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Abstract

Computational modeling has been applied for data analysis in psychology, neuroscience,

and psychiatry. One of its important uses is to infer the latent variables underlying behavior

by which researchers can evaluate corresponding neural, physiological, or behavioral mea-

sures. This feature is especially crucial for computational psychiatry, in which altered

computational processes underlying mental disorders are of interest. For instance, several

studies employing model-based fMRI—a method for identifying brain regions correlated

with latent variables—have shown that patients with mental disorders (e.g., depression)

exhibit diminished neural responses to reward prediction errors (RPEs), which are the differ-

ences between experienced and predicted rewards. Such model-based analysis has the

drawback that the parameter estimates and inference of latent variables are not necessarily

correct—rather, they usually contain some errors. A previous study theoretically and empiri-

cally showed that the error in model-fitting does not necessarily cause a serious error in

model-based fMRI. However, the study did not deal with certain situations relevant to psy-

chiatry, such as group comparisons between patients and healthy controls. We developed a

theoretical framework to explore such situations. We demonstrate that the parameter-mis-

specification can critically affect the results of group comparison. We demonstrate that even

if the RPE response in patients is completely intact, a spurious difference to healthy controls

is observable. Such a situation occurs when the ground-truth learning rate differs between

groups but a common learning rate is used, as per previous studies. Furthermore, even if

the parameters are appropriately fitted to individual participants, spurious group differences

in RPE responses are observable when the model lacks a component that differs between

groups. These results highlight the importance of appropriate model-fitting and the need for

caution when interpreting the results of model-based fMRI.

Author summary

Computational modeling has been utilized to infer the latent variables reflecting computa-

tional processes underlying behavior. This approach provides a predictor of neural activity
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by which one can test the physiological or neural measures that reflect computational pro-

cesses. In this way, individual differences in physiological signals corresponding to latent

variables (e.g., reward prediction error) and deficits related to mental disorders have been

clarified. However, if the model contains a systematic error, the results may be erroneous.

In this study, we suggest that spurious between-group (individual) differences are observ-

able if a model parameter (e.g., learning rate) is misspecified. This bias may account for

the inconsistencies in a series of studies that have addressed aberrant brain activity under-

pinning reward prediction error in patients with psychiatric disorders.

Introduction

Computational modeling has contributed to the analysis of behavioral and physiological data

in psychology, neuroscience, and psychiatry. One advantage of computational modeling is

that it offers trial-by-trial estimates of latent variables underlying behavior [1]. The latent vari-

able can be used as a regressor (predictor) for exploring corresponding physiological activity.

One notable application is model-based functional magnetic resonance imaging (fMRI),

wherein the brain regions that show correlated activity with latent variables are explored [2–

6]. As a notable success of model-based fMRI, reward prediction errors (RPEs) have been asso-

ciated with neural responses of the reward system involving dopamine such as the striatum [4,

7–9]. Other targets of application of model-based analysis include electroencephalogram

(EEG) [10–12], electrophysiology [13, 14], and pupillometry [15]. Other than physiological

activities, trial-by-trial behavioral measures (e.g., reaction time in subsequent trials) have been

analyzed using such model-based regressors [16].

In model-based analysis, errors in parameter estimation and misspecification of model

structure can be problematic. In general, the bias in parameter estimation and model misspeci-

fication can lead to erroneous conclusions [17–20]. However, Wilson & Niv [21] suggested

that the error in model-fitting does not necessarily cause a serious error in model-based fMRI.

Specifically, they developed a theoretical framework which enables quantification of how the

misfit of the learning rate—an important parameter that determines the degree to which values

are updated using RPE—affects the statistical significance of the regression coefficients for

RPE or value. The authors reported that even in the most extreme cases, results do not sub-

stantially change, while this robustness can come at the expense of the ability to identify the

specific function of a neural signal. However, Wilson & Niv’s theoretical framework did not

deal with certain practical situations such as group comparisons, which we consider in the

present study.

In the present study, extending the theoretical framework of Wilson & Niv [21], we report

the situation where a slight error in parameter estimation has a substantial impact on model-

based fMRI. Specially, we consider the situation focusing on individual (group) differences.

For example, psychiatry studies have compared patients with a mental disorder (e.g., depres-

sion) and healthy controls. Deficits in representation of RPEs in patients have been reported

[22–26]. However, the results have been inconsistent. Other studies reported comparable

response to RPEs between healthy controls and patients with major depressive disorder

[27, 28].

We demonstrate that even if RPE responses are completely intact in patients, a spurious dif-

ference to healthy controls can be observed. Such a situation occurs when the true learning

rate differs between groups but a common learning rate is used to estimate RPE signals, as has

been performed in previous studies [22, 23, 25, 29]. The use of a common parameter set is
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often employed in model-based fMRI to obtain stable regressors and thus robust estimates for

neural activity [30]. While studies in computational psychiatry have focused on the difference

in model parameters between subjects, the use of a common parameter set is still prevalent in

model-based fMRI studies. The spurious effect due to parameter misestimation can also work

in a dimensional approach, where researchers seek neural substrates whose activity is continu-

ously correlated with, for example, the severity of psychiatric symptoms.

Furthermore, we demonstrate that even if the parameters are appropriately fitted to indi-

vidual subjects, spurious group differences in RPE responses can appear when the model lacks

a component that is contained in actual computational processes that differ between groups.

The specific example we consider involves the forgetting process. The forgetting (decaying) of

action values often significantly improves model-fitting [14, 31–33] but has not been included

in previous studies that addressed diminished RPE in depression [22, 23, 28]. The forgetting

rate was found to correlate with the tendency of depression [32]. Thus, unmodeled differences

in the forgetting process may account for the apparent differences in neural responses to RPE.

Wilson & Niv [21] derived analytic expressions of regression coefficients and their statistics

(t-value) using several approximations (See also S1 Text). However, their theoretical analysis

lacks several practical factors. First, their analytical (mathematical) framework considered sta-

tistics of a single subject. Although statistical tests can be performed for single subjects in prin-

ciple, group-level statistics (i.e., how a regression coefficient is distributed across subjects and

how the distribution differs between groups) does matter in typical fMRI studies. Note that

Wilson & Niv also showed group-level statistics as results for empirical fMRI data analysis, but

they did not provide analytical treatment for those statistics. Second, Wilson & Niv’s analytical

expressions considered general linear models (GLMs)—commonly used statistical models for

fMRI—which contain only a single regressor, while GLMs used in model-based fMRI typically

contain multiple regressors (e.g., reward magnitude, action value, and stimulus identity in

addition to RPE). Indeed, two components of RPE, actual reward and expected reward, are

often separately included in GLMs [34, 35]. The manner in which the parameter misfit affects

results in such cases remains elusive. In the present study, we extend the theoretical framework

by Wilson & Niv to address these issues.

