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a b s t r a c t

Even though the functional role of mRNA molecules is primarily decided by the nucleotide sequence, sev-
eral properties are determined by secondary structure conformations. Examples of secondary structures
include long range interactions, hairpins, R-loops and G-quadruplexes and they are formed through inter-
actions of non-adjacent nucleotides. Here, we discuss advances in our understanding of how secondary
structures can impact RNA synthesis, splicing, translation and mRNA half-life. During RNA synthesis, sec-
ondary structures determine RNA polymerase II (RNAPII) speed, thereby influencing splicing. Splicing is
also determined by RNA binding proteins and their binding rates are modulated by secondary structures.
For the initiation of translation, secondary structures can control the choice of translation start site. Here,
we highlight the mechanisms by which secondary structures modulate these processes, discuss advances
in technologies to detect and study them systematically, and consider the roles of RNA secondary struc-
tures in disease.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

mRNAs are essential molecules in the cell as they are key to
extracting information stored in the DNA. Although the function of
mRNA molecules is primarily determined by the nucleotide
sequence, some properties are determined by secondary structures.
Secondary structures are defined as distinct features, including hair-
pins, long range interactions, G-quadruplexes, R-loops and pseudo-
knots and they are formed as a consequence of the interactions of
non-adjacent nucleotides. Their presence can impact various pro-
cesses involving the mRNA, including synthesis, splicing and trans-
lation. Secondary structures are dynamic and can be modulated by
multiple proteins, in particular RNA binding proteins (RBPs), and
as they cannot be predicted solely from the primary sequence they
are challenging to study. Nevertheless, several assays are available
for both in vitro and in vivo profiling, and in this Review, we summa-
rize these methods, provide an overview of some of the elucidated
and putative functional roles of mRNA secondary structures, and
finally we discuss their impact on disease. We discuss the conse-
quences of secondary structure formation for splicing and transla-
tion, with particular focus in G-quadruplexes, hairpins and long
range interactions. We also discuss the contribution of secondary
structures in the regulation of mRNA splicing and in translation ini-
tiation and discuss the mechanisms involved.

2. RNA secondary structure formation

In RNA, intra and intermolecular long-range interactions,
including hairpins, pseudoknots, and G-quadruplexes, are com-
Fig. 1. RNA and DNA-RNA hybrid secondary structures. A. Hairpin formation in which
A long range interaction with an imperfect hairpin containing a bulge C. A G-quartet is
(shown as squares in brown). Hoogsteen base pairing is a type of non-Watson–Crick bas
loops are three stranded DNA:RNA hybrid structures that can be formed co-transcriptio
green) hybridizes with the template strand to form an R-loop structure, while the non
Terminal Domain (CTD) of RNA polymerase II are shown in yellow. In schematics A, B
indicates intronic regions. (For interpretation of the references to color in this figure leg
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monly observed. Hairpins are composed of a hybridized stem
and a single stranded loop (Fig. 1a and b) and can contain mis-
matches and bulges. Pseudoknots contain nested stem-loop struc-
tures, with half of one stem intercalated between the two halves
of another stem. G-quadruplex formation is driven by the inher-
ent propensity of guanines to self-assemble, in the presence of
monovalent cations, into planar structures known as G-quartets
[1]. Each G-quartet is composed of four guanine nucleotides that
interact with each other through Hoogsteen hydrogen-bonds.
Consecutive runs of guanines (G-tracts) may lead to the formation
of consecutive G-quartets that can stack with each other to form
G-quadruplex structures (Fig. 1c). Biophysical properties such as
the length of intervening loops between consecutive G-runs influ-
ence their formation dynamics. In addition, G-quadruplexes can
be intramolecular or intermolecular. During transcription,
dynamic hybrid structures between DNA and nascent RNA tran-
scripts can be formed, such as R-loops (Fig. 1d) [2]. R-loops are
three stranded hybrid structures in which an RNA molecule
invades and hybridizes with one DNA strand, while displacing
the other. The size of R-loops can range from <100 base pairs
to >2000 base pairs [3]. Formation and stabilization of R-loops
is particularly favorable when the non-template strand is G-
rich, but it can also be promoted by DNA supercoiling, the pres-
ence of DNA nicks, and the formation of G-quartets [3,4]. The
impact of R-loop formation, as well as the formation of DNA
and RNA G-quadruplexes and other secondary structures, impacts
transcript elongation rates and can have a kinetic repercussion on
co-transcriptional events involved in RNA processing, such as
alternative splicing [5,6].
the stem hybridizes with hydrogen bonds while the loop remains single stranded. B.
formed by four guanines linked with Hoogsteen hydrogen bonds with each other
e pairing. G-quadruplexes are formed by the stacking of multiple G-quartets. D. R-
nally at the template strand. The nascent RNA produced by the RNAPII (shown in
-template strand remains single-stranded. Phosphorylation events in the Carboxy-
and D thicker lining of the mRNA indicates exonic regions whereas thinner lining
end, the reader is referred to the web version of this article.)



