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INTRODUCTION 
 
RNA splicing and the protein machinery that guides 
this process, the spliceosome, constitute a very 
relevant biological target for cancer therapy [1, 2]. 
Others and we have discovered small molecule leads 

that modulate the spliceosome and induce apoptosis 
preferentially in cancer cells [1, 3]. The spliceosome 
macromolecules are divided into two groups: the 
major spliceosome, which includes U1, U2, U4, U5, 
U6 snRNAs, and the minor spliceosome, which 
comprises U11, U12 together with U5 [4, 5]. Within 
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ABSTRACT 
 
Alterations in RNA splicing are associated with different malignancies, including leukemia, lymphoma, and solid 
tumors. The RNA splicing modulators such as FD-895 and pladienolide B have been investigated in different 
malignancies to target/modulate spliceosome for therapeutic purpose. Different cell lines were screened using 
an RNA splicing modulator to test in vitro cytotoxicity and the ability to modulate RNA splicing capability via 
induction of intron retention (using RT-PCR and qPCR). The Cignal Finder Reporter Array evaluated [pathways 
affected by the splice modulators in HeLa cells. Further, the candidates associated with the pathways were 
validated at protein level using western blot assay, and gene-gene interaction studies were carried out using 
GeneMANIA. We show that FD-895 and pladienolide B induces higher apoptosis levels than conventional 
chemotherapy in different solid tumors. In addition, both agents modulate Wnt signaling pathways and mRNA 
splicing. Specifically, FD-895 and pladienolide B significantly downregulates Wnt signaling pathway-associated 
transcripts (GSK3β and LRP5) and both transcript and proteins including LEF1, CCND1, LRP6, and pLRP6 at the 
transcript, total protein, and protein phosphorylation’s levels. These results indicate FD-895 and pladienolide B 
inhibit Wnt signaling by decreasing LRP6 phosphorylation and modulating mRNA splicing through induction of 
intron retention in solid tumors. 
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the major component, the SF3B core unit is comprised 
of spliceosome associated proteins including SF3B1 
(Splicing Factor 3b Subunit 1), U2AF1 (U2 Small 
Nuclear RNA Auxiliary Factor 1), and SRSF2 (Serine 
And Arginine Rich Splicing Factor 2) that have been 
implicated in large a number of malignancies [6] 
including chronic lymphocytic leukemia (CLL) [7], 
uveal melanoma [8], and myelodysplastic syndrome 
[9]. Recent structural studies have shown that 
pladienolide B-related FD-895 polyketides and their 
analogs bind to a specific pocket within this SF3B core 
comprised of SF3B1, SF3B3 (Splicing factor 3B 
subunit 3), and PHF5A (PHD Finger Protein 5A) [10, 
11]. SF3B1 and mutations in it have been exploited 
extensively as a therapeutic target in FLT3/ITD 
positive acute myeloid leukemia (AML), endometrial 
cancer, and hepatocellular carcinoma [12–14]. 
 
To date, a panel of splicing modulators (SPLMs) have 
been screened using in vitro and in vivo models for their 
ability to inhibit the spliceosome, and their anti-cancer 
properties [6]. Those compounds include FR901464 
[15, 16], spliceostatin A (a derivative of FR901464) 
[17], thailanstatin A [18], meayamycin [19], 
isoginkgetin [20], sudemycin (analogs of FR901464) 
[21, 22], and herboxidiene [23]. The activity of SPLMs, 
including spliceostatin A [24], and sudemycin analogs 
(sudemycin C1, sudemycin D6), includes prominent 
induction of intron retention (IR) and exon skipping 
(ES) which are types of alternative RNA splicing events 
observed in different cell lines [25–27]. While many of 
these agents showed splice modulatory activity, but 
their primary mechanisms of inducing tumor cell death 
remain unknown. 
 
E7107 (a synthetic analog of pladienolide B) entered 
Phase 1 clinical trials by groups at MD Anderson in 
Houston [28], and the Erasmus University Medical 
Center in Rotterdam [29]. A total of 26 patients with 
solid tumors were enrolled in the US-based Phase I and 
treated at escalating doses beginning at 0.6 mg/m2. 
E7107 was received as a 30-minute intravenous 
infusion on days 1 and 8 and repeated this cycle every 
21 days. The selection of subsequent dose levels was 
performed according to accelerated design. The 
maximum tolerable dose (MTD) for E7107 observed 
was 4.3-mg/m2. A total of 31% of patients showed 
stable disease. The adverse events associated with 
E7107 were diarrhea, vomiting, and nausea. Blindness 
was observed in two patients at the 2nd and 7th cycle 
after receiving 3.2 mg/m2 and 4.3 mg/m2, respectively. 
The loss of vision event in patients led to the 
discontinuation of this study [28]. 
 
In the Dutch Phase, I trial, 40 patients with solid 
tumors were enrolled, and doses from 0.6 to 4.5 mg/m2 

were explored. The MTD was 4.0 mg/m2. At 4.5 
mg/m2, two patients experienced diarrhea of grade 4. 
At 4.0-4.5 mg/m2, dose-limiting toxicity (DLT) grade 3 
diarrhea, nausea, vomiting, and abdominal cramps were 
observed. After drug discontinuation at 4.0 mg/m2, one 
patient experienced reversible grade 4-blurred vision. 
The pharmacokinetic analysis revealed a plasma half-
life between 5.3 to 15.1 h. There were no complete or a 
partial response was observed in this trial. Severe 
issues with vision were observed in both trials. An 
increase in the pre-mRNA (intron retained) was 
observed in this study at MTD in the peripheral blood 
mononuclear cells [29]. Both trials were ultimately 
suspended. 
 
In our previous studies, we explored the activity of 
SPLMs on normal peripheral blood mononuclear cells 
(PBMCs) including T and B-lymphocytes and found 
that SPLMs spare these cells as compared with 
leukemic B cells. We also reported that FD-895 and 
pladienolide B exhibited modulation of mRNA 
spicing and induced apoptosis in patient-derived CLL-
B cells [30]. Here we found that FD-895 and related 
synthetic analogs block the G2/M phase of the cell 
cycle, downregulating the cyclin D1 (CCND1), 
phospho-CDC2, CDC2, and modulating PLK-1 
splicing [31]. 
 
