there are
bacteria in PBC patients’ bile, mainly including Staphylococcus
aureus, Enterococcus faecium, and Streptococcus pneumoniae
(Hiramatsu et al., 2000). Additionally, it is worth noting that
Propionibacterium acnes 16S rRNA gene has been detected in
epithelioid granuloma of PBC livers, but less in adjacent hepatic
parenchyma (Harada et al., 2001). Propionibacterium acnes has
been suggested as a most likely infectious pathogen of sarcoidosis,
a kind of autoimmune disease (Yamaguchi et al., 2021). This study
indicated that Propionibacterium acnes may also play a role in
PBC which required further investigation. Dysbiosis of the oral
microbiome has also been defined in PBC. It was characterized by
increased relative abundances in Eubacterium and Veillonella as
well as decreased abundances in Fusobacterium (Abe et al., 2018).
Above all, Veillonella is consistently overrepresented in both stool
and saliva of patients with PBC, indicating that Veillonella is
closely associated with PBC. Further studies are warranted to
investigate how Veillonella interact with PBC.

The Microbiome in Primary Sclerosing Cholangitis
The 16S rRNA gene analysis has also been a major method of
bacterial analysis in PSC. Studies of the changes of microbiome
in PSC were shown in Table 4. At present, there was only one
study that has measured genetic diversity of fecal microbiota

TABLE 2 | Study of microbiome in autoimmune hepatitis (AIH).

Study Country Sample Groups AIH-enriched taxa Controls-enriched taxa

Lou et al., 2020 China Stool AIH(37) vs. HC(48) 15 genera such as Veillonella, Faecalibacterium,
Klebsiella, Akkermansia,

Enterobacteriaceae_unclassified, Megasphaera,
and so on

19 genera such as Pseudobutyrivibrio, Blautia,
Lachnospira, Erysipelotrichaceae_incertae_sedis,

Ruminococcaceae_incertae_sedis,
Phascolarctobacterium, and Alistipes and so on

Wei et al., 2020 China Stool AIH(91) vs. HC(98) Veillonella, Klebsiella, Streptococcus, and
Lactobacillus

Clostridiales, RF39, Ruminococcaceae,
Rikenellaceae, Oscillospira, Parabacteroides, and

Coprococcus

Lin et al., 2015 China Stool AIH (24) vs. HC(8) / Bifidobacterium, Lactobacillus

Elsherbiny et al., 2020 Egypt Stool AIH(15) vs. HC(10) Faecalibacterium, Blautia, Streptococcus,
Haemophilus, Bacteroides, Veillonella,

Eubacterium, Lachnospiraceae, and Butyricicoccus

Prevotella, Parabacteroides, and Dilaster

Abe et al., 2018 Japan Stool AIH(17) vs. HC(15) Lactobacillales Clostridium subcluster XIVa

Lv et al., 2020 Germany Stool AIH(72) vs. HC(95) Veillonella, facultative anaerobic genera
Streptococcus and Lactobacillus

Bifidobacterium, Faecalibacterium

Abe et al., 2018 Japan Saliva AIH(17) vs. HC(15) Veillonella Streptococcus, Fusobacterium
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TABLE 3 | Study of the microbiome in primary biliary cholangitis (PBC).

Study Country Sample Groups PBC-enriched taxa HC-enriched taxa

Tang et al., 2018 China Stool PBC(60) vs. HC(80) Haemophilus, Veillonella, Clostridium, Lactobacillus,
Streptococcus, Pseudomonas, Klebsiella,

Enterobacteriaceae

Bacteroidetes spp., Sutterella, Oscillospira,
Faecalibacterium

Furukawa et al., 2020 Japan Stool PBC(76) vs. HC(23) Bifidobacterium, Streptococcus, Lactobacillus,
Enterococcus

Lachnospiraceae, Ruminococcaceae of
class Clostridia

Abe et al., 2018 Japan Stool PBC(39) vs. HC(15) Lactobacillales Clostridium subcluster XIVa

Lv et al., 2016 China Stool PBC(42) vs. HC(30) γ-Proteobacteria, Enterobacteriaceae,
Neisseriaceae, Spirochaetaceae, Veillonella,