Results

Illustration on classical conditioning task

We first illustrate how model-based fMRI works and how model parameters influence results

based on the basic setting we consider in the present study. This section serves as an introduc-

tion of Wilson & Niv’s framework [21], which our theoretical considerations are based on. In

addition, the simulation presented here helps us understand the mechanisms underlying the

results, which we will report later on.

As an example model, we consider the Rescorla-Wagner (RW) model [36], which was also

used by Wilson & Niv [21] as a basic reinforcement learning model. Here, we consider the sit-

uation where a subject passively experiences rewards associated with a neutral stimulus (i.e.,

classical conditioning paradigm; e.g., [2, 37]). At trial t, after a reward rt is presented, a value Vt

that represents the expectation of reward is updated according to:

Vtþ1 ¼ Vt þ adt; ð1Þ

dt ¼ rt � Vt; ð2Þ

where δt represents RPE and α denotes the learning rate, which determines the extent to which

the RPE is reflected in the value of the next trial. The initial value of the value, V1, is set to 0,
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unless otherwise stated. In this model, the value, Vt, and RPE, δt, are latent variables that are

determined given a reward sequence and the parameter, α, which may be fitted to data. Fig 1A

and 1B show the simulated time courses of the latent variables for three different values of α.

Note that here we chose excessively different learning rates (α = 0.2, 0.5, 0.8) to clarify the

effect. In this simulation, the reward is delivered (rt = 1) with the probability of 0.4, otherwise

no-reward is given (rt = 0). It is evident that the behavior of these latent variables depends on

the learning rate, α: the greater α is, the greater the variances (magnitudes) of V and δ.

In model-based fMRI, estimates of latent variables such as value or RPE are used as a regres-

sor (predictor) of BOLD signals (i.e., neural signals). Brain regions whose signals are signifi-

cantly correlated with a latent variable are identified as regions that reflect the corresponding

computational process. Specifically, this is performed by applying GLMs including the latent

variable as regressors to the BOLD signals. For example, when the value signal, V, is of interest,

the target signal at trial t, denoted by yt, is modeled using a GLM:

yt ¼ bVVt þ �t; ð3Þ

where �t is noise variable. We assume that the noise obeys a Gaussian distribution whose mean

is zero and variance is s2
�
. βV is the regression coefficient (the effect) of the value, Vt. The esti-

mate of the regression coefficient of value, is tested if it differs from zero (e.g., by one-sample t-

test).

In the theoretical analysis of Wilson & Niv [21], the neural signal yt is assumed to be gener-

ated by the GLM as per Eq 3 with the “ground-truth” regressor, Vt, that is calculated based

on a ground-truth model parameter (i.e., learning rate). Under this setting, Wilson & Niv

attempted to evaluate the impact of mismatch between the ground-truth learning rate and the

fit learning rate on the statistics of estimates for the regression coefficient (hereafter, we simply

call the estimate as ‘beta value’). Specifically, they analytically calculated the correlation coeffi-

cient between the ground-truth regressor and that obtained with fit parameters (hereafter,‘fit

regressor’). This correlation has a close relationship with the correlation between fit regressor

and target neural signal: the stronger the correlation between fit regressor and ground-truth

regressor, the stronger the correlation between fit regressor and neural signal. Thus, stronger

correlations between true and fit regressors are related to larger regression coefficients of the

fit regressor.

Fig 1C shows a correlation between a hypothetical neural signal, yt, and the value signal, Vt.

To generate yt, we assumed that the true learning rate is α = 0.5 and the true regression coeffi-

cient βV = 1. When the fit learning rate, denoted by â, matches its true value (α = 0.5), the cor-

relation coefficient between the value signal and hypothetical neural signal is larger (r = 0.94)

than those with mismatched learning rates. However, even when the learning rate deviates

largely from the true value, strong correlations are observed (r = 0.78 for â ¼ 0:2; r = 0.90 for

â ¼ 0:8). In the case where â matches its true value, the estimated regression coefficient, b̂V , is

closest to the true value of 1 (b̂V ¼ 1:00). Note that when the true learning rate is lower than

the true value (α = 0.2, gray line), the beta value became even larger than the true value

(b̂V ¼ 1:57). This is because the variance of the value signal is smaller when the learning rate

is small (compare the variances along x-axis in Fig 1C).

Fig 1D shows an example where the target signal reflects RPE:

GLM1 : yt ¼ bddt þ �t; ð4Þ

where βδ is the regression coefficient for RPE, and its true value is set to βδ = 1. For the latter

use, we refer to this model as GLM1. A strong correlation between the RPE signal and neural

signal was observed (r = 0.99) when the fit learning rate matched its ground-truth value
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Fig 1. Examples of simulations of the Rescorla-Wagner model with varying learning rates, α. (A, B) Time courses of the value, V, and

RPE, δ, respectively. (C, D) The effects of learning rate on the correlations between the value (C) / RPE (D) and hypothetical neural signal,

which were generated by the linear regression model shown above each panel.

https://doi.org/10.1371/journal.pcbi.1008738.g001
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(â ¼ a ¼ 0:5). Compared to the case where the signal reflects the value (Fig 1C), the correla-

tion coefficient and regression coefficient are less sensitive to a mismatch in learning rate: even

when the fit learning rate â differed from the true learning rate, the correlation coefficients

between RPE and neural signal, yt, did not drastically decrease (� 0.94). This is in accordance

with the conclusions of Wilson & Niv [21] that claim the results of model-based fMRI are not

necessarily sensitive to a mismatch of fit parameters.

In the following section, we will demonstrate cases where a minute mismatch in parameter

estimates leads to substantial errors, thus yielding erroneous conclusions.

Group comparison on classical conditioning task

Here we consider a situation where neural responses to RPE (measured by beta values) during

a classical conditioning task in two groups are compared. We concentrate on the RPE signal,

which has been subjected to group comparisons (e.g., between patients and healthy controls)

especially in psychiatry [22–24, 29, 38].

