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Abstract

Canada has one of the lowest rates of tuberculosis (TB) in the world, however, among cer-

tain sub-populations, disease incidence rates approach those observed in sub-Saharan

Africa, and other high incidence regions. In this study, we applied mycobacterial inter-

spersed repetitive unit (MIRU) variable number of tandem repeat (VNTR) and whole

genome sequencing (WGS) to the analysis of Mycobacterium tuberculosis isolates obtained

from Northern communities in the territory of Nunavut. WGS was carried out using the Illu-

mina MiSeq, with identified variants used to infer phylogenetic relationships and annotated

to infer functional implications. Additionally, the sequencing data from these isolates were

augmented with publically available WGS to evaluate data from the Nunavut outbreak in the

broader Canadian context. In this study, isolates could be classified into four major clusters

by MIRU-VNTR analysis. These could be further resolved into sub-clusters using WGS. No

evidence for antimicrobial resistance, either genetic or phenotypic, was observed in this

cohort. Among most subjects with multiple samples, reactivation/incomplete treatment likely

contributed to recurrence. However, isolates from two subjects appeared more likely to

have occurred via reinfection, based on the large number of genomic single nucleotide vari-

ants detected. Finally, although quite distinct from previously reported Canadian MTB

strains, isolates obtained from Nunavut clustered most closely with a cohort of samples orig-

inating in the Nunavik region of Northern Quebec. This study demonstrates the benefit of

using WGS for discriminatory analysis of MTB in Canada, especially in high incidence

regions. It further emphasizes the importance of focusing epidemiological intervention

efforts on interrupting transmission chains of endemic TB throughout Northern communities,

rather than relying on strategies applied in regions where the majority of TB cases result

from importation of foreign strains.
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Introduction

Tuberculosis (TB) is a global disease with an estimated one third of the world’s population

infected with the causative agent, Mycobacterium tuberculosis (MTB) [1]. While global rates of

this insidious infection have dropped since 2000, it remains one of the top ten sources of mor-

tality globally [1]. In Canada, the incidence of TB is low, and has plateaued at an annual rate of

5 per 100000 persons in 2004 to 4.4 per 100000 in 2014 [2]. Despite this gradual reduction,

rates of TB remain high among certain subgroups within Canada, representing a significant

challenge in efforts to meet global TB elimination targets [3]. In the Canadian context, TB inci-

dence is driven primarily by higher rates of disease among two distinct subpopulations;

namely the foreign born and Indigenous Peoples [2]. These Canadian subpopulations have

dissimilar epidemiological profiles, with foreign-born individuals commonly infected in their

home country and displaying restricted transmission of disease within Canadian communities,

versus Canadian-born Indigenous Peoples infected by endemic clonal outbreak strains circu-

lating through communities, and contributing to maintenance of transmission chains [4–6].

Within this context, this study describes the ongoing TB epidemic in the territory of Nunavut,

where, in 2003, a dramatic increase in the incidence of TB occurred, reaching a maximum rate

of 299.8 per 100,000 in 2010 (Territory population of 33,353)[2]. This increase resulted in an

incidence rate of 64x the Canadian national average [7]. The reason for this dramatic rise is

not clearly understood and is likely multi-factorial. However, to develop targeted medical and

public health interventions, understanding and describing the molecular basis of the outbreak

is required, as, to date, neither the epidemic nor the circulating strains in this region have been

well characterized.