The activity of FD-895 and pladienolide B has not been 
evaluated in solid tumor cells lines to assess the effect 
of induction of intron retention on Wnt signaling 
pathway, therefore we designed studies to evaluate their 
apoptotic activity against solid tumors and the 
mechanisms involved in this process. 
 
MATERIALS AND METHODS 
 
Ethical statement 
 
Informed consent was taken of the healthy donor prior 
to collection of blood samples from San Diego Blood 
Bank according to the regulation of the Institutional 
Review Board and Ethics committee at UC San Diego 
and maintained strict compliance with the Helsinki 
Declaration. 
 
Compounds 
 
FD-895 was prepared through total synthesis [32]. 
Pladienolide B (sc-391691, Santa Cruz 
Biotechnology, Santa Cruz, CA, USA), etoposide 
(E1383, Sigma-Aldrich, St Louis, MO, USA) and 
cisplatin (479306, Sigma-Aldrich, St Louis, MO, 
USA) were obtained commercially (Figure 1). 
Oligonucleotides were purchased via custom synthesis 
(Integrated DNA Technologies). 
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Cell culture methods 
 
The MCF-7 (RRID:CVCL_0031), MDA-MB-468 
(RRID:CVCL_0419), HS578T (breast cancer, 
RRID:CVCL_0332), A2780 (RRID:CVCL_0134), 
SKOV3 (ovarian cancer, RRID:CVCL_0532), 786-O 
(renal adenocarcinoma, RRID:CVCL_1051), HeLa 
(Cervical cancer, RRID:CVCL_0030), and HEK-293 
cell lines were obtained from ATCC. MCF7 was 
cultured in DMEM (catalog # 12800017, GIBCO, 
Grand Island, USA) + 10% fetal bovine serum (FBS, 
catalog # FB-02, Omega Scientific, Tarzana, CA, USA) 
+2 mM L-glutamine and 1% Pen/Strep (catalog # 
15140148, Invitrogen Corporation, CA, USA) 
supplemented with 0.01 mg/mL human recombinant 
insulin. Other cell lines were maintained in DMEM 
supplemented with 10% FBS, 2 mM L-glutamine, and 
1% of Pen/Strep. Additionally, two ovarian cancer cell 
lines with differential cisplatin sensitivity, OV-2008 
(sensitive, RRID:CVCL_0473) and it’s resistant variant 
C13 were obtained from Prof. Stephen Howell (UC San 
Diego). To complete the set, a final colon cancer cell 
line HCT116 (RRID:CVCL_0291) was obtained from 
the Johns Hopkins School of Medicine, Baltimore, 
MD. The suspension cell lines including Jeko-1, JVM2, 
and Mino cell lines were cultured in RPMI-1640 
(catalog # R7509, Sigma) supplemented with 10% FBS 
along with 1% Pen-Strep. All cell lines were incubated 
at 37°C in an atmosphere of 5% CO2 and routinely 
monitored for Mycoplasma infections by PCR 
analyses. 
 
Flow cytometry analyses 
 
Normal PBMCs were treated with FD-895 (100 nM to 
2.0 µM), and pladienolide B (100 nM to 2.0 µM), for 
48 h. Cell viability was determined by flow cytometry 
after staining with conventional live staining with 
40 µM 3,3′dihexyloxacarbocyanine iodide (DiOC6; Life 
Technologies, Carlsbad, CA, USA) and 15 µM 
(10 µg/mL) of propidium iodide (PI; Sigma-Aldrich, St 
Louis, MO, USA). Data were analyzed by using FlowJo 
software (version 6.4.7; Tree Star). Using this assay, 
viable cells excluded PI and stained brightly positive for 
DiOC6 as it targets metabolically active mitochondria of 
alive cells [30–33]. 
 
Calculation of % specific induced apoptosis (SIA) 
 
To discriminate the compound specific induced 
apoptosis vs. background spontaneous cell death from 
in vitro culture conditions, we calculated the percentage 
of specific induced apoptosis (% SIA) using the 
following formula: % SIA = [(compound induced 
apoptosis – media only spontaneous apoptosis)/(100- 
media only spontaneous apoptosis)] × 100. 

Cell proliferation assays 
 
The cell proliferation assays were conducted in adherent 
cell lines (HCT116, MCF-7, MDA-MB-468, HS578T, 
OV-2008, A2780, SKOV3, 786-O, HEK-293, and 
HeLa) by using CellTiter 96 AQueous non-radioactive 
colorimetric method (G5421, Promega, Madison, WI, 
USA). Briefly, a total of 3000 cells/well were seeded in 
a 96-well flat-well plate followed by treatment with FD-
895 (100 nM to 2.0 µM), pladienolide B (100 nM to 2.0 
µM), cisplatin (1 µM to 30 µM) or etoposide (1 µM to 
30 µM) in triplicate for 48 h at 37°C. Following the 
incubation, 20 µL of CellTiter 96 AQueous solution 
(Promega, Madison, WI, USA) was added directly to 
each well. Non-treated cells were considered as the 
control. After staining, the plates were incubated for an 
additional 2 h and then read on a 96-well plate reader 
(Molecular Devices, Sunnyvale, CA, USA). 
Absorbance readings were recorded absorbance at 490 
nm using empty wells (air) for background collection. 
 
Reverse transcriptase PCR (RT-PCR) analyses 
 
HCT116, MCF-7, MDA-MB-468, HeLa, Jeko-1, JVM-
2 and Mino cells (106 cells/well) were treated with 100 
nM FD-895, 100 nM pladienolide B, 30 µM cisplatin 
or 30 µM etoposide for 4 h. RNA isolation was done 
using mirVana miRNA Isolation Kit (Ambion, Austin, 
Texas). The 200 ng of RNA was subjected to DNase I 
(Life Technologies, Carlsbad, CA, USA). The cDNA 
was prepared by using SuperScript III Reverse 
Transcriptase Kit (Life Technologies, Carlsbad, CA, 
USA), and PCR reactions were performed in 20 µL of 
reaction volume. PCR conditions were 95°C for 3 min; 
35 cycles of 95°C for 30 s, 58°C for 30 s, and 72°C for 
45 s; followed by 72°C for 5 min. PCR products were 
separated on a 2% agarose gel and stained with 
ethidium bromide. Details of the primers used for RT-
PCR are described in Table 1. 
 