In the first scenario, we simulated an experiment in which reward is provided with a spe-

cific reward contingency in a classical conditioning paradigm as in the previous section. The

trial-by-trial RPE was modeled by the RW model (Eqs 1 and 2). The neural signal, yt, was sim-

ulated using the GLM1 (Eq 4) where RPE was generated with the ground-truth learning rate

that differs between groups. We consider a specific scenario where the neural responses to

RPE are compared between subjects in a patient group whose learning rate is low (Low-L

group; N = 20) and healthy controls (High-L group; N = 20) [22, 23, 29]. We assume the true

learning rate of Low-L group (patient group) is α = 0.2, and that of High-L group (healthy con-

trol) is α = 0.4. This setting is in accordance with studies reporting that the learning rate is

smaller in individuals with depression [39] (see [40, 41] for reviews). Crucially, the ground-

truth value of the RPE regression coefficient did not differ between groups (βδ = 1.0). This cor-

responds to the assumption that even in the patient group (Low-L group), the neural responses

to RPE are completely intact. Only one behavioral characteristic, which is represented by

learning rate, α, differed to that of healthy controls. As has been performed in [22–24, 29, 38],

we assumed that a common parameter value (here we used â ¼ 0:3, i.e., the mean value of the

true learning rates) was used for both groups to derive regressors for GLMs. We chose this

value following the study that used the classical conditioning paradigm [29], where the com-

mon learning rate was set to â ¼ 0:348. However, as shown in S3 Text, the effect we report

does not much depends on the value of each learning rate given the relative difference in learn-

ing rate between groups. The GLMs with the regressors are fit to the hypothetical neural data.

Then, statistical analysis is performed to examine whether the beta values for the regressors

differed between groups. We also report the effect size of a group difference in mean beta

value (Cohen’s d), which is a key measure in our theoretical consideration. We attempt to eval-

uate the impact of the mismatch between ground-truth learning rate and fit learning rate on

the effect size. Below, we will report the results with different GLMs being used as fit models.

GLM1. First, we consider the result where GLM1 (Eq 4), in which RPE is the only regres-

sor of interest, is applied to the simulated data. Fig 2A plots beta values (the estimates of the

regression coefficient) for RPE, b̂d. Although the true regression coefficient was identical

between both groups by construction (βδ = 1.0), its estimate, b̂d, differed significantly between

the two groups (t38 = 2.14, p = 0.039, unpaired t-test; Cohen’s d = 0.68).

GLM2. As RPE (δ = r −V) is correlated with the reward signal (r) itself, a non-zero regres-

sion coefficient (positive correlation) for RPE may indicate that the target signal only includes

the effect of the reward itself, independently of reward prediction. Several studies have addressed

this issue by separately including two components of RPE, that is, reward r and negative value,
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Fig 2. Simulations of group comparison of beta values (regression coefficients). GLMs are fit to the hypothetical

data that are generated based on the RW model with different learning rates between groups. (A) GLM1 (RPE is a sole

regressor). (B) GLM2 (reward and negative value are regressors). (B) GLM20 (reward and RPE are regressors). The

error bars indicate the standard error of mean (s.e.m). The result of unpaired t-test (p-value) and Cohen’s d, which

quantify the effect size of group difference, are indicated in each panel.

https://doi.org/10.1371/journal.pcbi.1008738.g002
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−V, as regressors into the GLM [34, 35]. Here, we refer to such a model as GLM2:

GLM2 : yt ¼ brrt þ bNVð� VtÞ þ �t: ð5Þ

To claim that the target signal reflects RPE, significantly positive beta values for both regressors

(βr and βNV) are required [34, 35]. The true model in the simulation corresponds to the GLM2

with βr = 1 and βNV = 1.

Fig 2B shows beta values, b̂r and b̂NV in GLM2 for the same synthesized data as those in

GLM1. A significant group difference in the beta values was observed for the negative value

(b̂NV ; t38 = 6.19, p< 0.001, Cohen’s d = 1.96) but not for the reward signal (b̂r; t38 = −0.94,

p = 0.352, Cohen’s d = −0.30). The group difference in b̂NV was clearly larger than that of beta

value for RPE in GLM1 (Fig 2A). This is because the beta value for RPE represents the mixed

effect of the reward signal, which does not differ between groups, and the negative value,

which is subject to the effects of parameter misfitting. In GLM2, the latter effect is isolated as

b̂NV . This effect of isolation is also manifested in the difference in correlation coefficients

between Fig 1C (between V and y) and Fig 1D (betwen δ and y).

While the present study focuses on the RPE signal, a number of model-based fMRI studies

have focused on the (expected) value signal (e.g., [9, 23]). Such case of value representation can

be modeled by using Eq 3 as a model of neural activity. Our results basically apply to this case,

because we set the reward signal (r) as known regressor (and thus set to the true value), the

beta value for the negative value signal (βNV) in GLM2 has a similar estimate for the value sig-

nal (βV) in case of value representation, given that the correlation between reward and negative

value is negligible.

GLM20. Several studies have used a GLM that incorporates both the reward signal and RPE

as separate regressors [9, 42–45]. In the present study, we represent such a model as GLM20:

GLM20 : yt ¼ br0rt þ bd0dt þ �t: ð6Þ

The true model in the simulation can be represented with βr0 = 0 and βδ0 = 1 in GLM0.

Fig 2C shows the beta values in GLM20. Note that b̂d0 in GLM20 has almost the same value

as b̂NV in GLM2 (Fig 2B). This can be explained as follows. GLM20 (Eq 6) can be rewritten as yt
= βr0 rt + βδ0 (rt − Vt) + �t, which leads to yt = (βr0 + βδ0)rt + βδ0(−Vt) + �t. This can be equivalent

to GLM2 with the relation that (βr0+ βδ0) in GLM20 corresponds to βr in GLM2 and βδ0 in
GLM20 corresponds to βNV in GLM2.

GLM20 exhibits the issue of strong multicollinearity, often discussed in the statistics litera-

ture—whereby strong correlations among regressors (here, between reward and RPE) render

the estimates unreliable [46]. Indeed, the variance of the beta value of reward, βr0, of GLM20

(Fig 2C) was larger than βr of GLM2 (Fig 2B). Furthermore, in GLM0, the effect of the reward

is represented by the sum of two regression coefficients (βr0 + βδ0), rather than a single regres-

sion coefficient for reward. Thus, the interpretation of the regression coefficient is not straight-

forward. Compared to GLM2, GLM20 does not provide further information. Thus, GLM2 is

preferable and we do not further consider GLM20 in the present study.