The current gold standard in molecular epidemiological analysis of MTB is mycobacterial

interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR). However,

this method targets only small parts of the genome for investigation, and as such has lesser

potential for resolving clusters than do approaches that take into account the composition of

the whole genome. Further, the recent increase in cost effectiveness of next-generation

sequencing for whole genome sequencing (WGS) analyses has rapidly increased the utility of

this method for outbreak detection and surveillance [8,9]. To date, such studies in Canada

have revealed that strictly epidemiological contact tracing analyses are hindered by the qual-

ity and completeness of data shared with health officials [10,11]. Furthermore, several of

these analyses have shown that multiple, genetically distinct MTB strains may be circulating

concurrently within Northern communities, breaking up what had appeared to be single out-

break clusters when investigated using traditional molecular typing strategies (ie MIR-

U-VNTR) [10,12]. These observations highlight the importance of high resolution molecular

discrimination of strains using WGS for appropriately understanding the transmission

dynamics of an epidemic, and the utility of using this information to identify and optimize

public health activities aimed at interrupting and reducing transmission. Additionally, WGS

data can be used to identify molecular evidence for strain-specific phenotypic variability

including, but not limited to the acquisition and spread of anti-mycobacterial drug

resistance.

The ongoing outbreak of TB in Nunavut, prior to this study, had been poorly characterized.

To address this knowledge gap, we have applied both 24-locus MIRU-VNTR and WGS analy-

sis to isolates collected between 2003 and 2013. The aims of this study were twofold: to charac-

terize the amount of nucleotide-level diversity identified via WGS within the larger MIRU

clusters in circulating MTB in Nunavut; and to perform a meta-analysis including our own

data as well as all available Canadian MTB strains currently available in public reference data-

bases, in order to better understand this epidemic within the Canadian context.
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Methods

Study samples

Clinical specimens from Nunavut were sent to the Provincial Laboratory for Public Health in

Edmonton, Alberta for culture and identification of MTB. Once identified, MTB isolates were

sent to the National Reference Centre for Mycobacteriology (NRCM; National Microbiology

Laboratory, Public Health Agency of Canada, Winnipeg, Canada) for MTB genotyping, as part

of ongoing surveillance efforts being conducted in collaboration with the public health depart-

ment in the territory of Nunavut. Isolates included in this study were collected as part of rou-

tine disease surveillance procedures in the Nunavut Territory. No clinical data relating to

patient of origin was collected by the Public Health Agency of Canada, and permission to pub-

lish was obtained from the Government of Nunavut. A total of 274 isolates collected between

2003 and 2013, were included in genomic analyses, with a subset of 233 representative isolates

undergoing WGS. Antimicrobial resistance testing was conducted by the provincial lab sub-

mitting the strains prior to their submission to the NRCM. As no first line resistance was

detected, secondary testing was not performed. Several isolates were collected from individuals

with multiple diagnoses of TB throughout the study time period. Five subjects had MTB iso-

lates identified from two separate time points, and a sixth subject had three MTB isolates

obtained at different time points. For all analyses, selected strains were cultured on Lowen-

stein-Jensen slants, using standard, aerobic growth conditions.

MIRU-VNTR

A loopful of cultured MTB was suspended in TE buffer, heated to 100˚C for 10 minutes, and

sonicated (ultrasonicator)(ThermoFisher, Waltham, USA) for 15 minutes [13,14]. Lysates

were then centrifuged for 2 minutes (13500xg), with the supernatant used for MIRU-VNTR

analysis. Following DNA extraction, 24-locus MIRU-VNTR was performed using the 3730xl

DNA analyzer (Applied Biosystems, Foster City, USA), with patterns analyzed in GeneMarker

(v. 2.6.7) (SoftGenetics, LLC, State College, USA) as per the procedure described by De Beer

et al [15][16]. MIRU-VNTR patterns were maintained in BioNumerics (v. 6.0) (Applied

Maths, Inc., Austin, USA). Classification of an isolate into a cluster required identical 24-loci

MIRU patterns. Complete 24-loci patterns could not be generated in some cases due to one or

more loci having inconclusive results. Loci with missing data were imputed using the ‘mice’

package in R (v. 3.3.3)[17]. Loci which could still not be assigned were left blank, and consid-

ered unknown/missing at that position. Isolate clustering was visualized as a minimum span-

ning tree (MST) using PHYLOViZ [18] using the goeBURST algorithm [19]. Additionally,

MIRU-VNTR based phylogenies were generated using the Gower distance, with Unweighted

Pair Group Method with Arithmetic Mean (UPGMA) clustering performed using the R statis-

tical analysis package.