Fig. 2. Mechanisms by which structure formation influences splicing. A. In the absence of secondary structures, RNAPII elongation rate is higher, which disfavors the
recruitment of splicing factors that promote assembly of the spliceosome and exon definition. In this situation exons flanked by weak splice sites may not be recognised, and
they are consequently skipped. Exons flanked by strong splice sites can be efficiently recognized by small ribonucleoproteins (snRNPs) U1 and U2, leading to the formation of
the pre-spliceosome (complex A) and promoting exon definition and inclusion in the mature mRNA transcripts. B. Formation of secondary structures at DNA and RNA can
decrease RNAPII elongation speed. For example, during transcription R-loops formed at the 30 of genes can be stabilized by non-template DNA G-quadruplex formation. Low
transcription rates promote exon inclusion by allowing the formation of secondary structures and binding of proteins that can favor the recognition of weak splice sites that
would not be recognized otherwise. An RBP that recognizes and binds to the secondary structure is shown in green whereas an RBP whose binding is inhibited by secondary
structure formation is shown in red. C. RNA secondary structures can modulate mRNA interactions with RBPs either promoting or inhibiting their binding at the mRNA
molecule. For example, G-quadruplexes formed at the DNA or RNA level can selectively recruit RBPs to influence splicing outcome. In schematics A, B and C, thicker lining of
the mRNA indicates exonic regions whereas thinner lining is indicating intronic regions. The dashed line of mRNA molecules indicates that the length of the transcript can be
longer than displayed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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A number of methods that probe RNA structures have been
developed. Methods such as selective 20-hydroxyl acylation ana-
lyzed by primer extension (SHAPE)-seq [7] and parallel analysis
of RNA structure (PARS) [8] were able to identify RNA structures
in vitro, while more recent methods can deduce structures in vivo
[9,10]. For instance, RNA in situ conformation sequencing (RIC-
seq) [11] is a powerful new method that enables global detection
of intra- and intermolecular RNA–RNA interactions, such as
2873
duplexes and long-range loop-loop interactions. Cross-linking
immunoprecipitation high-throughput sequencing (CLIP-seq)
enables the investigation of protein interactions with RNA mole-
cules [12] from which many variant technologies have emerged.
RNA G-quadruplexes can be characterized transcriptome-wide
[13,14] using rG4-seq, which is a modified sequencing method that
stalls at RNA G-quadruplexes, enabling identification of RNA
G-quadruplexes in vitro, and RNA G-quadruplexes have also been
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visualized in cellulo using a specific antibody [15]. Moreover,
researchers have developed small molecules, such as carboxy-
pyridostatin, a cyanine dye called CyT and Thioflavin T [15-19],
that can shift the equilibrium between the folded and unfolded
state of RNA G-quadruplexes and which display preference for
RNA over DNA G-quadruplexes. Identification of R-loops has been
enabled by usage of specific antibodies [20-23] and other
nuclease-based methods [24,25].
3. RNA polymerase speed and secondary structures

A variety of features are associated with RNAPII speed. For
instance, the presence of introns and the length of the first intron
are both positively correlated with RNAPII speed [26], while nucle-
osome formation can reduce RNAPII speed [27,28]. Regions with
high propensity of forming DNA, RNA, or hybrid secondary struc-
tures are also associated with RNAPII pausing or slower RNAPII
speed (Fig. 2a and b) [29-31]. Another example of structure remod-
eling due to slower RNAPII speed is inhibition of hairpin formation
due to competition with other alternative structures resulting in
reduced binding by stem–loop-binding proteins [30]. In S. cere-
visiae and S. pombe, folding energy and GC content in the transcrip-
tion bubble have been correlated with RNA polymerase
distribution, and RNA structures within nascent transcripts pro-
mote forward translocation of the polymerase and limit back-
tracking [32]. This indicates how nascent RNA structures can pro-
mote the forward movement of an RNA polymerase molecule.
Analyses of nascent RNAs have provided evidence that the forma-
tion of secondary structures within introns is associated with more
efficient co-transcriptional splicing, which is favored under slower
transcriptional rates [32,33]. Taken together, secondary structures
will impact several processes, including promoter-proximal paus-
ing, exon recognition, splicing and transcription termination, as
they are all influenced by RNAPII speed.
4. RNA splicing and secondary structures

Pre-mRNA splicing is a key biological process that enables the
removal of introns and the joining of intervening exons, eventually
resulting in a mature mRNA molecule. Alternative splicing affects
approximately 90–95% of mRNA transcripts in humans [34,35]
and most often occurs co-transcriptionally [33], while for a minor-
ity of transcripts it occurs post-transcriptionally [36]. Splicing is a
highly conserved mechanism [37] that is pivotal for a number of
biological processes such as cell growth, differentiation, immune
response, neuronal development [38-40], while aberrant splicing
is implicated in multiple diseases [41] including neurological dis-
orders [42] and cancer [43].

Splicing is mediated through the spliceosome complex which
recognizes splice signals, the key members being the 50 splice site
(50ss), the 30 splice site (30ss), and the branch point. The recognition
of these consensus sequences is commanded by U1 and U2 small
nuclear ribonucleoproteins (snRNPs) and other auxiliary protein
factors that are involved in early spliceosomal assembly. Since
higher-eukaryotic genes are often interrupted by long introns,
early spliceosomal complex assembly over exons recognizes both
splice sites during a process commonly known as exon definition
[37]. Nevertheless, computational analyses of vertebrate splice
sites have shown that the consensus splicing signals only account
for approximately half of the information required to accurately
define exon/intron boundaries [34], suggesting that other regula-
tory elements such as RBP sites and secondary structures are cru-
cial for splice site definition. Splice sites with sequences that are
substantially different from the consensus signals lead to subopti-
mal recognition of splice sites (weak splice sites), and are often
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associated with alternative splicing events. Recent models using
deep learning can predict to a large extent splicing events using
the primary DNA sequence and can integrate the effects of muta-
tions [44,45].