Theoretical analysis. Based on Wilson & Niv [21], we conducted a theoretical analysis to

attain insight into the mechanisms underlying the above results. Specifically, we analytically

calculated the statistics of the beta values of the GLMs, which enabled us to evaluate the effect

size of (spurious) group differences. Based on the analytically obtained effect size, we can also

evaluate how frequently (spurious) statistically significant differences between groups are

obtained (i.e., statistical power, which is the probability that a statistically significant result

would be obtained; see Materials and methods for details).
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In the case of comparisons between means of regression coefficients of both groups, the

effect size can be measured by

d2 ¼
E½b̂ð1Þ� � E½b̂ð2Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVar½b̂ð1Þ� þ Var½b̂ð2Þ�Þ=2

q ; ð7Þ

where E[�] indicates the expected value, Var[�] indicates the variance, and b̂ð1Þ and b̂ð2Þ indicate

the beta values of interest for the first group and the second group, respectively. In the present

study, we assume that the healthy-control group (High-L group and Low-F group in the later

scenario with model-misspecification) corresponds to the first group and the patient group

(Low-L group and High-F group) corresponds to the second group so that the positive d indi-

cates diminishment of beta value in the patient group compared to the control group. This

effect size measures difference in the population means between groups with the unit of their

standard deviation. Cohen’s d is one of the estimators for this effect size. Given a sample size

(the number of subjects for each group, N), the effect size, d2, determines the statistical power;

larger the magnitude of d2 is, the larger the power (see Materials and methods).

The expected value and variance (or s.d.) of beta values for both groups are required to cal-

culate the effect size, d2 (Eq 7). The analytical expression of these quantities are given as Eqs

39–48 in Materials and methods. Specific values of these statistics are plotted in Fig 3 as a func-

tion of the fit learning rate, â. For the case in Fig 2 (â ¼ 0:3), the effect size for RPE in GLM1

is d2 = 0.64, which yields the statistical power of 50.2% with a significance level of 0.05 and

sample size of N = 20 (for each group).

The effect size of the group differences in b̂r in GLM2 is d2 = 0 which leads to a statistical

power of 5%, the pre-defined type-I error rate (the significance level). This is because the

expected value of the beta value for reward is not influenced by the RL model parameter and is

identical for both groups. On the other hand, the statistical power for detecting differences in

βNV in GLM2 is 99.9% with d2 = 1.64. Thus, the spurious difference in response to a negative

value, −V, is easily observed with this setting.

The reason that the beta value is larger for a larger true learning rate (compare red line for α
= 0.2 and blue line for α = 0.4, Fig 3A and 3B) is explained as follows. As can be observed in

our simulation (Fig 1B), a larger learning rate leads to larger variance of RPE. Thus, using a

smaller learning rate compared to the true value leads to smaller variance of the regressor. It

should be noted that this depends on the reward contingency. In cases where reward mean

drifts and the variance of reward around the reward mean is relatively small, the opposite can

occur; using a larger learning rate compared to the true one leads to a smaller variance of RPE

since the model with a smaller learning rate cannot follow the changing reward rate. See S4

Text for specific examples. To compensate for the smaller variance of the fitted RPE, the corre-

sponding beta value has a larger value. If the true value of the learning rate is used, the expected

value of beta value has no bias (equals the true regression coefficient, 1; Fig 3A and 3B). This

suggests that using a more accurate parameter for both groups (and for all subjects) can reduce

the risk of a spurious group difference.

To examine whether the target BOLD signal reflects the signal of interest (e.g., RPE signal),

a one-sample t-test that examines whether the regression coefficient differs from zero is per-

formed in second-level (or group-level) analysis of fMRI data (see Materials and methods).

Such analyses are often independently performed for each group in psychiatric research. In

these studies, significant activity (non-zero regression coefficient) in the control group and its

absence in the patient group have been reported [22–24]. The effect size for this one-sample t-

test is measured by the expected value of the beta value (Fig 3A and 3B) over its standard

PLOS COMPUTATIONAL BIOLOGY Revisiting the importance of model fitting for model-based fMRI

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008738 February 9, 2021 9 / 31

https://doi.org/10.1371/journal.pcbi.1008738


Fig 3. Influence of misfit of model parameters on beta values for the Rescorla-Wagner model. (A, B) The expected

value of beta values in GLM 1 (A) and GLM2 (B), obtained using Eqs 39, 41 and 43. The fit learning rate used for the

simulation in Fig 2, â ¼ 0:4, is indicated by the solid vertical lines. (C, D): The standard deviation of beta values in

GLM 1 (C) and GLM2 (D). These are obtained by taking the square root of Eqs 40, 42 and 44. (E, F): The effect size (d1;

for single group) of beta values in GLM 1 (E) and GLM2 (F). In all panels, the red lines represent the results for the true

learning rate α = 0.2 and blue lines represent α = 0.4. In panel A, C, and E, these lines represent the results of the
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deviation (Fig 3C and 3D):

d1 ¼
E½b̂�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½b̂�
q : ð8Þ

Analytical evaluations of this effect size are shown in Fig 3E and 3F. The effect sizes for βδ and

βNV adopt the maximum value when the fit learning rate matches the true parameter (indi-

cated by the vertical dashed lines). Crucially, for any values of the fit learning rate, the effect

size for a higher true learning rate (α = 0.4) is always larger than that for a lower true learning

rate (α = 0.2). This suggests that the regression coefficient for RPE is easily deemed significant

for the group with a higher true learning rate compared to those with a lower true learning

rate, irrespective of the fit learning rate. This property may result in neural activity in a patient

group (with a small learning rate) showing no significant response to RPE (or negative value),

while the healthy control group shows a significant response.

Factors that influence effect size of group difference

Next, we investigated the several factors that influence the between-group effect size, including

the number of trials, within-group heterogeneity, and reward contingency.

Effect of number of trials. Our analytical result revealed that the effect size of the (spurious)

group difference depends on the number of trails, T, in addition to the true learning rate and fit

learning rate (Eqs 40 and 42). Here we examine the effect of the number of trials on the between-

group effect size. We also considered the effect of a difference in true learning rates between

groups (α2 − α1). In S3 Text, we report the results of the systematic simulation where we examined

all possible combinations of learning rate. We found that the effect size mainly depends on the rel-

ative group difference in learning rates, rather than their absolute values. Given this result, here

we focus on the difference in the learning rate while we fixed the mean (fit) learning rate to 0.3.

In Fig 4, we plot the between-group effect size as a function of the number of trials for

various combinations of true learning rates. The results show that, as the number of trials

increases, so does the effect size. Notably, the increase rate is larger when T is relatively small

(e.g., T< 100); for a larger T, the increase is rather moderate. As the difference in learning rate

increases, the between-group effect size also increases.

It should be noted that the analytic expressions obtained following Wilson & Niv [21] rely

on an approximation that holds for a large number of trials (due to the ignorance of initial

transient phase). Thus, we should be careful when applying this expression to cases with a

small number of trials. To check the analytical expressions of the effect size in the range of T
considered here, we compared the results of simulations and analytical expressions. Simula-

tions were performed 100 times for each number of trials for cases with α1 = 0.2 and α2 = 0.4.