Whole genome next generation sequencing

DNA was extracted for WGS analysis using a different protocol from that used for MIR-

U-VNTR. Prior to DNA extraction, a loopful of bacterial culture was placed in TE buffer and

heated at 100˚C for 10 minutes. DNA was extracted using the MasterPure Complete DNA &

RNA Purification kit by Epicentre (Illumina, Madison, USA), which includes a Proteinase K

treatment to aid in digestion of the mycobacterial cell wall prior to DNA extraction. Extracted

DNA was quantified fluorometrically using PicoGreen (Life Technologies, Burlington, Can-

ada) or Qubit (Life Technologies, Burlington, Canada).
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Sequencing libraries were prepared using the TruSeq Nano DNA HT Sample preparation

kit (Illumina, Victoria, Canada), following manufacturer suggested protocols [20]. MTB DNA

was indexed for multiplex sequencing using Illumina barcodes, and DNA was size-selected to

be in the range of 600–1000 basepairs (average peak of ~800bp) using the BluePippin (Sage

Science, Beverly, USA). Paired-end sequencing was performed using the Illumina MiSeq with

the 600-cycle sequencing format kit (MiSeq reagent kit v.3)(Illumina, Victoria, Canada), with

samples multiplexed to 24 samples per flow cell. All sequencing data is available through the

SRA under bioproject PRJNA388806.

Sequence data analysis

To determine the lineage of our samples, in silico spoligotyping was performed using SpolPred

[21] on the raw FASTQ reads. These spoligotypes were confirmed, and subgroupings identi-

fied using the SNP typing scheme described by Coll et al [22]. Read quality filtering, reference

genome-based alignment, variant calling and construction of a distance matrix were per-

formed using the SNVPhyl pipeline implemented in Galaxy [23]. Briefly, this software per-

forms reference mapping using SMALT (v. 0.7.5) and SAMtools [24] followed by variant

calling using FreeBayes (v. 0.9.20)[25] and BCFtools [26]. Identified single nucleotide variants

(SNV)s were filtered based on depth of coverage, with a minimum of 10x coverage per loci

required for SNV calling. Additionally, regions with mean mapping FASTQ quality scores less

than 30 were excluded. A minimum agreement of 75% of sequencing reads was required in

order to confirm a variant call. SNVs falling within high density SNV regions (2 per 20 bp slid-

ing window) or predefined areas of exclusion were not used in construction of a phylogeny.

Regions excluded from analysis in this study included simple repeats identified using island

viewer [27], PHAST [28] and the nucmer function in MUMmer [29], as well as MIRU-VNTR

loci [16] and PE-PGRS and PPE regions (identified from NCBI annotation of the H37Rv refer-

ence genome), based on the known difficulty in accurately mapping sequences to these

regions. In order to maximize the number of SNVs included in the analysis, samples in which

more than 5% of identified variants could not be called due to insufficient quality were

excluded (n = 2). Identified SNVs were then used to calculate the phylogenetic distance

between isolates using the generalized time reversible (GTR) model, with PhyML [30] used to

construct a phylogeny. H37Rv (NC_000962.3) was used as a reference genome, with SNV

numbering as per the position of the variant along the reference genome.

Differences between MIRU clustering and SNV clustering were visually inspected using the

phytools [31] package in R. Associations between SNPs and different MIRU-VNTR clusters

were evaluated using Fisher’s exact test (FET) in R. Association between MIRU-VNTR and

SNP clustering in the samples with both data types was also visually assessed. SNVs identified

through the SNVPhyl pipeline that were associated with particular clusters, were annotated

using SNPeff and annotations parsed and processed using a provided customized Perl script

[32]. Annotations were manually inspected for variants occurring in AMR genes listed in the

TBDream database [33]. Samples in which there was potential evidence of AMR-loci via this

analysis were also run through Mykrobe predictor-TB [34] in order to confirm associations.