Even though the RNA structural code has been less explored
[46], it is known that the effects of cis-regulatory elements can
be modulated by the presence of RNA structures in nascent tran-
scripts and in mature mRNAs [47]. Co-transcriptional transient
RNA structure formation can impact splicing through RNAPII paus-
ing and backtracking, which can have a direct kinetic effect over
co-transcriptional splicing events [48]. One such example is the
human ATE1 gene, where splicing of two mutually exclusive exons
is regulated by competing long-range hairpin structures that span
up to 30 kB [49]. Mutations that disrupted each of the secondary
structures shift the equilibrium between the two exons indicating
direct control of splicing outcome. Reduction of transcription rates
can favor further formation of RNA secondary structures [30] and
binding of splicing regulatory factors that can increase splicing effi-
ciency therefore allowing the recognition of exons that are flanked
by weak splice sites, which would otherwise be skipped [5,50]
(Fig. 2a and b).
5. The interplay between RBPs and secondary structures

During the mRNA lifecycle, RBPs regulate to a significant extent
diverse transcriptional and post-transcriptional stages including
splicing, transportation, translation, stability and degradation.
They bind to pre-mRNA molecules in the nucleus and regulate its
maturation and transportation to the cytoplasm where they regu-
late translation and degradation. The number of proteins that can
bind to RNA in humans is estimated to be more than 1,500, adding
complexity to all the aforementioned programs [51].

RBPs can facilitate or inhibit the recognition of splice sites
thereby acting as splicing enhancers or splicing silencers
[46,52,53]. The majority of RBP motifs are not bound in vivo as
demonstrated by high-throughput experiments that identify the
sites where RBPs bind to endogenous RNAs such as cross-linking
immunoprecipitation followed by high-throughput sequencing
(CLIP-seq). One possible explanation is that RNA structures provide
additional contextual features beyond the primary motif
sequences (Fig. 2b and c), and it has also been shown that RNA sec-
ondary structure is predictive of binding [54,55]. Several studies
have shown that during pre-mRNA synthesis the formation of
RNA structures influences alternative splicing by diverse mecha-
nisms [56,57], and that local RNA structure formation can impact
splicing by modulating the accessibility of core splicing signals
[58-60] as well as RBP binding sites [58,61,62].

An example of how RNA secondary structures can dictate the
binding of specific RBPs, is provided by MBNL1 and U2AF65 bind-
ing to influence exon inclusion in the fifth exon of TNNT2 [63,64].
MBNL1 favors hairpins and when bound inhibits U2AF65, which
favors a linear structure, from binding the polypyrimidine tract
resulting in exon skipping. Additional evidence from mice shows
that MBNL1 also binds the hairpin structure of exon F in TNNT3.
Another example is elF3, which recognizes and binds to hairpin
structures at 50UTR to exert translational activation or repression
[65]. Other studies have shown preferential binding of RBPs at
RNA G-quadruplex sites, e.g. CNBP, which prevents RNA G-
quadruplex structure formation and promotes translation [66]
and FMRP, which preferentially binds RNA G-quadruplex struc-
tures [66,67]. Secondary structures and RNA binding proteins have
been systematically investigated, enabling the identification of
preferences of structured RNA for particular proteins [68,69]. Inter-
estingly, a recent genetic study showed that G-quadruplex
sequences at 50UTRs are selectively constrained and are enriched



Table 1
Important helicases that play a role unwinding RNA and DNA secondary structures. G4s in the table refer to G-quadruplexes. This a non-exhaustive list of relevant DNA/RNA
helicases. Additional examples are reviewed by [92-94]. Alternative gene names are listed between parenthesis and gene paralogs with homologous functions are separated by ‘‘/
”.

Gene name Target Molecular function Associated phenotype upon loss of function experiments

PIF1 DNA G4 Prevent genome instability associated with DNA G4s and R-loops.
[95,96].

Absence or deficiency of PIF1 increases replication stress and induces
DNA damage [95,96].

ERCC2 DNA G4 XPD is involved in nucleotide excision repair [97]. Evidence suggests
that its helicase activity unwinds G4 during transcription [98].

Knock down of XPD results in accumulation of G4s [99].

BLM DNA G4
D-loops
Holliday
junctions

Unwinds a variety of structures DNA that emerge during DNA
replication, recombination and repair [100].

Loss of functions mutations leads to Bloom syndrome [101]. Absence
of BLM is associated with genome instability and excess of sister
chromatid exchange events at G4 loci [102].

WRN DNA G4
R-loops

Prevents genome instability associated with DNA G4s and R-loops
[103,104].

WRN loss of function leads to accumulation of G4s and expression
changes associated with G4-containing promoters [105].

DHX9
(DDX9)

RNA G4
R-loops
H-DNA

Involved in DNA replication, transcription and translation [106].
Resolves R-loop and H-DNA structures to promote genomic stability
[107-109].
Unwinds RNA G4s to control translation [80].

Absence of DHX9 promotes back-splicing events and induce
translational repression of transcripts containing inverted-repeats
Alu elements [110].

DHX36 DNA/
RNA G4

Activates transcription by resolving DNA G4s at promoters
[111,112].
Unwinds RNA G4s to control translation [80,113] and miRNA
biogenesis [114].

Formation of stress granules and increases protein kinase R (PKR)
phosphorylation [113].
Reduced telomerase efficiency and shorter telomeres [115].
Higher UV sensitivity due to lack of p53 expression [116].

DDX5/
DDX17

DNA/
RNA G4
RNA
Hairpins

Paralogues that encode for helicases that resolve RNA hairpins and
G4s, having a regulatory role in alternative splicing and translation
[84,86,117].
DDX5 also resolves DNA G4s that control gene transcription [87].