The results are shown in S1 Fig. The analytical results (blue lines) well agree with those

obtained from the simulations (symbols), which validates the analytical calculations.

Effect of within-group heterogeneity. We have supposed learning rates are identical

(homogenous) within each group. Although this assumption of homogeneity is unrealistic, we

adopted it to simplify the interpretation and analytical calculation. To examine the effects of

within-group differences on group-comparisons of beta values, we performed simulations

where the within-group variance of true learning rates was systematically varied and the effect

size of the group difference numerically calculated.

regression coefficient of RPE, βδ. In panel B, D, and F, they represent the results of the regression coefficient for

negative values, βNV. Broken bold lines indicate the results of regression coefficient for reward, βr.

https://doi.org/10.1371/journal.pcbi.1008738.g003
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Fig 5 shows the results. The effect size of group differences in true learning rates were also

computed (gray line). As the within-group s.d. of true learning rates increases, the effect sizes

of group differences in beta values for RPE (red line) and negative value (blue line) decrease.

However, these decreases are rather moderate. Thus, the assumption of homogeneity does not

influence qualitative results, which we report in the present study.

As the s.d. of true learning rates increases, the effect size of learning rates approximates the

effect size of beta values. It should be noted that when the estimates of learning rate contain an

estimation error, its effect size becomes smaller than shown in this simulation. This implies

that even when no significant group difference in learning rate is detected, spurious differences

in beta value for RPE can be observed. This suggests that the absence of a significant difference

Fig 5. The effects of within-group differences in true learning rates on beta values (regression coefficients) and

true learning rate. The between-group effect size of learning rate (gray), RPE of GLM1 (red), and negative value of

GLM2 (blue) are plotted as a function of the standard deviation (s.d.) of true learning rate. The s.d. of learning rate is

calculated for each group and then averaged across groups. Note that the s.d. is calculated for the actual parameter

value after the truncation that restricts the range of learning rate to [0, 1].

https://doi.org/10.1371/journal.pcbi.1008738.g005

Fig 4. Dependence of between-group (spurious) effect size on the number of trials and between group differences in learning rates. (A) For beta

values of RPE, δ, in GLM. (B) For beta value of negative value, −V, in GLM2. The fit learning rate is set to â ¼ 0:3 for all cases. For reference, we plot

horizontal dot lines indicating the effect sizes above which statistical power is higher than 50% and higher than 80% with a significance level of 0.05 and

sample size of N = 20 (for each group).

https://doi.org/10.1371/journal.pcbi.1008738.g004
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in learning rates between groups is insufficient to validate the use of common learning rates

for both groups.

Effect of reward contingency. So far, we have considered the situation where the reward

contingency is stable (i.e., the reward probability was fixed to 0.4). While such a fixed reward

contingency has been often employed in model-based fMRI studies [2, 8, 35], different reward

contingencies have also been often used in the experimental design for model-based fMRI [9,

34]. Wilson & Niv [21] considered the effects of reward contingencies on beta values in their

analytical calculations. Their analysis suggests that the autocorrelation of reward sequences

(which is zero in our fixed reward probability) does matter: autocorrelation makes the RPE

signal or value signal insensitive to the misfit of learning rate in certain situations.

In the S4 Text, we explored the effect of reward schedule on the effect sizes (Cohen’s d)

regarding the spurious differences between beta values for RPE and negative value. Specifically,

we examined typical reward contingencies, those with drifting reward mean with Gaussian

(continuous) reward, drifting reward probabilities with binary reward, and switching reward

probability. Overall, the results indicated that as the autocorrelation of reward sequence

increases, the effect sizes decreased or even reverted (i.e., Low-L group, where the true learning

rate is smaller than High-L group, showed the larger beta values). See S4 Text for a detailed

explanation on this issue.

Reward sensitivity

Several studies reported that the subjective reward magnitude is smaller in individuals with

depression [47, 48]. Such effect is represented in reinforcement learning models by introduc-

ing a reward sensitivity parameter [47]. With the reward sensitivity parameter ρ, the RPE in

the RW model (Eq 2) becomes:

dt ¼ rrt � Vt: ð9Þ

Note that ‘temperature parameter’ or decision stochasticity parameter has the equivalent role

as ρ in guiding choice behavior.

In S2 Text, we examined the effect of reward sensitivity, ρ, on the effect size of group com-

parisons. Similarly to the effect of learning rates, the use of the common estimate r̂ for two

groups when true ρ differs between them leads to a biased estimate of the regression coefficient

for RPE, βδ. Crucially, the true reward sensitivity ρ can substitute exactly for the true regression

coefficient, βδ, as can be confirmed in Eq 39, i.e., doubling the true ρ has an identical effect to

doubling the true regression coefficient on the predicted neural activity. These are in principle

not distinguisable from data. Such differences between groups may be better interpreted as

true differences in RPE effects on neural activity, rather than spurious differences due to

parameter misfit. In contrast, when the different estimates between groups are used as reward

sensitivity, r̂, the beta values (b̂r, b̂d, and b̂NV) show between-group differences even if the true

ρ is identical between groups. As such, it is not recommended to use reward sensitivity param-

eters for group comparison in model-based fMRI. Indeed, most RL models used for model-

based fMRI include the inverse temperature parameter instead of reward sensitivity (Eq 50 in

Materials and methods). The inverse temperature parameter has identical effects with reward

sensitivity on choice behavior [47, 49], but has no effect on the magnitude of the RPE signal,

unlike reward sensitivity.

Dimensional approach

Thus far, we have considered the situation of group comparisons. The field of mental health

and computational psychiatry is increasingly focusing on dimensional approaches [50, 51],
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i.e., researchers seek continuous moderators for psychiatric symptoms. Dimensional

approaches are known to be able to attain high statistical power compared to categorical

approaches [52–54].

By considering a simple scenario, we illustrate how the spurious effect of the model misfit

can also work in dimensional analysis for model-based fMRI (e.g., [38]). In this simulation, we

assume that the ground-truth learning rate in the RW model negatively correlates with some

trait (e.g., a symptom score of depression; Fig 6A) across 200 subjects (here we assumed a rela-

tively large number of subjects to obtain stable estimates for correlation coefficients between

the beta values and the trait). The common learning rate (â ¼ 0:4) is supposed to be used for

all subjects. Other conditions are identical to the group comparison case in the classical condi-

tioning task with a fixed reward probability.

The resulting correlation between the beta values and the trait are plotted in Fig 6B–6D.