Canadian MTB WGS meta-analysis

Raw FASTQ sequence data was obtained from NCBIs Sequence Read Archive (SRA), from

three Canadian WGS studies of endemic Canadian TB (Accession numbers SRP046976,

SRP039605, SRA020129)(S1 Methods)[10,12,35]. These sequences were analyzed in conjunc-

tion with WGS data from the Nunavut TB isolates (as described above), as part of a Canada-

wide meta-analysis in order to establish a more complete picture of TB across Canada. Clusters

Whole genome sequence analysis for analysis of Mycobacterium tuberculosis in Nunavut, Canada
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were identified that had 90% bootstrap confidence and were a minimum genetic distance

threshold of 0.015 (maximum pairwise intragroup genetic distance of 1.5%, and approximately

50 SNVs separating) and 0.0025 (approximately 10 SNVs separating), with a large cluster

threshold of 10, using ClusterPicker [36] in order to identify broadly similar groups of isolates.

Results

Sequenced strain characteristics

In silico spoligotyping was used to position our sequenced strains from Nunavut in the context

of other global TB data. All samples which clustered into one of the four observed groups via

MIRU-VNTR (see below) had the same spoligotype pattern (777777777760771), reflecting the

highly clonal nature of this outbreak. All Nunavut isolates were classified together into the

Euro-Amercian lineage (Lineage 4)[37]. Additionally, using the typing scheme described by

Coll et al [22], the lineage specific SNP at position 931123 (against H37Rv NC_000962.3), con-

firmed that all Nunavut isolates indeed belonged to Lineage 4 with 218 positive for both 4.1

and 4.4-specific markers (62657, 4307886), 14 positive for 4.4 and 4.8 markers (4307886,

3836739), 1 positive for markers 4.1 and 4.8 (62657, 3836739).

MIRU-VNTR

24-loci MIRU-VNTR performed on the 274 isolates from this region identified four clusters

based on 100% pattern identity (Fig 1). The two largest clusters (C & D) were separated by a

single difference at locus 2163. The third cluster (B) differed from C and D by several addi-

tional loci and was observed more commonly in a population which was geographically

isolated from the larger two clusters. Cluster A was the smallest, detected in only five indi-

viduals. This cluster differed from clusters C and D at a single loci, and was confined to a

single geographic area. Eight additional isolates with unique MIRU patterns remained

unclustered.

Fig 1. Description of the MIRU clusters identified in the cohort of samples included from Nunavut. A) Minimum Spanning Tree

(MST) showing the relationship between identified MIRU patterns in this cohort B) Number of isolates in each of the four main MIRU

clusters. MIRU loci patterns are in the order: 154, 580, 960, 1644, 2059, 2531, 2687, 2996, 3007, 3192, 4348, 802, 424, 577, 1955, 2163,

2165, 2347, 2401, 2461, 3171, 3690, 4052, 4156, with numbering as per the MIRU-VNTRplus database [16,38].

https://doi.org/10.1371/journal.pone.0185656.g001
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SNV typing of Nunavut strains based on WGS sequencing data

Of the 233 isolates that underwent WGS, 231 had sufficient data available for inclusion in the

analysis, while two did not have sufficient coverage for confident SNV calling. In total, 2109

SNVs were identified when compared to the H37Rv reference genome of these, 1697 met our

criteria for inclusion in the core genome representation and were subsequently included in

phylogeny construction. The major clusters observed by MIRU were also observed in the

WGS data (S1 Fig). However, WGS data provided enhanced resolution, breaking up large

MIRU clusters based on the greater number of phylogenetically informative sites contained

within the SNV dataset (S1 Fig). The improved clustering resolution obtained via WGS corre-

sponded well in most cases with the geographical region of specimen origin.