Streptococcus, Klebsiella, Actinobacillus
pleuropneumoniae, Anaeroglobus geminatus,

Enterobacter asburiae, Haemophilus
parainfluenzae, Megasphaera micronuciformis,

Paraprevotella clara

Acidobacteria, Lachnobacterium sp.,
Bacteroides eggerthii, Ruminococcus

bromii

Abe et al., 2018 Japan saliva PBC(39) vs. HC(15) Veillonella, Eubacterium Fusobacterium

by shotgun metagenomic sequencing. It demonstrated the
microbial gene richness reduced markedly in patients with
PSC compared with HC (Kummen et al., 2020). Nine species
showed an increased prevalence and 5 species were less prevalent
in PSC compared to HC (Kummen et al., 2020). This study
suggested that Veillonella atypica, Veillonella parvula, and an
unclassified Veillonella species were more prevalent in PSC
patients (Kummen et al., 2020). There is no study illustrating
the effect of specific Veillonella strain in PSC. The relative
abundance of Veillonella genera were also increased in children
and teenagers with PSC (Cortez et al., 2020). Intriguingly, it
has been proved that the abundance of Veillonella decreased
after effective treatment of UDCA (Kummen and Hov, 2019).
Evidence above suggested that the abundance of Veillonella was
closely related to PSC, but it is not sufficient to distinguish
PSC and controls (Ruhlemann et al., 2017). Then Ruhlemann
et al. (2017) established a diagnosis model consisting of
Veillonella, Clostridiales, Lachnospiraceae, and Coprococcus to
help to differentiate PSC from HC.

To our knowledge, 70% of PSC patients have underlying
inflammatory bowel disease (IBD) (Weismuller et al., 2017).
Thus, it is necessary to distinguish the microbial profile of PSC
with or without IBD. Published data suggested that the fecal
microbiota of patients with PSC was significantly different from
both HC and patients with IBD (Ruhlemann et al., 2019). At the
genus level, Rothia, Lactobacillus, Streptococcus, and Veillonella
were observed overrepresented specifically in PSC patients (Bajer
et al., 2017). Coprobacillus, Escherichia, Corynebacterium, and
Lactobacillus genera were related to PSC-IBD, but not PSC
without IBD (Bajer et al., 2017). However, Rothia, Streptococcus,
Enterococcus, Veillonella, Clostridium, and Haemophilus were
more abundant in all subgroups of PSC (Bajer et al., 2017).
Until now, studies have shown that all the treatments can’t
change the natural history of PSC. Evaluating the difference of
microbiota between PSC with or without IBD may help to find
specific treatments for different subgroups of PSC. A randomized
placebo-controlled crossover study including 14 PSC patients
suggested that probiotics supplement didn’t alter the symptoms,
liver biochemistry, or liver function in PSC (Vleggaar et al., 2008).

However, evidence showed that fecal microbiota transplantation
could increase bacterial diversity and was related with decreased
alkaline phosphatase in patients with PSC (Allegretti et al., 2019).

Currently, composition of the bile microbiome in PSC is
gradually emerging. In previous studies of bile microbiome
in PSC, an over-representation of Enterococcus spp., Prevotella
spp., Staphylococcus spp., Lawsonella spp., Veillonella dispar, and
Cutibacterium was observed (Liwinski et al., 2020). Klebsiella spp.
was also found in bile fluid of PSC patient (Liwinski et al., 2020).
It has been reported that Klebsiella pneumoniae is associated
with intestinal barrier dysfunction (Nakamoto et al., 2019).
Nevertheless, the relationship between Klebsiella and PSC could
not be confirmed in a cohort including 62 patients (Ruhlemann
et al., 2019). On the contrary, Pereira et al. (2017) found similar
bacterial communities of bile in non-PSC subjects and early stage
PSC patients, which indicated that the initiation of PSC may not
be associated with alteration in bile microbial communities.