The true regression coefficients for RPE were set to 1, as in the group comparison case. This

means that the neural activity reflecting RPE has no relation to the trait of interest. However, a

Fig 6. Spurious individual difference on model-based fMRI can occur in dimensional approaches (focusing on

continuous trait, rather than group difference). (A) Simulated data showing correlation between trait (e.g., symptom

score) and ground truth learning rate. (B) Correlation between trait and beta values for RPE in GLM1. (C, D)

Correlation between trait and beta values for reward (C) and negative value (D) in GLM2. Above each panel, r
indicates the correlation coefficient and ‘’95% CI” indicates the 95% confidence interval of the correlation coefficient.

https://doi.org/10.1371/journal.pcbi.1008738.g006
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significant negative correlation between the beta value for RPE (in GLM1) and the trait was

observed. In GLM2, the beta value for the negative value also showed a significant negative

correlation with the trait. This demonstration highlights that the spurious effect on the model-

based fMRI caused by the ignorance of individual differences in behavior can also occur in

dimensional approaches.

Effect of model-misspecification

Thus far, we have discussed the effects of parameter misspecification where the model struc-

ture is assumed to be true. In reality, there may be cases where the model structure does not

correctly capture the true underlying processes, an issue called model-misspecification [17–

20]. Here, we consider the effect of model-misspecification on the estimates of regression coef-

ficients in GLMs. Previous studies have revealed that choice behavior of humans and other

animals is better explained by a model with a forgetting component [14, 31]. The forgetting

component is modeled by updating the action value for unchosen option as follows:

Vtþ1 ¼ Vt þ �ðm � VtÞ; ð10Þ

where ϕ is the forgetting rate and μ is the default value [32, 33]. μ is set zero in most previous

models [14, 31]. A recent study showed that this forgetting component may have a potential to

characterize certain psychiatric characteristics [32]. Specifically, the study [32] reported that

individuals with higher depressive symptom scores tended to show higher effects of a for-

getting component which is described as a forgetting rate parameter in learning models. In

addition, a recent theoretical study suggested that including this process can better explain

dopamine responses related to value-learning and motivation [55].

By simulation, we synthesized datasets consisting of two groups with different forgetting

rates: High-F group (N = 30; assuming depression group) with the forgetting rate being ϕ = 0.4

and Low-F group (N = 30; assuming healthy controls) with ϕ = 0.05. We compared cases for

which the dataset was fit by a standard RL model without the forgetting component (misspeci-

fied model) and cases for which the data were fit by an RL model with this component (cor-

rectly-specified model).

Fig 7 shows the estimated beta values for the two groups using the RL model without the

forgetting component, while the true model has this component (a case with model-misspecifi-

cation). From left to right, each panel shows beta values of RPE in GLM1, reward in GLM2,

and negative value in GLM2. For GLM1, although the (true) regression coefficients of RPE,

βδ, were common to both groups, the beta values of the High-F group were assessed as signifi-

cantly lower than those of Low-F group (t58 = 4.01, p< 0.001, unpaired t-test; Cohen’s

d = 1.04). This is due to stronger model misspecification in the High-F group compared to that

in the Low-F group, leading to decreased correlations between calculated RPE and hypotheti-

cal neural signals (r = .619 for High-F group and r = 0.675 for Low-F group, on average). For

GLM2, the beta value of reward was not influenced by the lack of forgetting components (t58 =

−0.47, p = 0.64, unpaired t-test; Cohen’s d = −0.12), while that of negative value was dimin-

ished in the High-F group compared to that in the Low-F group (t58 = 7.16, p< 0.001,

unpaired t-test; Cohen’s d = 1.85) as the result of larger model misspecification. This result

implies that, when a model-based fMRI study uses a standard RL model without a forgetting

component as is often the case, it can easily report spurious differences due to model misspeci-

fication. In this simulation, we used a probabilistic reversal learning task in which the reversal

of reward contingency between options occurred once at the middle of the experiment (see

Materials and methods). In S2 Fig, we also examined the effect of the number reversals.
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Fig 7. Effect of model-misspecification (lack of forgetting component). (A,B) Group comparisons of regression coefficients when the RL model without

the forgetting component is used (A) and when the RL model with the forgetting component is used (B). In each panel, the beta values of GLM1 (RPE is a

sole regressor) and GLM2 (reward and negative value are regressors) are shown. The error bars indicate s.e.m. The result of unpaired t-test (p-value) and

Cohen’s d are indicated in each panel. High-F, the group with high forgetting rate (ϕ = 0.4), Low-F, the group with low forgetting rate (ϕ = 0.05).

https://doi.org/10.1371/journal.pcbi.1008738.g007
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Because the reversal emphasizes the effect of forgetting [31], as the number of reversals

increased, the effect size of the between-group difference increased.

If the value and RPEs are calculated based on the RL model with the forgetting component,

the group differences in beta values disappear (Fig 7B: ps> 0.22) with similar correlations

between calculated RPEs and hypothetical neural signals (r = 0.667 for High-F and r = 0.680

for Low-F groups, on average). This indicates that including an appropriate component into

the RL model reduces the risk of observing a spurious difference.

Discussion

Model-based analyses using latent variables obtained from computational models (e.g., rein-

forcement learning models) are becoming an indispensable tool in neuroscience, psychology,

and computational psychiatry. In such model-based analyses, the estimates of regression coef-

ficients (beta values) for latent variables are often used as a proxy of physiological (e.g., BOLD

signal) or behavioral responses that reflect latent variables. The quality of the estimates of

regression coefficients depends on the parameter estimates of computational models (e.g.,

learning rate in reinforcement learning). Thus, an estimation error in the upstream level (i.e.,

in computational model-fitting) can influence downstream-level estimates (i.e., regression

coefficient). In certain situations, the impact of the error may not be serious [21]. However,

the present study showed cases where the effect leads to serious misleading consequences:

when the regression coefficients were compared across subjects, the effect of estimation errors

can yield spurious group or individual differences. Below, we discuss the implications of our

results and provide recommendations for researchers to conduct a model-based analysis of

fMRI or behavioral data.

The problem reported in the present study occurs when there is a systematic difference

between parameter estimates and ground-truth parameter values (i.e., estimation bias), and

the direction of the bias is associated with some trait of interest (e.g., severity of psychiatric

symptoms). This situation likely occurs when common parameter values are used for all sub-

jects, as commonly done in model-based fMRI to make the estimates stable [4, 5, 7, 22–25, 38,

43]. While this may help obtain stable regressors [30], our results indicate that this approach

has an adverse effect: it causes systematic bias such that the regression coefficients for subjects

with a higher (ground-truth) learning rate are under-estimated, while those for subjects with a

lower learning rate are over-estimated. Note that this is the case for the fixed-probability

reward case. This effect depends on reward contingency, as we discussed in S4 Text. This bias

leads to spurious individual (between-group) differences when the neural response is com-

pared between groups or subjects. The spurious difference can also appear when there is a cer-

tain level of within-group heterogeneity, although the heterogeneity reduces the effect. This

spurious effect also occurs in a dimensional approach, where regression coefficients for each

subject are correlated with the subject’s traits (e.g., the severity of psychiatric symptoms).