SNV cluster analysis and variant annotation

Intra- and inter-cluster SNV differences characterizing the four main MIRU clusters are

depicted in Table 1. Over 1200 SNVs were detected between the four main MIRU clusters,

with the maximum SNV difference between any pair of clusters totaling 784. The intra-cluster

variability was also evaluated, with MIRU cluster B showing the largest amount of SNV

variability compared to the other dominant clusters (Table 1; S1 Fig). Variant functional

annotation predicts that several of the SNVs identified may have a large impact on cellular pro-

cesses specifically in relation to pathways associated with pathogen-host interactions. Detected

nonsense mutations that were present in a large fraction of the population are included in

Table 2, while all detected SNVs and their annotations are described in S1 Table. Of the

Table 1. Pairwise intra- and inter-cluster SNV variability in four MIRU groups.

MIRU Group A (n = 5) B (n = 14) C (n = 64) D (n = 140)

A 0.6 (0–2)

B 766 (749–773) 12.4 (0–65)

C 52.9 (36–57) 784.1 (751–794) 3.5 (0–42)

D 8.7 (1–53) 763.9 (745–790) 49.9 (0–59) 9.1 (0–55)

https://doi.org/10.1371/journal.pone.0185656.t001

Table 2. Nonsense single nucleotide variants (resulting in premature stop, or abrogation of start). Loci based on genomic position and numbering in

the H37Rv reference genome (NC_00962.3). All described alternate alleles at specified loci are in relation to the reference sequence at that position. Included

loci are those with at least 5 isolates possessing the variant genotype. All were significantly associated with a MIRU cluster (pFDR <0.05).

SNV locus on H37Rv

reference

Gene/locus

name

Alternate

allele

Variant allele MIRU

A

Variant allele MIRU

B

Variant allele MIRU

C

Variant allele MIRU

D

142246 oxcA T 0 0 61 2

212244 Rv0180c A 5 0 62 140

234477 Rv0197 G 5 14 62 140

707337 Rv0613c A 0 14 0 0

1037911 pstA1 T 5 14 62 140

1989043 cut1 C 4 0 39 107

1989044 cut1 A 4 0 39 107

2125341 bfrA C 0 14 0 0

3356519 Rv2997 A 0 12 0 0

3689523 lpdA T 5 14 62 140

3870808 mycP4 T 5 0 62 140

3959957 ltp3 A 0 14 0 0

3966813 Rv3529c A 0 14 0 0

4365461 eccA2 A 0 14 0 0

https://doi.org/10.1371/journal.pone.0185656.t002
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nonsynonymous variants that had predicted functional outcomes, several were common

across all of our isolates (in comparison to the H37Rv reference), suggesting common alter-

ations to bacterial physiology and function. Our data identified additional variants that charac-

terized particular sub-clusters in this dataset. None of the variants identified in this analysis, to

our knowledge, have been previously associated with MTB antimicrobial resistance (AMR).

One SNV identified in our cohort among seven MTB strains was a Val981Leu variant in

embC; a gene that has previously been associated with ethambutol resistance, but only when

found in conjunction with mutations in embA [39]. As expected no phenotypic resistance to

this antibiotic was reported among these or any of the other analyzed strains. No additional

mutations previously associated with AMR as reported in either the TBdream database [40],

or Mykrobe Predictor [34] were detected in our cohort.

Comparison isolates from repeat sampling from individuals at multiple

times

Isolates obtained from individuals at multiple time points (a total of 13 strains in 6 subjects)

(Table 3) suggested possible incomplete treatment of disease in 4 of 6 cases, although reinfec-

tion with another strain from the same cluster cannot be ruled out. Molecular evidence sug-

gested that re-infection with a completely distinct strain had occurred in one subject (subject

1). In this individual, MIRU-VNTR samples differed from each other at two loci. In our SNV-

based analysis, samples from this individual differed by 53 SNVs. Two separate isolates from

subject 2, meanwhile, had identical 24-locus MIRU-VNTR patterns; however differed from

each other by 10 SNVs via genomic analysis. Furthermore, each of the isolates from subject 2

were more closely related to an isolate from another subject in a separate sub-cluster within

the larger WGS dataset (Fig 2).