The characteristic of oral microbiota has also been defined
in PSC. Alpha-diversity of the salivary microbiome was
not changed when comparing PSC with HC, but there is
an overrepresentation of Streptococcus salivarius, Prevotella
histicola, Rothia mucilaginosa, V. parvula, Actinomyces,
Campylobacter concisus, Bifidobacterium stellenboschense,
and Bacteroidales genus Phocaeicola (Lapidot et al., 2021).
Furthermore, S. salivarius, V. parvula, Actinomyces, and
Bifidobacterium were both significantly enriched in both the
saliva and the fecal samples in patients with PSC compared
with HC (Lapidot et al., 2021). Combining the analyses of fecal
and oral microbiota studies may help to find out the specific
bacterium which participates in the pathogenesis of disease.

Specific Microbiome in Autoimmune Liver Diseases
As we all know, Helicobacter mainly colonizes in stomach.
Helicobacter species may also partly participate in the
pathogenesis of AILDs. In a previous study, Helicobacter
species have been detected in livers from adults suffering from
AIH, PSC, and PBC using PCR or DNA sequencing (Nilsson
et al., 2000; Casswall et al., 2010). However, this study could
not decide whether the Helicobacter specie play a pathogenetic
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TABLE 4 | Study of the microbiome in primary sclerosing cholangitis (PSC).

Study Country Sample Groups PSC-enriched taxa HC-enriched taxa

Lapidot et al., 2021 Israel Stool PSC(35) vs. HC(30) 32 species including Clostridium XlVa,
Clostridium symbiosum, Clostridium

perfringens, Streptococcus salivarius,
Veillonella dispar, Ruminococcus

gnavus, Bacteroides fragilis,
Enterobacteriaceae, Lactobacillus, and

Blautia

261 species including Bacteroides
thetaiotaomicron and Faecalibacterium

prausnitzii

Kummen and Hov, 2019 Norway Stool PSC(85) vs. HC(263) Veillonella 12 genera including
ML615J-28,Succinivibrion,

Desulfovibrio, RF32,
Phascolarctobacterium, Coprococcus,

and so on

Cortez et al., 2020 Brazil Stool PSC(11) vs. HC(23) Streptococcus, Veillonella /

Vaughn et al., 2019 United States Stool PSC/IBD(7) vs. HC(8) Megamonas Clostridium XIVa, Faecalibacterium

Ruhlemann et al., 2019 Germany and
Norway

Stool PSC(73) vs. HC(98) p.Proteobacteria, g.Parabacteroides,
bacteroides spp.,

c.Gammaproteobacteria,
g.Streptococcus, c.Bacilli,

o.Lactobacillales, g.Veillonella

Coprococcus spp.

Sabino et al., 2016 Belgium Stool PSC&PSC-IBD(52) vs.
HC(52)

Enterococcus, Streptococcus,
Lactobacillus and Fusobacterium

/

Kummen et al., 2020 Germany and
Norway

Stool PSC(136) vs. HC(158) Clostridium clostridioforme,
Clostridiales bacterium17 47FAA,

Clostridium bolteae, Bifidobacterium
bifidum, Clostridium symbiosum,

Eggerthella lenta, Escherichia
unclassified, Eggerthella unclassified,

Clostridium citroniae,Veillonella atypica,
Veillonella parvula, and an unclassified

Veillonella species

Coprobacter fastidiosus, Alistipes
senegalensis, Eubacterium ramulus,
Eubacterium hallii, Lachnospiraceae

bacterium 71 58FAA

Bajer et al., 2017 Czechia Stool PSC(43) vs. HC(31) Rothia, Enterococcus, Streptococcus,
Clostridium, Veillonella, and

Haemophilus

Coprococcus

Liwinski et al., 2020 Germany Bile PSC(43) vs. HC(22) Enterococcus faecalis, Staphylococcus
epidermidis, Streptococcus sanguinis,
Enhydrobacter aerosaccus, Prevotella

pallens, Veillonella dispar

Gemella sanguinis, Streptococcus
gordonii

Pereira et al., 2017 Finland Bile PSC(80) vs. HC(46) / An unclassified Enterobacteriaceae,
Neisseria, Campylobacter, an

unclassified Neisseriaceae

Lapidot et al., 2021 Israel Saliva PSC(35) vs. HC(30) Streptococcus salivarius, Prevotella
histicola, Rothia mucilaginosa,