Knock out leads to mouse embryonic lethality [118].
DDX5/DDX17 absence impairs splicing and miRNA biogenesis during
neuronal differentiation [119].

DDX21 RNA G4
R-loops

Involved in ribosomal RNA biogenesis and anti-viral immune
response [120-122].

DDX21 knock down results in increased expression of genes with G4
motifs in their 30UTR [83].

DDX1 RNA G4 Converts RNA G4 into R-loops [81]. DDX1 deficiency impairs class switch recombination in B cells [81]
DDX2A/

DDX2B
(EIF4A1/
EIF4A2)

RNA
hairpins
RNA G4

Paralogues that encode for the two subunits of the eukaryotic
translation initiation factor 4A (eIF4A). These helicases resolve RNA
hairpins and G4s located at the 50-UTR, which has an impact on
mRNA translation efficiency.

DDX2A plays an essential role in spermatogenesis, whereas DDX2B
is essential for mouse viability [123].

DDX41 R-loops Resolves R-loops that emerge during transcription [124]. R-loop accumulation and genomic instability due to knock down of
DDX41 [124].

DDX39B
(UAP56)

R-loops Spliceosomal helicase with roles in the removal of R-loops [125]. R-loop accoumlaton, genomic instability and replication fork stalling
[125].

SETX R-loops Senataxin removes R-loops to maintain genome integrity [126]. Knock down of Senataxin results in an increase in R-loops
downstream of the poly(A) signal [127].

AQR (EMB4) R-loops Intron-binding spliceosomal factor with helicase activity that
contributes to R-loop removal [128,129].

Genome instability and deficiency in co-transcriptional gene
silencing pathways mediated by small RNAs [129,130].
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for eQTLs, loci containing genetic variants that result in changes of
the expression level of a gene, and RBP sites [70].
6. Helicases as key regulators of secondary structures

Structure formation is to a large extent modulated by enzymes
such as eIF4A and DHX29, that can unwind them, and their impor-
tance is demonstrated by their pivotal role in translation initiation
[71,72]. Similarly, the continuous activity of DNA/RNA helicases
and ribonucleases H (RNAse H1 and H2) release R-loop structures
[3]. Interestingly, R-loops and G-quadruplexes were both found to
be unwound by the helicase DHX9 in humans [73]. DHX9 activity
protects single-stranded DNA against damage and preserves geno-
mic stability [74]. RNA G-quadruplexes are known to interact with
several proteins [70,75,76]. For example, the RNA helicase RHAU
(also known as DHX36) resolves mRNA G-quadruplexes [77,78].
One of its targets is a G-quadruplex at the 50UTR of Nkx2-5 mRNA,
and it has been shown that DHX36-mediated G-quadruplex struc-
ture unfolding is required for the gene to be expressed [79].
Another DHX36 target is Gnai2 mRNA, a key regulator of stem cell
function and muscle regeneration [78]. DHX36 and DHX9 were
also found to modulate translational efficiency by resolving 50UTR
RNA G-quadruplexes [80], while several RBPs such as hnRNP H/F
and helicases such as DDX21, DDX17 DDX3X, DDX5 and DDX1
have been found to unwind RNA G-quadruplexes and are also
involved in transcription, splicing and translation regulation [81-
84]. Similarly, multiple helicases have been shown to resolve hair-
pin structures. For instance, UPF1 can resolve RNA hairpins [85],
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while DDX5 can resolve DNA and RNA G-quadruplexes as well as
hairpin structures [86,87] (Table 1).

The cellular mechanisms mediating the stabilization and reso-
lution of RNA secondary structures remain incompletely under-
stood, as are the interactions between secondary structures and
protein complexes. In addition, the effect of perturbing these
mechanisms and their relevance to disease progression is unclear.
High throughput screens coupled with short hairpin RNAs
(shRNAs) or CRISPR-based technologies have enabled systematic
interrogation of the roles of diverse proteins, such as RBPs, heli-
cases, and topoisomerases [88-91]. Furthermore, mutational anal-
ysis with CRISPR-Cas9 could be used to study the effects of
secondary structure disruption in vivo or in cellulo. CRISPR-
induced mutations that destroy the secondary structure motifs,
for example the G-runs of G-quadruplexes or the stem sequence
of hairpins, but leave other regulatory sequences such as RBP
motifs unchanged, could advance the understanding of how sec-
ondary structures determine gene expression.
7. G-quadruplexes as regulators of alternative splicing

G-quadruplex sequences are enriched at promoters and they
have been extensively studied in this context [131]. Additionally,
G-quadruplexes have been related to splicing, 30 processing, tran-
scription termination, RNA localization and translation regulation
[76]. Interestingly, it has been shown that G-quadruplex sequences
have a high enrichment in the proximity of both 30 and 50 splice
sites across a wide range of species. The effect is more pronounced
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at the non-template strand, suggesting that the G-quadruplexes
are formed primarily by the RNA and that they may favor or block
the binding of RBPs [132].