Meta-analysis of publically available Canadian MTB

In addition to the isolates sequenced as part of this study, WGS data on 292 MTB strains iden-

tified from other Canadian regions (Ontario (n = 87), Quebec (n = 169) and BC (n = 36)) were

obtained from the SRA in NCBI, with a sum of 257 that met coverage and quality requirements

for inclusion in the meta-analysis. In total, 5614 SNVs were identified in this collection among

all isolates when using the H37Rv genome as reference. Following filtering, 3830 high quality

core SNVs were used to construct the phylogeny. Cluster generation using ClusterPicker at a

genetic distance threshold of 0.015 (corresponding to approximately 50 SNVs separating) and

0.0025 (corresponding to approximately 10 SNVs separating), identified 11 and 28 distinct

clusters respectively, as well as a small number of individual strains that did not cluster with

any of the larger groups. Among the more distant clustering (0.015), Nunavut strains were

Table 3. Repeat sampling of individuals from whom multiple isolates were obtained.

Individual Samples Years separating samples Sample source MIRU cluster Number of SNVs separating

1 1001198a-1001255b 1 unknown Aa;Cb 53

2 1001226a-1300352b 3 sputum D 10

3 1300361–1300384 3 sputum D 3

4 1001230–1300312 5 sputum D 1

5 1001263a-1100021b-1300300c 5monthsa,b; 5a,c sputum D 0a,b; 1b,c; 1a,c

6 1100296–1300383 0 sputum C 0

For cases in which isolates have different clustering patterns, superscript letters denote which isolates are referred to in the subsequent columns.

https://doi.org/10.1371/journal.pone.0185656.t003
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found in three large clusters, with several isolates failing to cluster. WGS SNV data demon-

strated that Nunavut strains clustered separately from those which were previously described

in other Canadian communities with one notable exception (Fig 2): a set of isolates which orig-

inated in the Nunavik region of Northern Quebec were found to cluster with a subset of the

Nunavut isolates (n = 69; WGS Cluster 4). The communities of origin for these specimens

were geographically situated directly across a large body of water from each other. Inter and

intra-cluster SNV variation is described in S2 Table. The maximal mean intra-cluster differ-

ence was 13.7 (range 0–46) SNVs, and inter-cluster 785.9 (range 767–794). Unsurprisingly, the

largest differences were observed between several Canadian samples and the H37Rv reference,

with mean SNV differences of 597.6 (range 455–1191).

When examining the SNV data using a cluster threshold of 0.0025 (10 SNV maximum dif-

ference), 28 clusters were generated with 98 strains not falling into any of these clusters. Nuna-

vut isolates continued to cluster more closely with other isolates from this region than those

from the rest of Canada. Interestingly, the isolates grouped together in cluster 4 (Nunavut and

Northern Quebec), remained clustered even at this increased resolution threshold. Among the

Fig 2. Phylogeny depicting isolate relatedness based on WGS data, including both isolates from Nunavut, as well as those

previously reported from other Canadian regions. Colouring of the major clusters was performed using ClusterPicker with a

maximum genetic distance threshold of 0.015, with predominant geographic location and WGS cluster number included beside the

corresponding cluster. Isolates not coloured represent individual samples that could not be grouped with any of the major clusters at this

distance threshold.

https://doi.org/10.1371/journal.pone.0185656.g002
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Nunavut isolates, seven smaller clusters were generated in addition to the three larger clusters

described above (S2 Fig).