Quantitative reverse transcriptase-PCR (qRT-PCR) 
analyses 
 
The HeLa cells were treated with 100 nM FD-895 or 
100 nM pladienolide B for 6 h, 12 h, or 24 h, and the 
RNA isolation and cDNA preparation were done as 
described above. The amounts of mRNA of LEF1 
(Lymphoid enhancer-binding factor-1), FN1 
(fibronectin 1), and CCND1 genes were determined 
using Power SYBR Green PCR master mix (Applied 
Biosystems, Foster City, CA) real-time qRT-PCR using 
specific primers [34]. PCR was conducted using 5 
picomoles of each primer and 20 ng of the obtained 
cDNA. PCR conditions were 50°C for 2 min; 95°C for 
10 min; 40 cycles of 94°C for 15 s, and 60°C for 1 min. 
The mRNA levels were calculated using the 2−ΔΔCT 
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Table 1. Sequences of primers used in the RT-PCR. 

Primer Sequence 
DNAJB1-FW 5′-GAACCAAAATCACTTTCCCCAAGGAAGG-3′ 
DNAJB1-RV 5′-AATGAGGTCCCCACGTTTCTCGGGTGT-3′ 
RNU6A-FW 5′-CGCTTCGGCAGCACATATAC-3′ 
RNU6A-RV 5′-GAATTTGCGTGTCATCCTT-3′ 
LEF1-FP 5′-AGGAACATCCCCACACTGAC-3′; 
LEF1-RP 5′-AGGTCTTTTTGGCTCCTGCT-3′ 
CCND1-FP 5′-AATGACCCCGCACGATTTC-3′ 
CCND1-RP 5′-TCAGGTTCAGGCCTTGCAC-3′ 
FN1-FP 5′-ACCTACGGATGACTCGTGCTTT-3′ 
FN1-RP 5′-TTCAGACATTCGTTCCCACTCA-3′ 
GSK3β-FP 5′-ATCAAGGCACATCCTTGGAC-3′ 
GSK3β-RP 5′-CAATTGCCTCTGGTGGAGTT-3′ 
LRP5-FP 5′-GCCTGCAACAAGTGGACA-3′ 
LRP5-RP 5′-CCTGCAGCACTATGTCTGTGA-3′ 

FP and RP denote forward and reverse primers respectively. 
 
method [35]. GAPDH was used as a control for 
normalization. 
 
Pathway reporter arrays 
 
Cignal Finder Reporter Array (336821, Qiagen/ 
SABiosciences, Frederick, MD, USA) was used to assess 
45 different signaling pathways. HeLa cells were seeded 
into wells (50,000 cells/well) of the Cignal Finder 96-well 
plates (CCA-901L, Qiagen, SABiosciences, Frederick, 
MD, USA) for introducing pathway reporters into cells by 
reverse transfection according to the manufacturer’s 
protocol. Briefly, reporter DNA constructs in each plate 
well were re-suspended with 50 μL Opti-MEM and then 
mixed with 50 μL diluted Lipofectamine 2000 transfection 
(Life Technologies, Carlsbad, CA, USA) reagent. Cells 
were suspended in Opti-MEM (Life Technologies, 
Carlsbad, CA, USA) supplemented with 10% of FBS and 
0.1 mM non-essential amino acids at a density of 6 × 105 
cells/mL, and then 50 μL of the cell suspension was added 
into each plate well and mixed with DNA resident in the 
plate and added transfection reagent. The cells were 
incubated for 3 h. Following transfection; the cells were 
treated with vehicle (Opti-MEM) or 100 nM FD-895 for 3 
h in Opti-MEM media. Luciferase and renilla expression 
were determined (Qiagen/SABiosciences Corp., Frederick, 
MD, USA). 
 
Western blot analyses 
 
HeLa cells were treated with 100 nM FD-895 or 
100 nM pladienolide B for 12 h, 24 h, and 48 h for 

β-catenin, LEF1, LRP6 (LDL Receptor Related Protein 6), 
and phospho-LRP6. The cells were then washed with 
PBS (2 × 5 mL) and lysed with modified RIPA buffer at 
4°C. Untreated cells were used as a control. The whole-
cell protein was quantified according to the Bradford 
method [36]. Lysates in sample buffer (2% Sodium 
dodecyl sulfate (SDS), 10% glycerol, 80 mM Tris•HCl 
(pH 6.8), 720 mM β-mercaptoethanol and 0.001% 
bromophenol blue) were denatured at 95°C for 5 min. 
Total cellular proteins (30 μg via Bradford analyses) 
were subjected to SDS-polyacrylamide gel 
electrophoresis (PAGE) using a 4–20% Criterion 
Precast Gel (Bio-Rad, Hercules, CA), and the proteins 
were transferred to polyvinylidene difluoride (PVDF) 
membrane (Millipore, Bedford, MA). After blocking 
with 5% bovine serum albumin (BSA) for 1 h in Tris-
buffered saline, 0.1% Tween 20 (TBST, 20 mM 
Tris•HCl, 137 mM NaCl, 0.1% Tween-20 pH 7.6), the 
membrane was incubated with the following primary 
antibody overnight at 4°C. The primary antibodies 
include rabbit mAb anti-LEF1, rabbit anti-Phospho-
LRP6 (Ser1490), rabbit anti-LRP6, rabbit mAb anti-β-
catenin, and mouse Ab anti-β-actin were obtained from 
Cell Signaling Technology (Beverly, MA) and used at a 
dilution of 1:1000. After primary mAb staining and 
washing thrice with TBST, the membranes were 
incubated with HRP-labeled anti-rabbit (sc-2030, Santa 
Cruz Biotechnology) or HRP-labeled anti-mouse (sc-
2031, Santa Cruz Biotechnology) secondary antibodies 
with a dilution of 1:5000 dilutions for 40 min at rt. After 
incubation, the membrane was washed thrice with 
TBST and developed using an enhanced 
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Table 2. IC50 values for FD-895 and pladienolide B in selected tumor cell lines. 