To avoid this bias, model parameters should be optimized in a less biased manner for indi-

vidual subjects. If individual estimates for a single subject are unreliable (e.g., due to small trial

number), the hierarchical modeling technique, which utilizes both population information

and individual information, may be helpful [56–59]. However, hierarchical approaches can

also be subject to statistical bias. For example, a hierarchical approach pulls individual parame-

ter estimates towards the group mean, a property known as shrinkage. If one sets a common

group-level distribution across the entire population (i.e., all subjects are assumed to be drawn

from a common population), individual estimates are biased towards the mean of the entire

population. Thus, the effect that causes spurious group differences, which the present study

considered, can work albeit weakly compared to using a common fixed parameter. In contrast,
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if different group distributions are separately used for different groups, the effect of spurious

group differences can be avoided [60, 61], but this might lead to spurious group differences in

parameter estimates of the computational model [62, 63]. Another simple approach to avoid

the potential problem reported here is to split subjects into two groups and fit a separate single

parameter set to each group [64], which can be regarded as an extreme case of the separate-

group hierarchical model. Appropriate model-fitting depends on the goal and would be an

issue requiring future research.

We recommend that researchers report the results obtained with various levels of model-fit-

ting approaches. For example, suppose one finds the group difference in beta values with com-

mon parameter estimates for entire subjects. In that case, checking the result remains with

individually-fit model parameters would confirm that the result is not solely attributed to

the parameter estimation bias. However, individual estimates for single subjects are often

noisy, which might obscure the true effects. Thus, even if the group difference in the fMRI,

observed in the whole-group analysis, disappears, the lack of the group-difference might not

be attributed solely to the parameter estimation bias. As we discussed above, the hierarchical

estimation may help reduce the estimation noise and recover the group difference in fMRI.

Note that the hierarchical model may also induce a bias on model parameter estimates at the

individual level, which depends on the group-level distribution as we discussed above. Thus,

performing various hierarchical-models and checking how fMRI results are affected would be

recommended.

Group comparisons of neural responses to RPE have been commonly explored in psychia-

try research. As mentioned in the Introduction, blunted neural responses to RPE signal in

individuals with depression have been addressed [22, 23]. However, inconsistent results have

been reported: recent studies reported that comparable RPE responses with healthy controls

were observed in patients with major depressive disorder [27, 28]. The results in the present

study offer an account for this inconsistency. If the true learning rate differs between depres-

sive individuals and healthy controls, the use of common parameters to both groups [22, 23]

may cause a bias in regression coefficients of the RPE signal and lead to a spurious difference

in the NAc response to RPE. On the other hand, in Rutledge et al. [27], a reinforcement learn-

ing model was not used, but the expected value of each option is was explicitly presented to the

subjects; thus, the results may be free from the bias.

Even if model parameters are carefully fit to individual subjects, model misspecification can

cause spurious group differences, as we have shown with an example of the RL model with for-

getting processes. We demonstrated that the lack of forgetting process, which differs between

two groups, leads to a larger regression coefficient of RPE for the group with a small forgetting

rate compared to the group with a large forgetting rate. Given that individuals with depression

tend to have larger forgetting rates [32], the inconsistent results observed in blunted RPE

responses in individuals with depression may be attributed to this model-misspecification.

Indeed, these remain speculative, but our results call for further examination of previous

results with a refined model parameter estimation method and broad types of RL models (e.g.,

with forgetting processes).

To avoid spurious effects due to the model-misspecification, the candidate model to be

compared should include models incorporating potential components (e.g., a forgetting pro-

cess) that can affect the latent-variable estimates. However, it is usually difficult to judge

whether the current candidate models sufficiently include possible components that should be

considered. One promising approach is to use a recurrent neural network (RNNs), which can

flexibly learn to represent the arbitrary history dependence of choice from observed choice

data [65, 66]. By comparing the statistical properties of the RNNs’ prediction and the candidate

computational model’s prediction (i.e., how the choice depends on the choice and reward
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history), one can check whether there is any unmodeled component. Note that RNNs do not

explicitly represent reward prediction error or other latent variables, and thus they cannot be

used to construct model-based regressors. In addition, the best model may differ across sub-

jects or groups, causing model-misspecification for a specific group of subjects. Piray et al. [59]

addressed this issue by proposing a hierarchical Bayesian inference framework in which model

fitting and model comparison are concurrently conducted. How this framework works for

model-based fMRI remains elusive.

We have demonstrated that the design of the behavioral task (e.g., reward schedule and the

number of trials) influences how the model misfit affects the results of model-based fMRI. As

we have observed, the relation between the degree of the bias and reward schedule parameters

is not monotonic. Thus, a suitable reward schedule that suppresses the spurious effect depends

on the models and the property of the subjects’ behavior. One method to choose a task design

is to observe how the bias arises by performing a model simulation generating the surrogate

behavioral and neural data [1]. Some psychiatric and neuronal diseases are linked to adaptivity

to changing contingency, which may further influence the results [67]. We also reported that

as the number of trials increases, the spurious effect also increases. Thus, increasing the num-

ber of trials cannot solve the problem of spurious effects. Of course, using as many trials as

possible is advantageous in that the parameter estimates become stable, and the true effect can

be easily detected.

After we conducted the present study, we realized that Kumar et al. [26], who shows the

blunted RPE response in unmedicated depression, reported that the effect size of group differ-

ences in RPE response remained unchanged even when using fit learning rates individually fit

to the subjects, compared to when using a common learning rate (Fig S13C in [26]). This result

indicates that diminished RPE responses in depression are not solely accounted for by the bias

caused by misspecification of learning rates, at least in their data (but note that the effect size

for punishment prediction error decreased when individual parameters were used; Fig S13D

in [26]). On the other hand, as Kumar et al. did not include the forgetting process in their rein-

forcement learning model, there remains the possibility that the model-misspecification (e.g.,

lack of forgetting processes, which might differ in subjects with depression from healthy con-

trols) can account for the diminished RPE responses in depression. A further consideration

is required regarding the effect of model-misspecification on blunted RPE responses in

depression.