Veillonella parvula, Actinomyces,
Campylobacter concisus,

Bifidobacterium stellenboschense,
Bacteroidales genus Phocaeicola

/

role in AILDs because of the lack of healthy controls. Boomkens
et al. (2005) in the Netherlands demonstrated that Helicobacter
species do not play a causal role in the pathogenesis of the PBC
and PSC, by comparing Helicobacter species-specific DNA in
liver tissue of patients with PBC/PSC and a control group. But
another study involving 25 patients with end-stage PSC and
31 controls suggests a contributory role of Helicobacter pylori
in the pathogenesis of PSC (Krasinskas et al., 2007). H. pylori
gene can be detected in liver tissue samples of patients with PBC
(Krasinskas et al., 2007), whereas there is no correlation between
H. pylori antibody and PBC (Durazzo et al., 2004). Cross-reaction
can be observed between H. pylori and mitochondria antibody

of the bile duct cells, although there is no evidence so far of a
common epitope between H. pylori and bile duct cell (Bogdanos
et al., 2004). In general, the correlation between H. pylori
antibody and AILDs is still controversial.

In addition to bacteria, the role of chlamydia in AILDs has
also been studied. Although Chlamydia pneumoniae specific
16S rRNA gene and antigen can be found in PBC liver (Leung
et al., 2003). No difference of Chlamydia pneumoniae IgG
was seen in PBC patients compared to post-hepatitis cirrhosis
patients, suggesting that infection with chlamydia may not
be the triggering agent of PBC (Liu et al., 2005). Recently,
Lemoinne et al. (2020) found that the fungal microbiota
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of patients with PSC displayed an increased biodiversity.
Moreover, their study suggested that PSC was associated with
the increase of Exophiala genus and Sordariomycetes class, with
a decrease of the Saccharomycetales order, Saccharomycetes class,
Saccharomycetaceae family, and S. cerevisiae species (Lemoinne
et al., 2020). Investigation of other microbiome such as chlamydia
and fungi may provide a new direction for microbiome
study in the future.

It is urgent to find related bacteria of AILDs, because of
difficult diagnosis at the early stage in disease. Cumulative
evidences show a linkage between microbiome and AILDs. The
genera of Veillonella is predominant in the gut of AIH, PSC, and
PBC patients, showing a vital role in AILDs. However, little is
known about the potential mechanism of it in AILDs. The present
result showed Veillonella may be enriched by suppression of
bile acid synthesis (Loomba et al., 2021). Exploring the potential
mechanism of microbiome in AILDs could be an opportunity for
disease diagnosing and treating.

Functional Analyses of the Microbiome
in Autoimmune Liver Diseases
Exploring the response of microbiome may help to find
the induction factor of AILDs. Metagenomics is limited
to reveal the functional activities of microorganisms, while
metatranscriptomics is applied to explore the rapid response
and expressed biological signatures of microorganisms to the
external stimuli (Franzosa et al., 2014; Ram-Mohan and Meyer,
2020). However, there is still no metatranscriptomics research
in AILDs. By PICRUSt, a tool used to infer the functional
profile of microbial community, the microbial function is
shown in Figure 1. Elsherbiny et al. (2020) demonstrated that
butyrate, tryptophan, branched-chain fatty acids, pantothenate,
and coenzyme A metabolisms were improved in microbial
communities of AIH. However, the metabolism associated
with proline and arginine was reduced (Elsherbiny et al.,
2020). Changes in the metabolites have been verified in
metabolomics, which will be illustrated later. Furthermore,
bacterial invasion of epithelial cells, peroxisome proliferator-
activated receptors (PPAR) signaling pathway, and caprolactam
degradation pathways were enriched in PBC (Tang et al., 2018).
The selective destruction of biliary epithelial cells is the key step
in the pathogenesis of PBC (Selmi et al., 2010). PPAR agonists
is suggested to regulate bile acid pool, and reduce inflammation
and fibrosis of liver (Gerussi et al., 2020). Intriguingly, UDCA use
not only influences the relative abundance of microbial species
in feces but also alters the metabolic pathways of microbiota.
The metabolic pathway predicted by 16s rRNA sequencing data
showed elevation in taurine and hypotaurine metabolism in PBC
after UDCA treatment, whereas glycine metabolism pathway
had no difference with that of UDCA-naive PBC (Chen et al.,
2020). The change of bile acids in PBC has been confirmed
by metabolomic study (Yang and Duan, 2016). As for PSC
patients, evidence showed that inferred microbiome functions
were significantly different between PSC and healthy controls.
There were an increase of ‘biofilm formation by Escherichia
coli,’ ‘lipopolysaccharide biosynthesis,’ ‘shigellosis,’ ‘Salmonella

