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INTRODUCTION

Thyroid-associated orbitopathy (TAO), also known as 
Graves’ ophthalmopathy, is one of the most common 
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autoimmune inflammatory orbital diseases (1, 2). 
Expansion of extraocular muscles (EOMs) and orbital fat 
is the most prominent finding, and is responsible for 
various clinical symptoms, such as proptosis, diplopia, 
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and optic nerves in TAO patients as well as in evaluating 
disease activity.

MATERIALS AND METHODS

Patient Population
This study was approved by our Institutional Review 

Board and the informed consent requirement was waived 
due to its retrospective nature. From February 2017 
to December 2017, 35 consecutive TAO patients who 
underwent orbital MRI for pre-treatment assessment were 
enrolled in this study. TAO was clinically diagnosed if eyelid 
retraction occurred in association with objective evidence of 
thyroid dysfunction or abnormal regulation, exophthalmos, 
optic nerve dysfunction, or EOM involvement. If eyelid 
retraction was absent, thyroid dysfunction associated with 
exophthalmos, optic nerve dysfunction, or EOM involvement 
was adopted (19). Patients who had undergone radiotherapy 
and surgical decompression or had inadequate image quality 
were excluded. 

Disease activity was assessed based on the modified 
7-point clinical activity score (CAS) (20) and determined 
for each eye. The eye was considered in the active phase 
when CAS ≥ 3 and was otherwise classified into the inactive 
phase. A total of 38 eyes were defined as active and 32 
as inactive. Disease severity was assessed by using the 
modified 17-point NOSPECS classification (20). Three 
categories were defined as follows: mild (score from 0 to 
3), moderate (4 to 7), and severe (8 to 17). Fifty eyes were 
classified as moderate, followed by twelve mild and eight 
severe. No patients were diagnosed with dysthyroid optic 
neuropathy. Additionally, 22 healthy subjects were enrolled 
and underwent the same MRI protocol. 

Magnetic Resonance Examination
Magnent resonance (MR) scans were performed on a 

3T MR scanner (Skyra, Siemens Healthineers, Erlangen, 
Germany) with a 20-channel head coil. Each person was 
instructed to look at a fixed site with both eyes closed 
to reduce motion-related errors. DTI was acquired on an 
oblique axial plane using an rs-EPI sequence. The imaging 
parameters were as follows: repetition time (TR)/echo time 
(TE), 2000/83 msec; field of view (FOV), 220 mm; matrix, 
190 x 171; slice thickness, 3 mm; slice number, 10; readout 
segments, 5; non-collinear gradient encoding directions, 
30; b = 0 and 1000 s/mm2. The total imaging time was 5 
minutes and 34 seconds.

and restricted eye movement (1, 3, 4). Furthermore, the 
crowding of orbital tissues at the orbital apex as well as 
increased retrobulbar pressure and optic nerve stretching 
could result in compressive optic neuropathy, which is the 
most serious ophthalmic complication of TAO (4, 5). The 
disease process can be divided into two distinct phases: the 
active inflammatory phase and the inactive fibrotic phase. 
Treatment strategies differ significantly between the two 
phases. Active inflammatory disease is usually considered 
to be sensitive to anti-inflammatory treatments, while only 
surgical treatment can rescue the inactive fibrotic disease 
(1, 3).

Recently, magnetic resonance imaging (MRI) techniques 
have been increasingly applied in evaluating TAO by virtue 
of its superior soft tissue contrast with no ionizing radiation 
(6-8). Thickness or volume measurements of orbital tissues 
can help with inspecting the degree of involvement of TAO 
and can improve diagnostic accuracy (6, 7). Signal intensity 
on T2-weighted images and contrast-enhanced images can 
assist in staging and deciding treatment (8). However, the 
overall accuracy for disease staging is still limited from 
55.6% to 71.2% (6-9).

Diffusion tensor imaging (DTI), which provides 
quantitative information about the microstructural 
integrities of highly oriented tissues, has been increasingly 
applied for assessing various orbital diseases, such as 
glaucoma, optic neuritis, and others (10-13). However, 
studies that apply DTI to assess microstructural changes in 
TAO patients are still limited (14, 15), with only two small 
sample studies (with 20 TAO cases) focusing on EOMs and 
optic nerves, respectively. Moreover, in previous studies, 
single-shot echo-planar imaging (ss-EPI) sequences were 
commonly used for obtaining orbital DTI (11-15). However, 
ss-EPI is apt to susceptibility artifacts, such as signal-
intensity drop-out, geometric distortion, and overall T2*-
induced image blurring, especially in poor magnetic field 
homogeneity and high field strengths (16). As a potential 
alternative, readout-segmented EPI (rs-EPI, developed by 
Porter & Mueller (17)), where k-space is divided into a few, 
segments along the readout direction, has attracted more 
attention. It has been proven to be useful for improving 
image quality along with superior normal anatomical 
structure distinction, compared to ss-EPI (16, 18). To our 
knowledge, no studies have specifically applied rs-EPI-based 
DTI in the evaluation of TAO until now.