Cell lines Type of Cancer FD-895 (nM) Pladienolide B (nM) 

HCT116 (TP53, +/+) Colon 34.1 ± 2.4 42.3 ± 3.1 

HCT116 (TP53, +/−) Colon 75.2 ± 2.5 65.6 ± 2.9 

HCT116 (TP53, −/−) Colon 100.7 ± 1.2 88.6 ± 2.0 

MCF-7 (TP53, +/+) Breast 51.7 ± 1.9 38.7 ± 3.8 

MDA-MB-468 (TP53, +/−) Breast 30.7 ± 2.1 38.5 ± 3.8 

HS578T (TP53, −/−) Breast 139.7 ± 1.1  112.0 ± 3.1 

OV-2008 Ovarian 311.6 ± 2.2 344.5 ± 1.3 

A2780 Ovarian 415.0 ± 5.2 337.0 ± 7.0  

SKOV3 Ovarian 143.4 ± 2.1 128.7 ± 3.2 

786-O Renal 412.5 ± 2.4  293.6 ± 3.1  

HeLa Cervical 131.0 ± 3.3 118.4 ± 4.4 
 
chemiluminescence (ECL) kit (Pierce Thermo Scientific 
Inc., Rockford, IL). 
 
Bioinformatics analysis 
 
Gene‑gene interaction networks were predicted and 
generated with GeneMANIA (Gene Multiple 
Association Network Integration Algorithm) available 
at http://genemania.org [37]. 
 
Statistical analysis 
 
The data presented as mean ± standard deviation (SD). 
The data was analyzed using GraphPad Prism 6.0 
(GraphPad Software, La Jolla, CA). Multiple groups 
were compared using Bonferroni correction and p < 
0.05 was considered statistically significant. 
 
Ethics approval and consent to participate 
 
The study involved human, animal or cell lines as a 
material for experimental purpose and the ethical 
clearance was conducted before starting the study. 
 
Consent for publication 
 
All authors consent to the publication of the manuscript 
in “Aging”. Further, figures or tables are original, so 
there was no requirement of taking permission or 
consent from anyone. 
 
Availability of data and material 
 
All data generated and analyzed during our study are 
included in the published article. 

RESULTS 
 
In vitro cytotoxicity evaluation of FD-895 and 
pladienolide B in colon, breast, cervical cancer cell lines 
 
We previously reported the apoptotic activity of FD-895 
and pladienolide B in CLL-B, mantle cell lymphoma 
(MCL), and other B and T lymphoma cell lines [31] 
Further, we were interested in exploring the apoptotic 
activity of FD-895 and pladienolide B in different solid 
tumor cell lines (Figure 1A–1D). The chemical structure 
of both SPLMs has been shown in Figure 1F. Using an 
expanded panel of cell lines, we found that FD-895 and 
pladienolide B IC50 ranged from 30.7 ± 2.2 to 415.0 ± 
5.3 nM (Table 2) across the breast, colon, and cervix 
tumor cell lines (Figure 1A–1D). Upon treatment of 
normal PBMCs with FD-895 and pladienolide B, the 
lack of activity (IC50 values <450 nM) was not achieved 
in normal PBMCs, an observation that suggests that 
both the FD-895 and pladienolide B spare the normal 
PBMCs, but not the leukemic B cells (Figure 1E) [30]. 
We also tested the normal cell line HEK-293 in 
response to FD-895 (100 nM to 2 µM) and found that 
there was non-significant cell death induced with 
varying concentrations of FD-895 when compared with 
control (p > 0.05), but cisplatin (30 µM) induced 
significant cell death in HEK-293 cells (p < 0.05, 
Supplementary Figure 1). 
 
Cytotoxic evaluation of FD-895 and pladienolide B 
in ovarian cancer cells regardless of differential 
cisplatin sensitivity 
 
Next, we turned our attention to explore the activity of 
splice modulation on cell lines displaying sensitivity or 

http://genemania.org/
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resistance to cisplatin, as the latter is an issue in the 
treatment of solid tumors including ovarian [38], 
cervical cancer [39], gastric adenocarcinoma [40], 
prostate cancer [41], colorectal [42], and head and neck 
squamous cell carcinoma [43]. Here, we used two 
human ovarian cancer cell lines, one consisting of a 
cisplatin-sensitive parental line, OV2008, and the other 
stably cisplatin-resistant subline, OV2008/C13 derived 
by in vitro selection with cisplatin. We began by 
screening these cell lines for their induction of apoptosis 
when treated with FD-895, pladienolide B, cisplatin, or 
etoposide. FD-895 and pladienolide B induced 
significant apoptosis in both parental and cisplatin-
resistant OV2008 cells (Figure 2A, 2B). We also 
observed that FD-895 and pladienolide B demonstrated 
significant apoptosis in A2780 and SKOV3 ovarian 
cancer cell lines as compared to cisplatin and etoposide 
(Figure 2C, 2D). These findings suggest that nanomolar 

concentrations of SPLMs have the potential to 
overcome cisplatin resistance. We also evaluated the 
apoptotic activity of FD-895 and pladienolide B in 786-
O (renal) cancer cells. We found that both splice 
modulators were ten-fold more efficient at induced 
apoptosis than cisplatin and etoposide (Figure 2E). 
 
FD-895 and pladienolide B induced spliceosome 
modulation marked by intron retention in cancer cells 
 
In previous studies, we found that FD-895 and 
pladienolide B induced IR in CLL and MCL cells [30–
32]. Here, we expand our understanding of their ability 
to induce IR across an expanded panel of cancer cell 
lines, including Jeko-1, Mino, JVM2, HeLa, HCT116, 
MCF-7, and MDA-MB-468 cell lines. In brief, we 
incubated 106 cells/well from each cell line with a 100 
nM FD-895, 100 nM pladienolide B, 30 µM cisplatin or 

 

 
 