infection,’ ‘pathogenic E. coli infection’ and ‘bacterial invasion
of epithelial cells,’ and a decrease of ‘tryptophan metabolism,’
‘biosynthesis of amino acids’ in PSC (Liwinski et al., 2020).
In addition, Kummen et al. (2020) demonstrated that patients
with PSC had more metabolic pathways related to vitamin B6
synthesis and branched-chain amino acid synthesis compared to
healthy controls. In short, pioneering work has indicated that
metatranscriptomics had their functional potential in AILDs.
Further study is needed in the field.

Microbial Metabolites Associated With
Autoimmune Liver Diseases
Microbial metabolites are emerging to be important effectors
mediating the impact of microbiota on host immune responses
and are critical for host-microbiota interactions. The gut
microbial metabolites contain a wide variety of molecules
ranging from short-chain fatty acids (SCFAs) and vitamins to
secondary bile acids and neurotransmitters (Kummen and Hov,
2019). Colonic microbiota can transform carbohydrates into
SCFAs, including acetate, propionate, and butyrate (Topping
and Clifton, 2001). SCFAs have been verified to participate
in regulating both innate immunity and antigen-specific
adaptive immunity (Kim, 2018). It cannot only suppress the
proinflammatory activation of macrophage but also promote
peripheral regulatory T-cell generation (Dohmen et al., 2002;
Arpaia et al., 2013). Previous study indicated that SCFAs can
be uptaken by liver (Cummings et al., 1987). Recently, Zhang
et al. (2020) demonstrated that the fecal butyrate was decreased
in AIH patients compared to HC. The cause of butyrate
reduction in AIH is still unknown. Furukawa et al. (2020)
demonstrated a significant reduction in the diversity of the order
Clostridiales, which included butyric acid-producing bacteria. It
may partly explain the reduction of butyrate. In addition, SFCAs
supplementation has been proved to ameliorate experimental
autoimmune hepatitis (Hu et al., 2018). Furthermore, Wu et al.
(2017) have shown that butyrate could ameliorate experimental
autoimmune hepatitis through maintaining the integrity of small
intestine via inhibiting TLR4 signaling pathway. Altogether,
SCFAs may have beneficial effects on liver health through
various mechanisms.

Excessive intrahepatic accumulation of bile acids can
aggravate liver injury in cholestatic diseases (Schmucker et al.,
1990). Bile acids not only act as a stimulator of numerous
inflammatory mediators but also induct mitochondrial reactive
oxygen species, which may contribute to the progression of
cholestatic liver diseases (Li et al., 2017). In addition, bile
acids are crucial for the immune modulation and study has
demonstrated bile acids metabolites play a pivotal role to regulate
the balance of TH17 and Treg cells (Hang et al., 2019). Bile acid
can regulate gut microbial composition and immune response
(Ramirez-Perez et al., 2017). On the contrary, the microbiome
also plays a central role in bile acid homeostasis. Primary bile
acids are synthesized in the liver and metabolized into secondary
bile acids by microbiota in the gut (Ridlon and Bajaj, 2015).
Liwinski et al. (2020) detected decreased concentrations of most
bile acids in bile of PSC patients, except for the secondary bile
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FIGURE 1 | The changes of microbial function predicted by metagenomic in autoimmune liver diseases (AILDs).