One of the first exemplary cases of RNA G-quadruplex mediated
regulation of alternative splicing was found in the hTERT gene,
which encodes for the catalytic subunit of the telomerase enzyme,
and one of its exon skipping events is promoted by the stabiliza-
tion of intronic G-quadruplexes [133]. Gomez and colleagues
hypothesized that RNA G-quadruplex formation can prevent RBP
binding to intronic enhancers, leading to exon skipping. However,
based on different functional assays, RNA G-quadruplex formation
has also been proposed to promote RBP binding to splicing regula-
tory elements [134-136]. Since G-quadruplex-dependent splicing
events were often demonstrated by introducing mutations at G-
quadruplex motifs, it was unclear from these results whether the
G-quadruplex structure or the linear form of these G-rich
sequences act as a splicing enhancer. To disentangle these effects,
Huang and colleagues showed that mutations that prevent intronic
G-quadruplex formation but keep G tracts intact, led to exon exclu-
sion of an alternative exon in the CD44 gene [137]. Since the CD44
intronic G-quadruplex motif sequence can be bound by two RBPs
that have the opposite effect on exon exclusion, RNA G-
quadruplex formation may function as a switch to promote the
binding of one RBP over the other [138]. In another recent study
where the role of wild-type and mutated G-quadruplex sequences
in alternative splicing was tested using a minigene, it was also
shown that the presence of an RNA G-quadruplex favors exon
inclusion [132], consistent with the aforementioned findings.
There is also evidence of an interplay between RNA G-
quadruplex stabilization and specific binding proteins such as
HNRNP H/F [116,137] and HNRPU [139] and recent studies suggest
that RNA G-quadruplex formation can modulate in vitro RBP bind-
ing to mRNA molecules [66].

The genome-wide effect of RNA G-quadruplex formation over
splicing factor binding remains unclear. High-throughput screen-
ing of chemical compounds via dual-color splicing reporters has
identified two small molecules, emetine and cephaeline, that dis-
rupt RNA G-quadruplex formation [140]. Genome-wide evaluation
of emetine effects on alternative splicing showed substantial alter-
native splicing changes after treatment, with nearly 60% being
exon skipping events. It was also shown that multiple RBPs colo-
calize with G-quadruplex motifs flanking splice junctions, suggest-
ing an interplay between RBP binding and RNA G-quadruplex
structure formation, which was further corroborated by loss of
function experiments followed by RNA-seq, identifying consistent
associations for 36 RBPs [132,137].
8. Hairpins enable long range RNA interactions during splicing

Long range interactions are important for splicing modulation
[141], and they are more enriched at weak alternative acceptor
splice sites [142]. Some long range interactions can span several
kilobases and can bring in proximity otherwise distant splice sites.
One of the best-characterized examples of regulation of splicing
through RNA structures can be found in D. melanogaster for the
DSCAM gene, where RNA-RNA interactions, mediated through mul-
tiple structures, regulate the selection of exons within arrays of
mutually exclusive exons [143,144]. In this case, RNA looping can
bring splicing elements situated thousands of bases away from
each other into close proximity.

Hairpins may also directly affect exon skipping events by a
mechanism known as ‘‘looping-out”, whereby inter-intronic
base-pairing RNA interactions can loop out exons to promote their
skipping [56]. This mechanism is supported by the enrichment of
conserved complementary sequences present in intronic regions
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flanking exon skipping events [145]. Moreover, the artificial intro-
duction of self-complementary regions across exons suppresses
exon inclusion in yeast, suggesting a causal relationship between
hairpins and exon skipping [146]. Interestingly, the expansion of
self-complementary regions is related to the primate-specific Alu
retrotransposon, which is enriched in regions flanking alternative
exons, suggesting a role in splicing regulation [147]. During
back-splicing, an unconventional splicing mechanism, the second
nucleophilic attack is performed over an upstream 30 splice leading
to circular RNA (circRNAs) products. circRNAs are particularly
abundant in the brain and RNA structures that favor back-
splicing are often derived from complementary intronic sequences
associated with Alu elements [148]. In zebrafish, hairpin formation
between dinucleotide repeats that co-occur at opposite boundaries
of an intron, mediate splicing without U2AF2, which is a major
component of the spliceosome [149].

The formation of RNA structures can also enhance RBP regula-
tory range by bringing distal regulatory elements in close proxim-
ity with their exon targets [150]. This can be particularly important
for RBFOX2 regulated exons since more than half of RBFOX2-
binding sites are found over 500 bp away from any annotated
exons, and it has been shown that long-range RNA hairpin forma-
tion is necessary for the regulatory effect of distal binding sites
[151]. It has also been shown that hairpin formation can influence
splicing regulatory protein binding, with enhancers and silencers
having a stronger effect when present in the loop relative to the
stem [52,54], suggesting that RBP binding is inhibited at the stem
[58,61]. In an elegant set of experiments, it was shown that in the
case of FGFR2, the formation of a hairpin structure is required for
efficient splicing from two mutually exclusive exons and its splic-
ing effect is not dependent on its primary nucleotide composition
as shown using minigene assays [152].

The fibronectin EDA exon is controlled by seven hairpins and a
key exonic splicing enhancer is found in the loop of one of the hair-
pins, which is in turn bound by splicing regulatory proteins such as
SRSF1 [153,154]. Other examples include a hairpin which modu-
lates the inclusion of the alternative exon 6B of the b-
tropomyosin transcript in chicken [155]. It was also shown that a
mutation in PS2 that deletes or destabilizes a hairpin in exon 5,
results in higher levels of exon inclusion [156]. Importantly, the
formation of hairpin structures could be dynamic and due to envi-
ronmental changes, an example being temperature-dependent for-
mation of a hairpin that controls splicing of APE2 gene in yeast
[157]. In addition, alternatively spliced exons display an enrich-
ment for secondary structures and evolutionary conservation of
many of these structures indicates their important regulatory func-
tions [57]. This is exemplified by conservation of secondary struc-
tures over the primary nucleotide sequence such as a conserved
hairpin structure in RB1CC1 [57]. Advances in long-read RNA
sequencing technologies will enable improved detection of long-
range interactions and their impact in the regulation of alternative
splicing events.
9. The role of RNA structures on RNA stability and decay