 
Figure 1. In vitro cytotoxicity induced by FD-895 and pladienolide B in different cancer cell lines, and normal human 
primary PBMCs. Cancer Cells were exposed to FD-895 (100 nM to 2 µM), pladienolide B (100 nM to 2 µM), etoposide (1 µM to 30 µM), 
and cisplatin (1 µM to 30 µM) for 48 h. Apoptosis were measured in MCF-7 (A), MDA-MB-468 (B), HCT-116 (C) and HeLa (D) cells using MTS 
assay. The absorbance of the control (cells without treatment) was subtracted from the treated cells of each cell line. (E) Normal PBMC cells 
were exposed to FD-895, and pladienolide B. Cells were stained with propidium iodide and DiOC6 to differentiate dead and viable cells by 
using flow cytometer. Data presented in form of % specific induced apoptosis (% SIA). To assess the compound specific induced apoptosis 
vs. background spontaneous cell death from in vitro culture conditions, we calculated the percentage of SIA using the following formula: % 
SIA = [(compound induced apoptosis – media only spontaneous apoptosis)/(100- media only spontaneous apoptosis)] × 100. The data 
shows the results of samples analyzed in duplicate with the mean and its respective SD. (F) Structures of pladienolide-B and FD-895. 
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30 μM etoposide for 4 h. After treatment, the levels of 
spliced and unspliced gene expression were evaluated 
by RT-PCR. We observed that cells treated with FD-
895 or pladienolide B demonstrated IR, which was not 
observed with non-splice modulatory controls, cisplatin, 
or etoposide (Figure 3) using DNAJB1 (DnaJ Heat 
Shock Protein Family (Hsp40) Member B1) as a 
surrogate marker for spliceosome modulation [30]. IR 
was observed in cells treated with FD-895 or 
pladienolide B for DNAJB1 when compared to the 
intronless gene RNU6A used as a loading control RNA 
(Figure 3A–3G). 
 
FD-895 downregulates and modulates splicing of 
proteins involved in Wnt signaling 
 
To investigate the intracellular signaling pathways 
affected by FD-895, we applied the Cignal 45-Pathway 
Reporter Array to simultaneously analyze FD-895 effect 
on 45 different signaling pathways [44]. HeLa cells, 
selected due to their SPLM sensitivity, were treated 
with FD-895 over 12 h and baseline-signaling profile 
was compared to vehicle control (Figure 4A). 
Interestingly, treatment with 100 nM FD-895 modulated 

a number of pathways including notch signaling, 
octamer-binding transcription factor 4 (OCT4), 
activating transcription factor 6 (ATF6), NANOG, and 
Wnt signaling pathway as early as within 1 h but 
decreased as the time progressed (Figure 4A). 
 
Among these pathways, we found that the Wnt 
signaling pathway was activated at an early time point 
but downregulated as the duration of FD-895 prolonged, 
as monitored by the TCF/LEF reporter in cervical 
cancer cell line HeLa (Figure 4A). 
 
Alternative RNA splicing events have been reported 
within the Wnt signaling pathway for various molecules 
such as in LRP6, ROR, Axin, APC, CK1, and Catenin, 
beta-1 (CTNNB1) [45]. We selected Wnt signaling 
pathway not only because of this but also because 
Wnt5A overexpression has been reported in multiple 
cancers and it is associated with disease progression, 
metastasis, and resistance to treatment [46]. 
Additionally, there were several reasons to select LRP5 
and GSK-3β for further validation. We know that both 
lipoprotein receptor-related protein (LRP) 5 and 6 are 
crucial Wnt co-receptors and interact with other 

 

 
 
Figure 2. FD-895 or by pladienolide B induced apoptosis in ovarian and renal cancer cells. Ovarian cancer cells (A) OV-2008, 
cisplatin sensitive (B) OV-2008 C13 mut, cisplatin resistant, (C) A2780, (D) SKOV3 or (E) renal cancer cells (786-O) were incubated with FD-
895 (100 nM to 2 µM), pladienolide B (100 nM to 2 µM), etoposide (1 µM to 30 µM), or of cisplatin (1 µM to 30 µM) for 48 h. Cells viability 
were measured as using MTS assay. This experiment was repeated in triplicate independently. Data presented in form of % SIA. The data 
shows the results of samples analyzed in duplicate with the mean and its respective SD. 
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components of the Wnt signaling pathway. Additionally, 
both LRP5 and LRP6 are oncogenic proteins as well. 
Similarly, GSK-3β, a serine-threonine kinase and a 
negative regulator of the oncogenic Wnt/β-catenin 
signaling pathway [47]. Moreover, the role of Wnt 
signaling has been well established in CLL [34], and in 
our previous study, in the RNAseq data analysis, we 
found that both LRP5 and GSK-3β were found to have 
3.44, and 5.1-fold IR, respectively in CLL-B cells treated 
with splice modulator compared with control CLL [30]. 
 
From this data, we selected Wnt signaling pathway to 
study further because as Wnt5A overexpressed and has 
been correlated with cervical carcinoma [46]. We began 
by exploring its effect on the TCF/LEF reporter system. 
As shown in Figure 4A, we observed that TCF/LEF 
reporter showed downregulation in 100 nM FD-895 
treated HeLa cells after 12 h. We also investigated the 
effect of FD-895 and pladienolide B on mRNA 
expression of selected genes LEF1, FN1, and CCND1 
[48–50] which involved in the Wnt/β-catenin signaling 
pathway. The HeLa cells were exposed to 100 nM of 
FD-895 or pladienolide B for different times and LEF1, 
CCND1, and FN1 mRNA levels measured by qRT-
PCR. The expression of LEF1, CCND1, and FN1 was 

significantly decreased by 8.33, 6.25, and 5.26 fold 
respectively (Figure 4B–4D) as the incubation period 
increased with the maximum level appearing at 20% at 
24 h. Further, we performed the RT-PCR to detect 
splicing in genes involved in Wnt signaling pathway 
like GSK3β and LRP5. HeLa cells treated with 100 nM 
FD-895 showed weak IR in GSK3β and LRP5, an 
observation that was not observed in non-splicing 
controls (30 µM cisplatin). In comparisons to 
chemotherapy, the macrolides significantly 
downregulated the expression of GSK3β in HeLa cell 
line (Figure 4E). We then conducted Western blot 
analyses to study the correlation between mRNA and 
protein. Treatment with 100 nM FD-895 or 100 nM 
pladienolide B treatment resulted in the downregulation 
of β-catenin, LEF1, total LRP6, and phospho-LRP6 
protein levels (Figure 4F). Altogether, the results from 
qRT-PCR and Western blot data demonstrate 
downregulation of key Wnt signaling pathway 
molecules in the HeLa cell line. 
 