Therefore, our study aims to investigate the ability of rs-
EPI-based DTI in assessing microstructural changes of EOMs 
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Conventional imaging protocols included axial T1-
weighted imaging (TR/TE, 635/6.7 msec), and axial, 
coronal, and sagittal T2-weighted imaging (TR/TE, 
4000/75–117 msec) with fat suppression. Other parameters 
were as follows: FOV, 200 mm; matrix, 320 x 320; slice 
thickness, 3 mm.

Imaging Processing
rs-EPI-based DTI images were postprocessed using DSI 

Studio software (http://dsi-studio.labsolver.org). The ‘DTI’ 
reconstruction method was used to model the eigenvectors, 
and pixel-by-pixel maps of fractional anisotropy (FA), mean 
diffusivity (MD), axial diffusivity (AD), and radial diffusivity 
(RD) were then automatically obtained. For placing regions 
of interest (ROIs) on the EOMs, polygonal ROIs were 
manually drawn on all consecutive axial slices including 
the medial and lateral EOMs in each orbit, avoiding the 
surrounding fatty tissue. We followed a similar method with 
the optic nerve and carefully positioned polygonal ROIs at 
the level of the intra-orbital optic nerve (Fig. 1). 

All ROIs were drawn independently by 2 neuroradiologists 
(reader 1: 8 years of experience; reader 2: 4 years of 
experience) who were blinded to the clinical condition 
and study design. The measurements of the two readers 
were used to calculate the inter-observer reproducibility. 
Additionally, to assess intra-observer reproducibility, reader 
1 re-assessed all the DTI images, spaced at least 1 month 
apart. The average of the two measurements of reader 1 was 
applied into the statistical analysis.

Statistical Analysis
All numeric data were averaged and reported as the mean 

± standard deviation. The chi-squared test was applied to 
compare differences between sex, medication, smoking 
history, and disease severity categories between groups. 
The independent-samples t test was used to compare 
differences between age, disease duration, and rs-EPI-based 
DTI parameters of the medial and lateral EOMs as well as the 
optic nerve between groups. Multivariate logistic regression 
analysis was used to evaluate the predictive value of 
significant variables for determining the active phase by 
using a forced-entry process. The odds ratios and their 95% 
confidence intervals were calculated. Receiver operating 
characteristic curve analysis was performed to evaluate the 
diagnostic efficiency of the identified parameters for the 
active phase.

Intraclass correlation coefficients (ICC) with 95% 

confidence intervals were used to evaluate the inter- and 
intra-observer reproducibility of the measurements, and a 
two-way ICC with random rater assumption was applied. 
It was interpreted as follows: < 0.40, poor; 0.40–0.60, 
moderate; 0.61–0.80, good; ≥ 0.81, excellent. A p value 
of less than 0.05 indicated statistical significance. All 
statistical analyses were carried out using the SPSS software 
package (v. 23.0, IBM Corp., Armonk, NY, USA). 

RESULTS

Detailed clinical and demographic information of the 
study population is displayed in Table 1. There were no 
significant differences in sex distribution or age between 

Fig. 1. Methods for measurement of rs-EPI-based DTI 
parameters in EOMs and optic nerves. 
Axial (A) and coronal (B) fat-suppressed T2-weighted images in 40-
year old woman with TAO. Corresponding color-coded FA (C), MD (D), 
AD (E), and RD (F) maps, respectively. Polygonal regions of interest 
were manually drawn on all consecutive slices of medial and lateral 
EOMs as well as intra-orbital optic nerve. AD = axial diffusivity, EOM = 
extraocular muscle, FA = fractional anisotropy, MD = mean diffusivity, 
RD = radial diffusivity, rs-EPI-based DTI = readout-segmented echo-
planar imaging-based diffusion tensor imaging, TAO = thyroid-
associated orbitopathy
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and the FA of medial EOMs demonstrated a nearly 
significant result (p = 0.05). A higher MD of medial EOMs 
and shorter disease duration were related to the active 
phase (β = 10.355, -0.561; respectively). The combination 
of MD of medial EOMs and disease duration showed optimal 
diagnostic efficiency for disease activity (area under the 
curve, 0.855; sensitivity, 68.4%; specificity, 96.9%) (Fig. 4). 