The half-life and decay rates of mRNA transcripts in human
cells influence protein expression levels. A number of features
determine transcript stability including GC content, transcript
length, polyA tail length, RBP sites, microRNA binding sites, and
mRNA secondary structures [158-163]. Structural features of
mRNAs dictate to a large extent mRNA half-life with transcripts
that have a structured coding sequence showing higher expres-
sion levels [159]. Hairpins in mRNA transcripts can result in
increased stability [163-165], such as when found at the 30UTR
near mRNA cleavage sites. The accessibility of microRNA sites



Fig. 3. Mechanisms by which RNA structure formation influences translation. A. During cap-dependent translation, translation initiation factors (blue proteins) recognize
the mRNA 50 cap structure (purple circle) and bridge its interaction with the 30 polyA tail, through polyA binding proteins (PABPs). During translation several helicases actively
unwind the mRNA, which could remove secondary structures. This could lead to faster ribosome speeds, which may result in protein misfolding. B. Cap-dependent translation
can be regulated by the dynamic formation of secondary structures in the 50 UTR. Hairpin formation can limit the binding of the ribosome and translation initiation factors,
thereby repressing protein translation. The presence of G-quadruplexes in the 50 UTR may inhibit translation directly, activate upstream ORFs, or promote translation. C. Cap-
independent translation can take place in the presence of IRESs, which require highly structured 50UTR domains that indirectly interact with PBAPs to promote mRNA
circularisation. Some IRES structures can be activated by RNA G-quadruplex formation. Further formation of RNA secondary structures across the ORF can limit the translation
speed and favor a step-by-step modular folding. Additional details on Cap-dependent and Cap-independent mechanisms are comprehensively reviewed at [234]. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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influences mRNA half-life and secondary structure formation can
change the microRNA binding efficiency [166]. For example, the
introduction of a hairpin in the 50UTR of a transcript, results in
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substantial increases in gene expression [167,168]. Constitutive
decay elements are RNA motifs that mediate the destabilization
and degradation of mRNA molecules, and contain a hairpin
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sequence [169] at which Roquin proteins bind to induce the
decay of the transcript [170].

Massively parallel reporter assays are high-throughput tech-
nologies that enable rapid measurements of thousands of
sequences for their regulatory activity and have received wide-
spread adoption in recent years [171-174]. Multiple variants of this
technology have been implemented to study a plethora of gene
regulatory elements, including promoters, enhancers, 50 UTRs,
and 30 UTRs, by placing synthetic sequences in the appropriate
location relative to a reporter gene. In this case massively parallel
reporter assay experiments have shown that its destabilizing
effects increase as a function of the hairpin length [165].
10. Secondary structures in translation

Translation can be divided into four phases, initiation, elonga-
tion, termination and ribosome recycling [175,176]. Initiation is
the rate limiting and most regulated step, consisting of several
complex programs. The regulation of translation directly impacts
protein levels with most regulatory mechanisms affecting the
rate-limiting initiation step [177-179]. The multifarious effects of
translational control can be observed across biological processes
including development, differentiation, functions of the nervous
system and disease [177,180]. Initiation can be either cap-
dependent or cap-independent [181,182]. Cap-dependent transla-
tion is the most frequently used in eukaryotes and starts with
the binding of eIF4E to the mRNA cap. The most common cap-
independent initiation mechanism, often utilized by viral RNAs,
involves an internal ribosome entry site (IRES) of structured mRNA.
IRES structures can recruit ribosomal subunits and eukaryotic ini-
tiation factors [183]. RNA molecules fold in complex configurations
with the presence of RNA secondary structures in the 50UTR being a
major determinant of the rate of translation (Fig. 3a and b) [184-
186]. Moreover, the ribosome itself is a major remodeler of RNA
structure [187]. Lower translation rates can not only limit protein
abundance, but can also enable correct co-translational protein
folding [188,189]. In addition, secondary structures can influence
the recognition of the IRESs (Fig. 3c).

Although the vast majority of eukaryotic translation start sites
have an AUG codon, often the first AUG codon is bypassed, result-
ing in usage of more distal AUG codons and alternative protein iso-
forms. This process is referred to as leaky scanning, with a
proportion of ribosomes initiating translation from downstream
start codons. Leaky scanning and translational efficiency are influ-
enced by the presence of secondary structures [8,190-192]. More-
over, there is a large proportion of suboptimal start sites that do
not contain the canonical start codon. Microsatellite expansions
can cause non-AUG initiation [193]. These non-AUG start sites
are often associated with alternative translation start [194,195].
Ribosome profiling is one of the primary methods of identifying
the occupancy of elongating ribosomes on mRNAs, therefore pro-
viding a direct readout of ribosome decoding rates [176].

Secondary structures can conceal or expose binding sites for
translation regulators, and it has been shown that certain RBPs
bind preferentially at structured RNA while others have a prefer-
ence for linear forms [196]. Moreover, formation of secondary
structures can change the distance between translation-
associated motifs, an example being the distance between the
stem-loop and the cap [197]. Secondary structure formation can
also promote cap-independent translation, and the disruption of
an IRES hairpin can in turn reduce translation efficiency in viral
[198,199] and eukaryotic [200] mRNAs.