Discussion

This study employed both 24 locus MIRU-VNTR and WGS to investigate a TB outbreak

occurring in the Northern Canadian territory of Nunavut, between 2003 and 2013. Among the

isolates included for analysis, MIRU-VNTR results suggested that TB in this region is highly

clonal with four patterns dominating the outbreak. WGS data supported these results yet pro-

vided additional resolution, demonstrating that a majority of circulating strains are highly

genetically related, with the exception of those in MIRU cluster B. There were, however, sev-

eral isolates showing greater genetic distance via WGS than by MIRU, with SNV differences

extending to a level that would be unlikely within a population of epidemiologically related

strains [41].

Based on our genomic findings we can speculate that the TB outbreak in Nunavut is

unlikely to have arisen as a result of a recent introduction of foreign strain types. We hypothe-

size, therefore, that new TB introduction to this population has occurred relatively infre-

quently and that increased detection of TB throughout this region between 2003 and 2013 is

predominately driven by increased spread of circulating endemic MTB strains. Supporting

this, a previous study by Pepperell et al showed, historically, that there was greater diversity

among MTB strains in Quebec, with increased homogeneity in more remote regions (ie. Sas-

katchewan) along routes of commerce (ie the fur trade) [42]. Furthermore, Nunavik MTB

strains (Northern Quebec), appear to be quite similar to several of those from Nunavut [9].

Therefore, while Nunavut samples were not included in the Pepperell analysis, our analysis

shows they are congruent with these findings, namely that their low genomic variability is con-

sistent with few introductory events in the human population.

Previous WGS studies of MTB have demonstrated that globally, the maximum genetic dis-

tance between any two human strains of MTB is approximately 1800 SNVs [43–45]. Our

results show 1191 SNVs separating Canadian strains from the H37Rv reference genome, and

maximum inter cluster (SNV phylogeny) difference of 785, are in keeping with previous

descriptions of lineage-specific mutation rates [45], and in our case may be indicative of a rela-

tively recent introductory event or reemergence of disease (during a period of lowered TB

awareness) in communities in Northern Canada, similar to that reported by Bjorn-Mortensen

et al in Greenland [46].

Of note is previous work suggesting that in culture, a lower rate of mutation of lineage 4

strains results in a lower rate of acquisition of drug resistance-associated variants [47]. The

lack of detection of resistance-associated polymorphisms in our MTB cohort, seems to agree

with this observation. Further investigation of strains in this region, and long term surveillance

for the development of antimicrobial resistance may be warranted in order to address this

question.

The comparatively low number of SNVs separating the majority of Nunavut isolates, while

interesting from a molecular biology perspective, complicates analyses. Our data examining a

small subset of isolates obtained longitudinally from individuals highlights this challenge, as

determining whether disease occurred as a result of reactivation of untreated disease or instead

via reinfection was not easily elucidated in all cases. Numerous studies have attempted to

establish numerical cutoffs in detected SNVs that could be used for differentiating reinfection

from relapse [48]. Such cutoffs may have utility in situations wherein circulating strains are

not highly polymorphic and the probability of reinfection by a closely related strain is very

low. However, in the context of Northern Canadian TB, application of a similar numerical
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cutoff would require validation, with thresholds likely differing from those generated for anal-

yses conducted in other locales and using alternative computational methods. This would sug-

gest that application of a single, universal threshold to inform cluster analysis and subsequent

contact tracing is not feasible, especially given that the likelihood of reinfection with a closely

related strain is dependent upon the structure of the outbreak, and the host and bacterial popu-

lation in question. In the context of our own data, in a subject with multiple episodes of active

TB disease separated by three years, ten SNVs differentiated the collected isolates. Although

ten SNVs is within the range previously reported to occur in a similar timeframe (0.5 SNVs

per genome per year)[49,50], it exceeds the maximum rate predicted by other studies [9], and

is unlikely among samples collected in the shorter three year timescale under study. Addition-

ally, the observation that each of the isolates clustered independently with a separate set of

strains, leads us to speculate that the subject in question (individual 2) was infected with dis-

tinct MTB on two separate occasions. In this case, the added information provided by WGS in

comparison to MIRU is instructive, and in conjunction with additional epidemiological data,

may be useful for investigations of common sources of infection, rates of disease development

(from infection to diagnosis), and issues related to acquisition of immunity to MTB infection

in this host population.