TAO and healthy control (HC) groups and between active 
and inactive TAOs, nor were there in antithyroid medication 
or smoking history between active and inactive TAOs (all p 
> 0.05). The mean disease duration was 6.5 months (range, 
2 to 24 months), and it was significantly shorter in active 
TAOs than inactive ones (4.6 ± 2.3 vs. 8.9 ± 5.9 months, p 
< 0.001). The mean CAS was 4.6 ± 1.0 in active TAOs and 
1.3 ± 0.8 in inactive ones (p < 0.001). The mean modified 
NOSPECS score was 5.2 ± 2.0 and 5.3 ± 1.3 in active and 
inactive TAOs, respectively (p = 0.621). A significant 
difference was found in disease severity categories between 
active and inactive groups (p = 0.022). 

Excellent intra- and inter-observer reproducibility were 
obtained when measuring all rs-EPI-based DTI parameters 
(ICC ranged from 0.861 to 0.993). TAO patients showed 
significantly lower FA and higher MD, AD, and RD than HCs 
(all p < 0.001) for both the medial and lateral EOMs, except 
for the AD value of the lateral EOMs (p = 0.619) (Table 2, 
Fig. 2). Active phase TAO patients had significantly higher 
FA, MD, and AD (p < 0.005) than those in the inactive 
phase for the medial EOMs, whereas only FA showed a 
significant difference regarding the lateral EOMs (p = 0.018) 
(Table 3, Fig. 2). In the optic nerve, MD, AD, and RD were 
significantly lower in TAO patients than HCs (all p < 0.05), 
while FA showed no significant difference (p = 0.129) (Table 
2, Fig. 3). Neither FA nor diffusivity differed significantly 
between active and inactive phases (both p > 0.05) (Table 3, 
Fig. 3). 

Multivariate analysis showed that the MD of medial 
EOMs and disease duration were significant indicators for 
predicting the active phase (p = 0.035, 0.010; respectively), 

Table 2. rs-EPI-Based DTI Parameters between TAO and HC 
Groups

Parameters TAO HC P 
FA

Medial EOM 0.423 ± 0.057 0.480 ± 0.045 < 0.001*
Lateral EOM 0.456 ± 0.073 0.527 ± 0.061 < 0.001*
Optic nerve 0.613 ± 0.085 0.593 ± 0.055 0.129

MD
Medial EOM 1.721 ± 0.175 1.431 ± 0.123 < 0.001*
Lateral EOM 1.808 ± 0.170 1.570 ± 0.198 < 0.001*
Optic nerve 1.315 ± 0.192 1.394 ± 0.124 0.009*

AD
Medial EOM 2.600 ± 0.255 2.331 ± 0.379 < 0.001*
Lateral EOM 2.809 ± 0.234 2.776 ± 0.396 0.619
Optic nerve 2.326 ± 0.245 2.413 ± 0.172 0.043*

RD
Medial EOM 1.335 ± 0.176 1.103 ± 0.196 < 0.001*
Lateral EOM 1.359 ± 0.215 1.133 ± 0.193 < 0.001*
Optic nerve 0.809 ± 0.213 0.884 ± 0.143 0.027*

Numeric data were reported as mean ± standard deviation. Units 
of MD, AD, and RD are x 10-3 mm2/s. *Statistical significance is 
indicated by p values less than 0.05. AD = axial diffusivity, EOM 
= extraocular muscle, FA = fractional anisotropy, MD = mean 
diffusivity, RD = radial diffusivity, rs-EPI-based DTI = readout-
segmented echo-planar imaging-based diffusion tensor imaging

Table 1. Detailed Clinical and Demographic Information of Our Study Population

Variables
TAO (n = 35) HC 

(n = 22)
P

Active Inactive P
Eyes 38 32 44
Age 47.3 ± 14.9 47.6 ± 14.3 0.822

48.4 ± 15.9 46.0 ± 13.9 0.367
Sex (M/F) 14/21 8/14 0.784

8/11 6/10 0.782
Disease duration (range) 6.5 ± 4.8 (2–24)