acid-taurolithocholic acid. Torres et al. (2018) also found PSC-
IBD patients had a significant decrease in total stool bile acid pool
compared to HC. Chen et al. (2020) identified decreased levels
of lithocholic acid, glycodeoxycholic acid, and increased levels
of cholic acid, taurochenodeoxycholic acid, chenodeoxycholic
acid, and taurocholic acid in feces of PBC. UDCA, a kind of

secondary bile acid, is just a small fraction of total bile acids.
So far, it’s the main therapeutic drug for PBC, which has been
proved to significantly improve the outcomes of patients with
PBC (Santiago et al., 2018). The production of UDCA can be
modified by intestinal bacteria in gut (Tonin and Arends, 2018).
UDCA was absent in germ-free mice (Tabibian et al., 2016).

Frontiers in Physiology | www.frontiersin.org 7 October 2021 | Volume 12 | Article 715852

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-715852 October 4, 2021 Time: 16:31 # 8

Zheng et al. Microbiome in Autoimmune Liver Diseases

FIGURE 2 | The role of microbiome in pathogenesis of AILDs.

Farnesoid X receptor, which plays a pivotal role in regulating
liver inflammation and the extent of inflammatory responses, can
be activated by bile acids (Ding et al., 2015). Oral vancomycin
significantly reduced the concentration of secondary fecal bile
acids, emphasizing the role of microbiota in transformation of
primary bile acid (Vaughn et al., 2019). It’s worth noting that
the abundance of Veillonella and Klebsiella have been proved to
be negatively correlated with the level of secondary bile acids in
serum (Chen et al., 2020).

As mentioned above, evidence showed the change of
microbiota metabolomics was associated with AILDs. But there
is much of the gut metabolome that remains uncharacterized.
Untargeted metabolomics has great potential to identify novel
molecules in AILDs in the future.

THE ROLE OF MICROBIOME IN THE
PATHOGENESIS OF AUTOIMMUNE
LIVER DISEASES

It’s widely recognized that genetic predisposition in combination
with exposure to environmental triggers and immunity
dysregulation play a vital role in the pathogenesis of AILDs
(Arndtz and Hirschfield, 2016). We summarized the role of
intestinal microbiota in AILDs pathogenesis as follows in
Figure 2.

Several genome-wide association studies indicated that there
is significant association between HLA DR3, DR4, and AIH
(de Boer et al., 2014; van Gerven et al., 2015), HLA DRB1∗08,
and PBC (Invernizzi et al., 2005). Moreover, early studies
from Norway and the United Kingdom also identified HLA-
DR3 (DRB1∗0301) as the susceptible gene of PSC (Schrumpf
et al., 1982). HLA gene has been shown to affect the microbial
composition of the late infant gut in a cohort study from
southeast Sweden (Russell et al., 2019). The microbiome
participates in regulating inflammatory and immune responses as
trigger factors. However, the detailed relationship between HLA
and microbiome in AILDs still needs further exploration.

To our knowledge, T lymphocyte plays a central role in the
immunopathogenesis of AILDs (Ishibashi et al., 2003; Ichiki
et al., 2005; Henriksen et al., 2017). Interestingly, Clostridium
has been reported to regulate the induction of T regulatory
cells by providing bacterial antigens and SCFAs (Atarashi et al.,
2013). Bacterial metabolites SCFAs have been demonstrated to
affect the activity of T regulatory cells and reduce the levels of
pro-inflammatory cytokines such as IFN-γ, IL-6, IL-1b, MIP-
2, and TNF-α (Felice et al., 2015; Bhaskaran et al., 2018).
In addition, bile acid metabolites, which mainly regulated by
microbiota, were reported to inhibit TH17 cells by binding to
the key transcription factor retinoid-related orphan receptor-
γ and regulate T regulatory cells through the production of
mitochondrial reactive oxygen species (Hang et al., 2019).