Bioinformatics based gene-gene interaction 
 
Our next studies explored the effects of FD-895 and 
pladienolide B on select gene-gene interaction networks 

 

 
 
Figure 3. Intron retention of DNAJB1 gene in different cancer cell lines. Tumor cell lines were treated with 100 nM of FD-895, 100 
nM pladienolide B, 30 µM cisplatin or 30 µM etoposide for 4 h. Analysis of IR of DNAJB1 mRNAs was evaluated by RT-PCR in (A–C) Mantle 
cell lymphoma cells, (Jeko-1, Mino and JMV-2), (D) HeLa, (E) MDA-MB-468 (F) HCT116 and (G) MCF-7 cells. RNU6A, an intronless gene was 
used as RNA quality and loading control. 



www.aging-us.com 2089 AGING 

using GeneMANIA. We used DNAJB1, LEF1, 
CTNNB1, LRP6, and SF3B1 as “Input” genes for gene-
gene interaction analysis and included SF3B1 in this 

analysis because SF3B1 is a component of the 
spliceosome-binding pocket of pladienolide B [51, 52]. 
As shown in Figure 5, we found the selected genes were 

 

 
 
Figure 4. Effect of FD-895 on different pathways and effect on Wnt signaling in HeLa cells. (A) HeLa cells were use for 
introducing pathway reporters into cells via reverse transfection. Post-transfection, the cells were treated with vehicle or 100 nM FD-895 
for 3 h. Luciferase and renilla expression was evaluated. HeLa cells were exposed to 100 nM of FD-895 or 100 nM pladienolide B for 6 h, 12 
h or 24 h and expression of (B) LEF1, (C) FN1, and (D) CCND1 were determined by qRT-PCR. (E) HeLa cells were treated with 100 nM of FD-
895 or 30 µM cisplatin for 4 h. Analysis of IR for GSK3β and LRP5 mRNAs was evaluated by using RT-PCR. (F) HeLa cells were treated with 
100 nM of FD-895 or 100 nM pladienolide B for 6 h, 12 h or 24 h. Protein extracts were immunoblotted for β-catenin, phohspho-LRP6, 
LRP6, and β-actin. 



www.aging-us.com 2090 AGING 

part of the network directly or indirectly associated with 
SF3B1. 
 
We obtained total twenty genes from GeneMANIA 
analysis and among those top ten interactor molecule 
emerge in the network were based on the size of the 
circle including NELFE (negative elongation factor 
complex member E, rank-1), SF3B6 (splicing factor 3b 
subunit 6, rank-2), Wnt3A (Wnt family member 3A, 
rank-3), CTNNBIP1 (catenin beta interacting protein 1, 
rank-4), CDX1 (caudal type homeobox 1, rank-5), 
DKK1 (dickkopf Wnt signaling pathway inhibitor 1, 
rank-6), CTNNA1 (catenin alpha 1, rank-7), PIAS4 
(protein inhibitor of activated STAT 4, rank-8), DKK4 
(dickkopf Wnt signaling pathway inhibitor 4, rank-9), 
and TCF7L2 (transcription factor 7 like 2, rank-10). 
Among these genes few genes are involved in Wnt 
signaling such as Wnt3A, CTNNA1, DKK4, and TCF7L2 
suggest that there is an important role of RNA splicing 
machinery in regulation of Wnt signaling pathway. 

DISCUSSION 
 
Splice modulation offers a unique opportunity to 
selectively modulate ongoing rapid cellular growth, and 
has shown early promise as a therapeutic target [53, 54]. 
Leveraging methods developed in prior studies in CLL, 
we tested in vitro activities of FD-895 and pladienolide 
B in solid tumor and mantle cell lymphoma cells. Here, 
our studies show that FD-895 and pladienolide B show 
potent apoptotic activity at nanomolar concentrations 
across the majority of cell lines screened. Both splice 
modulators demonstrated significant induction of 
apoptosis in human ovarian cancer cells, OV2008 and 
C13 (cisplatin resistant), and renal carcinoma. 
 
Cell lines with mutant TP53 showed higher IC50 with 
FD-895 and pladienolide B. In the past study by our 
group, we observed that in the case of CLL patients 
harboring 17pDEL/TP53 mutations harboring CLL 
patients, the splice modulators were able to induce

 

 
 
Figure 5. Gene-gene interaction networks among selected genes constructed by GeneMANIA. A gene-gene network was 
constructed with the search tool for the retrieval of interacting genes available in GeneMANIA annotation information for selected 5 genes, 
including physical interaction, genetic interaction, co-expression and shared pathways and protein structure domain. The central black 
nodes denote 5 selected genes used as an “INPUT”, and peripheral nodes denote gene interactions with the black nodes. The network also 
contains 20 normal human genes. The size of the circles indicates the degree of interaction. 
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in vitro cytotoxicity suggesting that the induction of cell 
death was TP53 independent. Splice modulators such as 
TG003 interfere with in the splicing machinery leading 
to TP53 activation, which induces TP53 accumulation, 
elevated p53 transcriptional activity, and p53-dependent 
G1 cell cycle arrest in U2OS (human osteosarcoma) and 
A375 (human melanoma) cell lines [55]. Further, in 
hepatocellular carcinoma (HCC), TP53 splice mutations 
have been associated with the development and 
progression of the disease [56]. These observations may 
differ in different malignancies due to behavior in the 
pathophysiology and the driving receptor/signaling 
pathway. This is important to note that not only 
studying alternative RNA splicing events such as IR, ES 
and A5’SS, A3’SS is crucial but the splice mutations 
and their impact on the development and 
pathophysiology of cancer could be of utmost 
significance. 
 
Interestingly, FD-895 and pladienolide B spares and 
normal cell inducing PBMCs (include T cells, B cells, 
and NK cells, monocytes, and dendritic cells), 
suggesting that these compounds have a preference to 
induce in vitro cytotoxicity preferentially in cancer cells 
and this creates a beneficial therapeutic window for 
patient treatment. These findings were in concordance 
with our previous observations in normal B cells [30]. 
We also tested the normal cell line HEK-293 in 
response to FD-895 and found no significant cell death, 
which was different to the cytotoxicity induced by 
cisplatin. These data further corroborated our 
observation that SPLMs induce prudentially apoptosis 
in tumor cell lines, but not in normal cells [57, 58]. 
 