4.6 ± 2.3 8.9 ± 5.9 < 0.001*
Smoking history 7 6 0.968 2
Antithyroid medication 17 15 0.653 0
CAS 4.6 ± 1.0 1.3 ± 0.8 < 0.001*
Modified NOSPECS score 5.2 ± 2.0 5.3 ± 1.3 0.621
Mild/moderate/severe 10/22/6 2/28/2 0.022*

Numeric data were reported as mean ± standard deviation. Unit of disease duration is month. *Statistical significance is indicated by p 
values less than 0.05. CAS = clinical activity score, F = female, HC = healthy control, M = male, TAO = thyroid-associated orbitopathy
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DISCUSSION

In this study, almost all the diffusivity values of EOMs 
were significantly higher in TAO patients than those in HCs, 
which was in agreement with previous studies (21, 22). 
Furthermore, active patients showed significantly higher 
diffusivity of medial EOMs than inactive patients. Diffusivity 
measures the magnitude of diffusion of water molecules 
within the tissue, which is dominated by interstitial space 
(23). The active phase is histologically characterized by 
mononuclear cell infiltration, fibroblast proliferation, 
and edema in EOMs. By contrast, the inactive phase is 
characterized by interstitial fibrosis, collagen deposition, 
and fat infiltration (1, 3). As previous studies stated, 
diffusivity could increase in edematous muscle and decrease 
in fibrotic and fatty infiltrated tissue (22-25). Therefore, 
it is not surprising that active patients have higher 

diffusivity than inactive ones. However, this finding might 
be contradictory to several prior studies (14, 21). Politi et 
al (21). discovered that the normalized diffusivity of EOMs 
showed a tendency to increase more in the active phase 
than in the inactive phase, but this was not statistically 
significant. In another study, diffusivity values of medial 
EOMs significantly differed only between acute (disease 
duration ≤ 6 months) and chronic stages, but not between 
the active and inactive phases (14). A possible reason for 
this discrepancy might be the more widened gap of CAS 
values between active and inactive groups in our study 
than in the previous two studies. Additionally, the usage of 
semi-quantitative measurement (diffusivity normalized to 
thalamus) in the previous study might also have an effect.

FA is another widely used DTI parameter. FA measures the 
fraction of the magnitude of diffusivity, which reflects fiber 
integrity and is related to the architecture and the strength 

Fig. 2. Box-and-whisker plots show comparisons of all rs-EPI-based DTI parameters in medial and lateral EOMs between groups. 
Units of MD, AD, and RD are x 10-3 mm2/s. Asterisk indicates significant difference (***p < 0.001, **p < 0.01, *p < 0.05, n.s. p > 0.05). HC = 
healthy control, L = lateral EOM, M = medial EOM, n.s. = no significance
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of the muscle (26, 27). In our study, EOMs of TAO patients 
exhibited lower FA than HCs. This is likely associated with 
cell lysis, fibrous disruption, or loss of EOMs in TAO patients 
(14). Furthermore, EOMs of active patients had higher 
FA values compared to inactive ones, which is a unique 
finding that has not previously been reported. Previously, 
Cheung et al (25). discovered decreased FA in mild collagen 
deposition. Abdullah et al (28). also reported decreased 
FA in diffuse myocardial fibrosis. Considering that fibrosis 
and subsequent collagen deposition are also characteristic 
features of EOMs in inactive TAO, it was not unexpected 
that inactive patients would show decreased FA compared 
to active patients. 

In our study, multivariate analysis along with clinical 
factors revealed that MD of medial EOMs and disease 
duration were significant predictors in combination for 
disease activity with optimal determining efficiency. In 
addition, FA of medial EOMs demonstrated a marginal 
significance in predicting the active phase. Therefore, 
on the basis of our preliminary results, rs-EPI-based DTI 

Table 3. rs-EPI-Based DTI Parameters between Active and 
Inactive Phases

Parameters Active Inactive P
FA

Medial EOM 0.440 ± 0.063 0.402 ± 0.043 0.004*
Lateral EOM 0.475 ± 0.072 0.434 ± 0.068 0.018*
Optic nerve 0.622 ± 0.097 0.603 ± 0.067 0.329

MD
Medial EOM 1.781 ± 0.199 1.648 ± 0.105 0.001*
Lateral EOM 1.840 ± 0.195 1.771 ± 0.127 0.083
Optic nerve 1.316 ± 0.205 1.314 ± 0.179 0.963

AD
Medial EOM 2.689 ± 0.271 2.493 ± 0.188 0.001*
Lateral EOM 2.859 ± 0.222 2.750 ± 0.237 0.050
Optic nerve 2.349 ± 0.243 2.300 ± 0.250 0.412

RD
Medial EOM 1.328 ± 0.208 1.343 ± 0.130 0.709
Lateral EOM 1.330 ± 0.230 1.395 ± 0.193 0.210
Optic nerve 0.799 ± 0.243 0.821 ± 0.173 0.674

Numeric data were reported as mean ± standard deviation. Units 
of MD, AD, and RD are x 10-3 mm2/s. *Statistical significance is 
indicated by p values less than 0.05. 