It is currently believed that chronic bacterial infection might
play a part in the initiation or development of the autoimmune
status in patients with AILDs (Haruta et al., 2010). Many studies
suggest the alteration of microbes in AILDs, but the causality
of this relationship is unclear. In fact, additional intestinal
barrier dysfunction has been proved to exacerbate liver injury
in mice (Zhang et al., 2021). Bacteria and endotoxin would
enter the systemic circulation and trigger immune response
because of intestinal barrier dysfunction (Krentz and Allen,
2017). Recently, it has been reported that translocation of
Enterococcus gallinarum to the liver in germ-free C57BL/6
mice could trigger autoimmune responses (Manfredo Vieira
et al., 2018). Zhang et al. (2020) found that B. lactis 420
mitigated experimental autoimmune hepatitis through regulating
intestinal barrier and liver immune cells (macrophage and Th17
cells). Specifically, the NOD.c3c4, which could spontaneously
develop biliary inflammation, is a model of the human biliary
disease primary biliary cirrhosis (Koarada et al., 2004). Biliary
inflammation is ameliorated in antibiotic-treatment and germ-
free NOD.c3c4 mice (Schrumpf et al., 2017). Nakamoto et al.
(2019) demonstrated that gnotobiotic mice inoculated with
PSC-derived microbiota was more susceptible to hepatobiliary
injuries. Previous evidence shown that microbiome may be the
promoting factors of AILDs. Antibacterial treatment may be
effective options to suppress the development of the disease.

Molecular mimicry between immunodominant epitopes of
the pathogen and self-peptides has been hypothesized to be
the key event leading to the disease. It may provide clues
to explain the relationship between microbes and disease.
Investigations have detected that PDC-E2 of E. coli is molecularly
similar to human PDC-E2, the immunodominant target of
AMAs in PBC (Shimoda et al., 1995). Meanwhile, PDC-E2-
like proteins of Novosphingobium aromaticivorans were more
similar with human PDC-E2 than that of E. coli (Kaplan, 2004).
Although N. aromaticivorans hasn’t been detected in the liver
of patients with PBC (Tanaka et al., 1999), a study has reported
that N. aromaticivorans is present in approximately 25% of
fecal samples from patients and controls (Selmi et al., 2003).
Lactobacillus delbrueckii and Mycobacterium gordonae might also
induce loss of tolerance to human mitochondrial proteins in
genetically susceptible individuals due to molecular mimicry
and immunological cross-reactivity (Vilagut et al., 1994, 1997;
Bogdanos et al., 2008). Recent findings also suggested that
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antibodies against Yersinia enterocolitica were present in PBC
patients (Yamaguchi et al., 1994). Interestingly, Roesler et al.
(2003) identified β-subunit of bacterial RNA-polymerase, a non-
species-specific bacterial protein, as the target of antibodies in
PBC. Besides bacterium, mycoplasma has also been suggested as
a causative factor in the etiopathogenesis of PBC via ‘molecular
mimicry’ (Berg et al., 2009). It is worth noting that PDC-E2
is highly conserved from prokaryotes to advanced organisms,
which may be the reason why multiple microorganisms are
related to AILDs. These results confirmed the hypothesis that
autoimmunity in AILDs may be triggered by proteins specific for
bacteria through ‘molecular mimicry,’ which provide a hopeful
direction for further study on the pathogenesis of AILDs.
In short, the relationship between the organisms and AILDs
needs to be explored.

CONCLUSION

Increasing evidence has highlighted the crucial role of
microbiome in AILDs. Research showed various changes
of microbiome in metagenomic and metabolomic analyses.
Although the studies so far didn’t clearly demonstrate the
causation between microbiome and AILDs, they found
the associated microbiome and even possible role in the
pathogenesis providing direction for further study in the
pathogenesis of AILDs. Moreover, mutual authentication
among metagenomic and metabolomic of the microbiome
could help us to understand the detailed and correct role of

microbiota in AILDs. Nevertheless, the integrated analysis of gut
microbiome and metabolite is lacking because of limited data of
metagenomics and metabolomics in AILDs. With the application
of metagenomics and metabolomics, it is possible to identify
new microbial diagnostic markers in the early diagnosis and
novel treatments of AILDs. The role of the microbiome, not only
bacteria, in the mechanisms of AILDs needs more comprehensive
and in-depth research to explore in the future.
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