In other studies as well, HEK-293 cell line was also 
tested in vitro in response to isoginkgetin (splicing 
modulator control), a bioflavonoid derived from the 
leaves of Ginkgo biloba. In those studies, the prop-
apoptotic activity induced by SPLMs including the 
isoginkgetin was significantly lower [22, 59, 60]. 
 
Following in vitro cytotoxicity assays, we assessed if 
RNA splicing modulators induce IR in the different 
solid tumor as well as in mantle cell lymphoma cells. 
Using DNAJB1 has been used as a surrogate marker of 
splicing modulation; we found that FD-895 as well as 
pladienolide B induced IR in DNAJB1 in all the cell 
lines at 100 nM [30, 32]. 
 
Next, we turned our attention to identify the specific 
pathways regulated by these splice modulatory events. 
In HeLa cells, we observed that treatment with 100 nM 
of FD-895 resulted in modulation of ATF6-C/EBP-β-
signaling (ATF6 and C/EBP response elements), Wnt 
signaling (TCF/LEF reporter), type 1 interferon-induced 
signal transduction (ISRE reporter), CREB signaling 

(cAMP response element, CRE is the response 
element), NANOG, and OCT4 pathways. The following 
discussion provides a brief overview of the significance 
of these pathways in their response to splice modulation 
by FD-895. 
 
OCT4 is a homeodomain transcription factor of the 
POU family also known as POU5F1 (POU domain, 
class 5, transcription factor 1). It is involved in self-
renewal of undifferentiated embryonic stem cells and 
therefore used as a marker for dedifferentiation [61]. 
OCT4 is crucial for determination of fates of the inner 
mass and embryonic stem cells. OCT4 is capable of 
maintaining pluripotency throughout the embryonic 
development. It is also involved in proliferation of 
cancer cells including pancreatic, liver, testicular and 
lung cancer of adult germ cells [62]. 
 
In ATF6 pathway, the central player is ATF6 that works 
in a concentration dependent manner. At low levels, 
ATF6 activates the unfolded protein response (UPR) for 
self-defense. At high levels, it mediates apoptosis. 
ATF6 is crucial for transition from self-defense to self-
destruction of cells in endoplasmic reticulum (ER) 
stress [63]. 
 
In NANOG pathway, the NANOG transcription factor 
is important as it is involved in self-renewal regulation 
as well as maintenance of the embryonic stem cell 
pluripotency [64]. NANOG has been reported in 
number of malignancies including leukemia [65]. Both 
NANOG and OCT4 pathways are involved in 
regulation of pluripotency of stem cells [66]. 
 
We observed modulation of T-cell factor/lymphoid 
enhancer factor (TCF/LEF) in response to treatment 
with FD-895 in HeLa cell. Wnt alone led to an 
accumulation of β-catenin in the cytoplasm, but its 
nuclear activity is largely mediated by TCF/LEF only. 
TCF/LEF is an important component of Wnt or Wnt/β-
catenin signaling pathway. The Wnt/β-catenin signaling 
has been reported in a number of malignancies 
including cervical cancer [67, 68]. Interestingly, we 
found that Wnt signaling pathway was downregulated 
after 12 h of FD-895 treatment. In human cells, Wnt is a 
secreted protein that acts as a ligand for ROR1 a 
receptor tyrosine kinase [69–71]. Wnt/β-catenin 
activation occurs upon binding of Wnt5A with 
membranous proteins Frizzled (FZ) receptor and 
lysophosphatidic acid receptors (LRP5/6) protein. This 
binding event leads to recruitment of the scaffolding 
protein Disheveled (DVL), which results in 
phosphorylation of LRP5/6 receptors. During the course 
of these studies, we found that FD-895 reduced the 
expression of Wnt signaling pathway-associated 
transcripts including LEF1, FN1, CCND1, GSK3β, and 
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LRP5. LEF1 is a transcription factor that belong to the 
T cell Factor (TCF)/LEF family. LEF1 acts as nuclear 
effector in the Wnt/β-catenin signaling pathway [72]. 
LEF1 mediates Wnt signaling pathway by through 
association with β-catenin [46]. 
 
Wnt/β-catenin pathway requires the co-receptors LRP5 
and LRP6 for activity. Post-translational modifications 
(PTMS) such as phosphorylation, methylation, 
acetylation, and sumoylation play a very important role 
in the pathophysiology of different malignancies. LRP5 
is part of the signalosome complex is deregulated by 
cisplatin [73]. We also observed the same effect as we 
saw the non-intronic form of the LRP5 vanished upon 
treatment with cisplatin. 
 
Phosphorylation of LRP6 is crucial for activation of 
Wnt/β-catenin signaling as it can promote activation of 
Wnt signaling activation by recruiting casein kinase 
family proteins [74]. Targeting of LRP6 
phosphorylation can inhibit Wnt/β-catenin signaling 
[46]. 
 
The co-receptors for Wnt signaling, LRP5, and LRP6, 
have been revealed as potential oncogenic proteins. In 
human breast carcinoma, the expression of LRP6 is 
high [75]. Downregulation of LRP6 inhibits breast 
cancer tumorigenesis, whereas overexpression of LRP6 
in the mouse mammary gland induces mammary 
hyperplasia [75, 76]. We observed that FD-895 
downregulated LRP6 phosphorylation and causes the 
degradation of the LRP6 protein, an essential 
component of the Wnt receptor complex, promotes β-
catenin degradation, and downregulation of LEF1 at the 
protein level. Therefore, we reasoned that FD-895 
might block the phosphorylation of LRP6 that is 
required for initial Wnt signaling. 
 
Glycogen synthase kinase-3 (GSK3) is an intracellular 
component of the Wnt pathway that can directly interact 
and phosphorylate LRP6. Glycogen synthase kinase 3β 
(GSK3β) is a crucial component of insulin and Wnt 
signaling pathways. PTMs particularly phosphorylation 
of EGFR in lung adenocarcinoma, and SF3B1 in CLL 
has been reported/targeted [31, 77]. We found that 
treatment with FD-895, but not by cisplatin lead to 
induction of IR in GSK3β. An inactivated GSK3β could 
led to increased SNAIL activity and poor prognosis in 
cervical cancer [78]. 
 