Riboswitches are components of mRNA molecules that can bind
a small molecule and directly control gene expression through RNA
conformational changes, without proteins being involved. They are
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found in both prokaryotes and eukaryotes, with most discovered
riboswitches being present in bacteria and archaea [201]. The apta-
mer is a receptor for a small molecule, and it is usually located in
the 50UTR of a mRNA where it forms a secondary structure that
binds to the small molecule. The expression platform is the regula-
tory domain of the riboswitch and it modulates gene expression
upon binding of the small molecule. Riboswitches have been found
to regulate a number of processes including initiation of transla-
tion [202], mRNA decay [203], transcription termination [204]
and splicing [205,206]. For instance, in E. coli the lysine riboswitch
when lysine is present it restricts translation initiation and also
exposes RNase E cleavage sites [203].

RNA structures can directly interact with the translational
machinery and influence the recognition of the translation start
[207]. Note that the interaction is complicated by the fact that
the translational machinery can unwind and remodel RNA struc-
tures [187]. There is also decreased translational efficiency at
highly structured 50UTRs [80,208]. For example, in the case of
BRCA1, a tumor suppressor gene, a longer 50UTR isoform is
expressed only in breast cancer cells, resulting in a 10-fold
decrease of translational efficiency due to the formation of a stable
complex secondary structure [208]. Finally, the interplay between
RNA structure formation and unwinding influences ribosome initi-
ation, scanning and elongation. Therefore, secondary structures
can account for differences between mRNA and protein levels
[209].
11. Hairpins enable long range RNA interactions in translation
initiation

Early studies indicated that hairpin formation can influence
translation efficiency [210]. Hairpins with high thermal stability
upstream of the translation start site resulted in reduced transla-
tion by up to 85–95%, whereas hairpin formation downstream of
an AUG at specific positions resulted in an increase in translation
rate by facilitating recognition of initiator codons by ribosomes
[211,212]. Stem length and GC content, both of which increase
thermal stability, inhibit translation, while more distant hairpins
have a smaller inhibitory effect [213]. Other studies have also indi-
cated that both the GC content of the stem and the positioning of
the hairpin relative to the translation start site dramatically influ-
ence the translation efficiency [207].

Hairpins at the 50UTR of ferritin-H and ferritin-L mRNAs act as
an iron-responsive element controlling iron levels and are highly
dynamic response elements to environmental changes [214].
Another example is a hairpin structure in the c-JUN 50 UTR which
is recognized by eIF3 and is required for initiation of translation
[215]. Another study generated a library of half a million 50 bp
long 50UTRs and identified hairpin structures to negatively impact
protein levels, especially those with longer stems and shorter loops
[216].
12. G-quadruplexes in translation initiation

RNA G-quadruplexes are enriched at 50UTRs (Huppert et al.
2005) where they show a higher frequency at the template strand,
suggesting a relative depletion of G-quadruplexes at the RNA level
[217]. There is also a difference in the density of G-quadruplexes,
with the highest density being found within 50 bp of the start of
the 50UTR and a declining frequency moving away from it [217].
It has been shown that G-quadruplexes in the 50UTR of mRNAs
are inhibitory elements [218], and several studies have since
shown that G-quadruplexes at the 50UTR interfere with the recog-
nition by ribosomes [17,219-223]. Specifically, experiments
involving luciferase plasmid vectors indicate that G-quadruplexes
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inhibit expression across 50UTR regions, perhaps by interfering
with ribosome scanning. However, in many of these experiments
the researchers used controls where guanines had been substituted
for uracils, potentially also interfering with RBP binding sites and
the GC content [218,219].

It has also been shown that G-quadruplexes at 50UTRs of
eukaryotic genes can promote translation by favoring recognition
of the IRES [224-227]. In FGF-2, a gene that is associated with tis-
sue development and repair, a G-quadruplex motif together with
two hairpin sequences are found within the IRES, and they pro-
mote translation in a cap-independent translational program
[225]. A G-quadruplex site in the RBP FMRP is a binding site for
the protein itself, and it has been suggested that it could in this
way control both its own expression levels [228] and its mRNA
splicing [134]. In VEGF, an RNA G-quadruplex was shown to be
essential for IRES-mediated translation initiation [227,229,230];
however other studies have contended its role and provided evi-
dence for inhibitory functions [231,232].

A study that used massively parallel reporter assays to investi-
gate mRNA translation found that G-quadruplexes in the 50UTR act
as translational inhibitors, and that knockdown of G-quadruplex
resolving helicases aggravated these phenotypes [233]. It was also
found that RNA G-quadruplex formation could promote the usage
of an upstream translation start site by slowing down the pre-
initiation complex scanning [80]. The role of secondary structures
was systematically explored in a high-throughput experiment
where half a million 50 bp randomly generated 50UTRs were syn-
thesized and tested in yeast. The results showed that several sec-
ondary structures, including RNA G-quadruplexes and hairpins,
are important contributors to expression levels [216]. RNA G-
quadruplexes can either restrict or promote the recognition by
ribosomes and even though there are more studies indicating inhi-
bitory functions, it is not clear which effect is more widespread and
what features determine if the G-quadruplex will restrict or pro-
mote ribosomal recognition.
13. Splicing and translation associated secondary structures in
disease

Regions that are predisposed to secondary structure formation,
such as G-quadruplexes have an excess of germline and somatic
mutations [235,236]. The functional role of these structures is sup-
ported by the observation that eQTLs are enriched at G-
quadruplexes within 50UTRs and splicing quantitative trait loci
(sQTLs) are enriched at G-quadruplex motifs flanking splice sites
[70,132]. The accumulation of R-loops is also associated with geno-
mic instability [237-240] As secondary structure formation modu-
lates diverse processes including splicing and translation initiation,
changes in the mRNA structure have been associated with and can
result in human disease.