Fig. 3. Box-and-whisker plots show comparisons of rs-EPI-based DTI parameters in optic nerve between groups. Units of MD, AD, 
and RD are x 10-3 mm2/s. Asterisk indicates significant difference (**p < 0.01, *p < 0.05, n.s. p > 0.05).
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derived diffusivity and FA of EOMs, especially of medial 
EOMs, could be adopted as potential imaging biomarkers for 
diagnosing TAO and determining activity in patients with 
TAO. 

In terms of microstructural changes in the optic nerve, 
our study indicated significantly decreased diffusivity in 
TAO patients compared to HCs, which was consistent with 
a prior study (15). In addition, Yamada et al (29). found 
that the diffusivity of the optic chiasm was also decreased 
significantly in intra- and parasellar tumor patients, and 
they attributed this change to tumor compression of the 
optic chiasm starting from the occurrence of the tumor 
up until treatment. Although the exact mechanisms of 
dysthyroid optic neuropathy are still not understood, the 
most widely accepted hypothesis is mechanical compression 
and ischemia (15). Thus, our present result might also 
reflect the effects of compression and the relatively long-
term change on the optic nerve in TAO patients (29). 
However, in terms of FA, there is a discrepancy between 
our study and that of Lee et al (15). They found that FA 
increased significantly in TAO patients, while our study 
showed no significance. We thought that this discrepancy 
might be partially related to the different constitution of 
patient groups between the two studies. More specifically, 
patients of a more severe category were included in their 

study (20%) compared to ours (11%). In addition, changes 
in FA values under different scan parameters might also be 
responsible. For instance, an FA value could be larger when 
applying a smaller voxel size or decreased diffusion gradient 
directions (30, 31). Therefore, further research with more 
unified parameters along with a larger sample size should 
be performed to clarify the exact change of FA in the optic 
nerve of patients with TAO. 

Our study exhibited good to excellent inter- and intra-
observer reproducibility for all measurements of rs-EPI-
based DTI parameters. The satisfactory reproducibility 
might be attributed to the following reasons. First, an rs-
EPI sequence was used for the DTI scan. Given that it has 
been proven to be superior in reducing ghosting artifacts 
and improving image quality compared to conventional ss-
EPI, the better visualization of EOMs and the optic nerve 
contributes to less measurement bias. Second, as a previous 
study indicated that inter-observer variability caused by 
ROI placement could be effectively reduced by a larger ROI 
approach (32), we used large, polygonal, and strip-like ROIs 
on consecutive slices, which could objectively represent 
the overall change of the evaluated subject. By contrast, 
in previous studies, hot-spot or regional ROIs were usually 
used for measuring quantitative parameters of EOMs and 
optic nerves (11, 12, 33). These ROI selection methods 
were prone to sampling bias. 

Our study has several limitations. First, our study 
population was relatively small. Second, we didn’t conduct 
post-treatment assessment because this is a retrospective 
study and complete follow-up information was not available 
for every patient. However, we believe that our results could 
be a strong basis for further larger prospective studies. 
Third, while evaluating EOMs, only the medial and lateral 
bundles were measured because of the axial scan for the DTI 
sequence. Lack of information on inferior EOMs might be 
a major drawback of our study. Additional DTI scans in the 
coronal plane or even using non-EPI diffusion sequences 
with less air-bone susceptibility artifacts and distortion 
would be helpful for assessing all EOMs and the optic nerve 
simultaneously (34, 35). 

In conclusion, our preliminary results suggest that rs-EPI-
based DTI is helpful in detecting microstructural changes 
of EOMs and optic nerves and can improve the diagnostic 
accuracy of TAO. rs-EPI-based FA and diffusivity of EOMs, 
especially the MD of medial EOMs, can serve as an indicator 
of disease activity.

Fig. 4. Receiver operating characteristic curve analysis showed 
that combination of MD of medial EOMs and disease duration 
demonstrated optimal diagnostic efficiency for disease activity 
(area under curve, 0.855; sensitivity, 68.4%; specificity, 
96.9%).
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