Our results suggest that FD-895 not only modulate 
RNA splicing via induction of IR in genes such as 
DNAJB1, but also inhibit Wnt/β-catenin pathway via 
downregulation of β-catenin, LRP6, pLRP6, and LEF1. 
FD-895 can block LRP6 phosphorylation and cause 
degradation of LRP6 protein. Overall, this suggests that 

LRP6 may also serve as a viable anticancer agent in 
these cell lines, particularly molecules that are capable 
of selectivity altering the phosphorylation of LRP6. 
Gene-gene interaction is very crucial for any pathway 
including Wnt signaling to study the interaction 
between them. We used GeneMANIA analysis to study 
the gene-gene interaction prediction with high accuracy 
[79], identified peripheral nodes corresponding to two 
genes. The output of analysis led to the identification of 
gene interactions involved in Wnt signaling (Wnt3A, 
CTNNBIP1, DKK1, and DKK4), as well as in RNA 
splicing (SF3B6, and NELFE). Among those, there 
were genes such as SF3B6, a gene indirectly interact 
with SF3B1 is an integral part of the spliceosome 
complex. SF3B6 has been reported to be associated 
with p53 activity in human non-small cell lung 
carcinoma [80]. The applications of SPLMs such as 
E7107, and H3B-8800 have been explored in different 
clinical trials for therapeutic purposes. The phase I 
clinical trial at M D Anderson enrolled 26 patients with 
solid tumors who received escalating doses starting 0.6 
mg/m2 intravenous infusion on days 1 and 8 and the 
cycle was repeated every 21 days. The stable disease 
was observed in 31% of patients. The major AE was 
the development of acute blindness, which led to the 
discontinuation of the trial [28]. Similar AE was 
observed in the Dutch trial on E7107, where reversible 
grade 4-blurred vision was observed in one patient 
[29]. Both E7107 trials were suspended due to 
blindness as one of the AE. H3B-8800, which is an 
orally available small molecule modulator that binds to 
SF3B-complex and leads to changes in the alternate 
RNA splicing in the target cells [81], and induce cell 
death in the spliceosome-mutant cancers [82] via IR of 
GC-rich introns that are enriched for genes encoding 
spliceosome components. H3B-8800 approved for 
testing in Phase 1 (NCT02841540), open-label, first-in-
human (FIH) study design to evaluate the safety, 
tolerability, pharmacokinetics (PK), 
pharmacodynamics (PD), and preliminary antitumor 
activity in MDS, AML, and CMML. Additionally, the 
application of PLAD-B and FD-895 at in vitro and in 
vivo levels showed promising results in current and 
previous studies by different groups. These studies are 
clinically relevant because one hand where nM 
concentration is required to achieve IC50 in the 
cancerous cell lines. In contrast, supra-physiological 
concentration is necessary for normal cells, suggesting 
a good therapeutic window for treatment options using 
these SPLMs in conjunction with the current 
chemotherapy like cisplatin and etoposide. As far as the 
standalone versus combination therapy is concerned, 
though we have not assessed the potential of FD-
895/Pladienolide- B in combination with an inhibitor of 
BCL-2 family members, but at the same time there are 
studies where a combination of splicing inhibitors 
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meayamycin B with ABT-737 (Bcl-xL inhibitor) led to 
apoptosis in non-small cell lung cancer cell lines (A549 
and H1299) [83]. A combination of other SPLMs 
spliceostatin A (SSA) with either ABT-263 or ABT-
199 (both are Bcl-2/Bcl-xL antagonists) led to 
apoptosis in CLL-B cells [17]. Another example of 
combination approach where either Sudemycins C, D1, 
or D6 with BTK inhibitor (ibrutinib) inhibitor led to 
induction of cell death in CLL-B cells further suggests 
that synergistic effect can be achieved by combining 
the SPLMs with different inhibitors to induce cell death 
via modulation of signaling and apoptotic machinery 
associated pathways. For using stand-alone SPLMs, it 
is important to know the effect of the SPLMs on the 
genes/transcripts essential for normal/vital functioning 
of the body as in the past using E7101 in two clinical 
trials acute blindness was observed in patients with 
different malignancies [28, 29]. 
 
Collectively, the outcome of the trials, and data 
generated using other SPLMs; suggest that there is 
potential in modulating or selectively inhibiting the 
spliceosome machinery to achieve therapeutic potential 
in different malignancies including hematologic and 
solid cancers. 
 
CONCLUSION 
 
In summary, our results suggest that both FD-895 and 
pladienolide B demonstrated in vitro toxicity in 
different malignancies, spared normal PBMCs, and 
modulates mRNA splicing. It also exerts selective 
toxicity to malignant cells compared with normal cells. 
Furthermore, we showed that FD-895 (pladienolide B 
was not explored) able to modulate the post-
translational events as suggested by downregulation of 
LRP6 phosphorylation and expression of associated 
Wnt target genes. This data suggests that these splice 
modulators could be useful in targeting malignancies 
where Wnt/β-catenin play an important role by 
inhibiting mRNA splicing and LRP6 phosphorylation. 
These results showed that these compounds not only 
modulate mRNA splicing in CLL, but also in mantle 
cell lymphoma, and solid tumors of colon, breast, 
ovarian, and renal origin. Overall this study 
demonstrates that FD-895 and pladienolide B modulate 
splicing machinery and result in downstream regulation 
of signaling pathways, including the Wnt/β-catenin 
pathway. Furthermore, the in vitro efficacy of FD-895 
and pladienolide B was found to be superior to 
conventional chemotherapy as indicated in a wide range 
of malignant cell lines of colon, breast, ovarian, renal, 
and cervical origin. Further, there is a need for 
extensive research not only at in vitro but in vivo levels 
to assess synergistically the ability of splice modulators 
with conventional chemotherapy agents like cisplatin 

and etoposide to assess their potential as a combination 
or synergistic treatments. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 
 

 
 
Supplementary Figure 1. In vitro cytotoxicity induced by FD-895 and Cisplatin in HEK-293 cell line. HEK cells were 
exposed to FD-895 (100 nM to 2 μM), and cisplatin (30 μM) for 48 h. Apoptosis was measured in HEK-293 cells using MTS assay. 

 