Mutations of alternative splicing factors can lead to R-loop
accumulation, which may compromise genomic stability and be
relevant in the context of cancer pathogenesis [241,242]. RNA
splicing perturbation by expression of U2AF1 or SRSF2 mutants,
mutations that are commonly observed in myelodysplastic syn-
drome, results in the accumulation of R-loops [243]. In the MAPT
gene, also known as tau, in the interface between exon 10 and
intron 10, there is a hairpin structure which can mask the splice
site [244,245] and DDX5 was found to be involved in the resolution
of this hairpin structure controlling splicing of MAPT (tau) exon 10
[86]. Mutations at the hairpin result in its destabilization, causing
inclusion of exon 10 due to increased association with U1 snRNP
[244] and results in higher prevalence of neurodegeneration. Hair-
pin sequences were also identified in the 50UTR of other transcripts
including the amyloid precursor protein [246] and a-synuclein
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[247], indicating the importance of structure-mediated control of
expression levels. In spinal muscular atrophy, a stem-loop RNA
structure overlaps with the 50 splicing site of exon 7 of SMN2 and
interference with the structure formation is a therapeutic target
against the spinal muscular atrophy molecular phenotype [248].
Sulovari et al. showed that variable number tandem repeats were
particularly enriched at Alu elements and found an association
between genes differentially spliced or expressed between human
and chimpanzee brains [249].

RNA G-quadruplex structures have been identified in several
cancer genes, including TP53 and TERT, where they can modulate
splicing and protein isoforms [133,135]. In CD44 an RNA G-
quadruplex in intron 8 functions as a splicing enhancer with roles
in the control of the epithelial–mesenchymal transition [137], a
process that is important for cancer metastasis [250]. One of the
canonical translation initiation factors, elF4A, is a DEAD-box RNA
helicase that can unwind secondary structures, including RNA G-
quadruplexes, and its activity is correlated with the number of sec-
ondary structures in the 50UTR [251]. Perturbation of elF4A can
contribute to oncogenesis as it results in formation of RNA G-
quadruplexes in the 50UTRs of mRNAs targeted by elF4A, including
many oncogenes, transcription factors, and epigenetic regulators
[252].

The expansion of microsatellite repeats at 50UTRs has been
associated with aberrant translation and has been implicated in
multiple disorders [193,253]. The mechanisms involve the forma-
tion of secondary structures that interfere with translation and
repeat-associated non-AUG translation. One of the most well-
studied examples is the expansion of the hexanucleotide GGGGGC
in the first intron of the C9orf72 gene which results in frontotem-
poral dementia (FTD) and amyotrophic lateral sclerosis (ALS).
These repeats form different secondary structures including G-
quadruplexes, R-loops and hairpins [254-256] which leads to
aborted transcription at the repeat site [254]. Expansion of these
repeats results in repeat-associated non-AUG translation and the
generation of toxic dipeptide proteins [257], while reducing
DHX36 levels in cells derived from C9orf72-linked ALS patients
results in reduced dipeptide protein burden due to the formation
of RNA G-quadruplexes [258]. In ALS and FTD, Nucleolin binds to
the G-quadruplex forming hexanucleotide repeat, resulting in its
mislocalization in the cell [254]. In addition, a number of other
proteins associated with the ALS pathology such as TDP-43, FUS/
TLS, hnRNPA1, hnRNPA2B1, hnRNPA3 and EWSR1 interact with
the RNA G-quadruplex [259-264]. Encouragingly, G-quadruplex
binding small molecules ameliorate the pathologies associated
with ALS and FTD in model systems, indicating that RNA G-
quadruplexes can pose as a therapeutic target [265]. Beta-
amyloid precursor protein cleaving enzyme 1 (BACE1) encodes a
protein that cleaves amyloid precursor protein resulting in the
generation of amyloid-beta peptide, the accumulation of which is
a hallmark of Alzheimer’s disease [266]. An RNA G-quadruplex in
exon 3 of BACE1 modulates splicing by inhibiting the binding of
hnRNP H, thereby promoting a shorter isoform without the prote-
olytic activity that creates the neurotoxic peptide [267]. ADAM-10
is also associated with Alzheimer’s disease due to its anti-
amyloidogenic activity and a RNA G-quadruplex in its 50UTR
represses its expression [268].
14. Concluding remarks

RNA secondary structures are pervasive, interact with RNA
binding proteins and are linked to a large number of important
functions, including transcription, splicing and translation. Even
though the functional importance of secondary structures has been
repeatedly demonstrated, the contribution of RNA structures in
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these processes remains incompletely understood due to the diffi-
culties in identifying dynamic RNA structures and their mecha-
nisms of action. High-throughput technologies enable the
systematic investigation of RNA secondary structures and the
design of experiments to quantify their contribution in transcrip-
tion, splicing and translation enables directly testing their mecha-
nisms of action. New methods to dynamically identify RNA
secondary structures are gradually revealing their widespread
and diverse contributions in gene regulation. However, it remains
difficult to capture their dynamic changes across cellular condi-
tions and their interplay with proteins. The degree to which RNA
secondary structure formation is influenced by the tissue and cell
type remains largely unstudied. The availability of large scale sin-
gle cell assays will enable the investigation of associations between
secondary structures, the presence of various sequence motifs, and
expression levels of RBPs across different cell types. Even more
interesting could be the combination of single cell technologies
with different small molecules that stabilize specific structures.
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