One factor not considered in this analysis is the potential for mixed infections, or differen-

tial microevolution of subpopulations of MTB within individual patients. Several previous

studies have demonstrated that multiple genetically distinct MTB strains resulting from novel

infection events may be found within a single individual [51,52]. Although we do not have any

evidence of mixed infections due to our chosen methodology, it is known that host selective

pressures in conjunction with antibiotic treatment, may contribute to acquisition of novel

genetic variants, including mutations associated with drug resistance [43,53,54]. Future studies

in which WGS is performed directly on patient material and/or analysis of rare variants

among closely related strains from the same subject is applied, may provide greater insight

regarding the role of mixed infections in this Canadian populations.

The high quality of WGS data obtained in this cohort allowed us to conduct a more detailed

analysis investigating potential physiological implications of polymorphic loci. We did not

detect any mutations known to be associated with antimicrobial resistance in MTB, nor was

there evidence of the presence of other variants that may decrease drug susceptibility among

this group of isolates. Notably, several variants inferred to either alter protein structure, or

expression were detected. Among these were several genes previously identified as essential for

MTB growth in macrophages, and virulence [55–57]. A loss in start of the bfrA gene among

isolates in (MIRU-VNTR) cluster B was detected. This gene encodes bacterioferritin, one of

two iron storage proteins in MTB. This molecule aids in maintaining iron homeostasis,

although unlike ferritin (bfrB) is not required for survival [58]. While not directly observed to

influence survival and persistence during chronic infection [58], loss of bfrA may have a modi-

fying effect on bacterial fitness within the host specifically during active TB, resulting in less

robust transmission of strains containing this polymorphism when compared to strains lack-

ing the variant. The low number of isolates with this variant (total 14 isolates (5%); exclusive to

MIRU-VNTR cluster B) supports this hypothesis. Also detected only in MIRU cluster B was a

premature stop mutation in Rv0180c at the third amino acid of the coding sequence—effec-

tively eliminating transcription of this molecule. This gene encodes a previously described

probable transmembrane protein that is involved in interaction with and invasion of mono-

cytes and alveolar epithelium in the members of the MTB complex [59]. Our finding of SNVs

associated with abrogated production of Rv0180c, demonstrate that in these clinical strains of

MTB, infection has occurred in the absence of this molecule. This suggests that there is func-

tional redundancy within the MTB genome that allows strains to replicate in macrophages
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without a functional copy of this gene, although potentially at a cost to fitness. Future work

investigating transmission rates of such variants may be warranted, however, our findings of

several non-synonymous SNV variants is in keeping with previous work [60,61]. This may

suggest that these variants have, at most, minor impacts on fitness, and do not significantly

contribute to alterations in pathogenesis, virulence or host-microbial interactions.

The utility of WGS for outbreak surveillance has been clearly demonstrated by our own

work as well as that of others [10,42]. The addition of epidemiological data and social network

analysis to our own WGS, would improve contact tracing analyses and evaluation of the trans-

mission dynamics of this epidemic. However, large studies of disease that span several jurisdic-

tions are often limited in the amount of clinical and epidemiological data available. For these

reasons, this study is the first to characterize TB in Nunavut, and to place this data within the

known Canadian context. By comparing this data set together with studies previously carried

out in populations in BC, Ontario (harbouring a diverse homeless population) and Nunavik

Quebec (mostly Inuit), herein we add to the body of literature describing this topic. As it is

becoming possible to concurrently evaluate greater amounts of WGS data, large studies fully

describing the complete picture of TB across all of Canada, will be of use in longitudinally

tracking TB epidemics, as well as in assessing risks of transmission both within and between

communities. In the future, a more detailed investigation of sub-clusters identified via WGS in

the context of epidemiological data, will also be valuable.
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