In conclusion, appropriate model-fitting (including parameter estimation and model selec-

tion) is particularly important for model-based fMRI that focuses on group comparison and

correlation analyses that seek neural or behavioral correlates of the severity of psychiatric

symptoms or individual traits. Thus, the present study highlights the importance of model-fit-

ting, especially in computational psychiatry. Our results also highlight the importance of

exploring good models of computational processes underlying behavior and symptoms.

Materials and methods

The basic procedures considered in this study are as follows. First, we simulate a ground-truth

computational process of learning and the corresponding neural activity (e.g., BOLD signal)

assumed to be observed. To achieve this, we assume specific reinforcement learning models

and learning tasks such as classical conditioning tasks or probabilistic reward learning tasks.

Neural activity is simulated by a linear model or a general linear model (GLM) with the true

latent variable of the learning model as a regressor. Next, we simulate the standard model-

based analysis of neural data: GLM with regressors constructed by latent variables with fitted

model parameters, which in general deviate from the ground-truth values, are applied to
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neural data, and beta values (regression coefficients) were estimated. We assume multiple

individuals with different true parameters. The beta values are compared between groups or

individuals.

We want to evaluate how the mismatch between the fit and the true model influence

beta values and the difference between groups. The evaluation is done either analytically or

numerically depending on the problem: while a simple scenario for the RW model can be eval-

uated analytically, for the cases where an analytical calculation is infeasible (e.g., cases where

within-group heterogeneity exists, and RL models with forgetting), we perform numerical

simulations.

In the following, we first introduce the general GLM and the estimates of regression coeffi-

cients. Then we provide some analytic expressions for the statistics of beta values. Next, for

each model (the RW model and the RL model with forgetting), simulation procedure and/or

analytical results are described.

General linear model (GLM)

In this paper, GLMs are used in two ways as in [21]: one is to model the generative processes

of BOLD signal (used as a “true model”) and the other is to analyze such BOLD signal data, as

in usual fMRI data analysis. GLMs assume that a single response variable (e.g., BOLD signal),

yt, where t denotes the time point or trial, is explained in terms of a linear combination of the

regressors and an error term. For descriptive purposes, we consider here a GLM with two

regressors (predictors), xt1 and xt2, but our results can be applied to models with more than

two regressors. We assume that the response variable and regressors are centered such that

their means are zero. In the simulations, however, we did not mean-center the response vari-

able and instead included the intercept term. This does not influence the estimates of regres-

sion coefficients of interest.

The GLM we consider here is written as follows:

yt ¼ b1xt1 þ b2xt2 þ �t ð11Þ

where the ith regressor is denoted by xti. �t is independent and identically distributed Gaussian

random variable with mean zero and variance s2
�
. With vector and matrix notations:

Y ¼

y1

y2

..

.

yT

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

; x1 ¼

x11

x21

..

.

xT1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

; x2 ¼

x12

x22

..

.

xT2

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;X ¼ x1 x2½ �; β ¼
b1

b2

" #

; � ¼

�1

�2

..

.

�T

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

GLM for data from t = 1 to t = T (from a single subject) are represented as

Y ¼ Xβþ �: ð12Þ

By the method of ordinary least squares, we obtain the estimates of the regression coeffi-

cients as

β̂ ¼ ðX0XÞ� 1X0Y; ð13Þ

where �0 denotes the matrix transpose and �−1 denotes the matrix inverse.
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Next, we provide component-wise estimates for a case of two regressors. With the following

quantities:

Sðx1; x1Þ ¼ x0
1
x1 ¼

XT

t¼1

x2

t1; ð14Þ

Sðx1; x2Þ ¼ x0
1
x2 ¼

XT

t¼1

xt1xt2; ð15Þ

the estimate of β1 is expressed as

b̂1 ¼
Sðx2; x2ÞSðx1;YÞ � Sðx1; x2ÞSðx2;YÞ

Sðx1; x1ÞSðx2; x2Þ � Sðx1; x2Þ
2

: ð16Þ

When the covariance between regressors are zero, i.e., S(x1, x2) = 0, this becomes

b̂1 ¼
Sðx1;YÞ
Sðx1; x1Þ

: ð17Þ

This corresponds to the beta value for x1 when GLM includes only x1 as a regressor. The esti-

mate of β2 is similarly obtained.

Notes on assumptions of present study. Following Wilson & Niv [21], our simulations

and analytical calculations treated latent variables as regressors for model-based fMRI (i.e., we

performed simulation analysis in a trial space rather than in continuous experimental time). In

real model-based fMRI, however, the regressors for BOLD signals are usually constructed by

convolving the impulse sequence with a hemodynamic response function (HRF), where the

height of impulses (stick functions) are parametrically modulated by the variable of interest

(e.g., RPE) and the timing of impulse is usually set at stimulus onset (e.g., when a reward is pre-

sented). In S6 Text we examined the impact of ignoring the time course of hemodynamic

responses, which had only minor effects on the result. This indicates that considering a raw

latent variable (without convolution with hemodynamic response function) as a regressor is

sufficient for our purpose.

In addition to mean-centered all model-based regressors, Wilson & Niv [21] normalized (z-

scored) regressors so that their standard deviation is 1. In S5 Text, we discuss the effect of nor-

malization of regressors and BOLD signal. It turns out that the normalization of regressors do

not influence the effect size of interest in this paper. Although the normalization of neural sig-

nals, yt, affects the results by weakening the effect size of group differences, this effect remains

after the normalization.

It should also be noted that all the GLMs considered are assumed to be able to represent

ground-truth data generating processes if ground-truth model parameters (e.g., learning

rate) are used. Nevertheless, GLM2 shows higher goodness of fit to hypothetical BOLD

signal compared to GLM1 because the GLM2 has the flexibility to fit noise due to the separate

regressors. However, the flexibility of GLM2 does not induce any bias for the beta values,

given that the noise symmetrically distributes around the prediction of the BOLD signal, as we

have assumed.

Statistics of estimates of regression coefficients

Next, we consider statistics (mean and variance) of the estimates of regression coefficients, β̂,

under the assumption that Y is generated from GLM with ground-truth regressor X� ¼ ½x�
1
x�

2
�

where ith (ground truth) regressor is denoted by x�i ¼ ½x
�
1i x
�
2i � � � x

�
Ti�
0
.
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From Eqs 12 and 13, we have

β̂ ¼ ðX0XÞ� 1X0ðX�βþ �Þ: ð18Þ

Taking the expectation over noise �, noting the mean of noise, �, is zero (� = 0), we get

E½β̂� ¼ ðX0XÞ� 1X0X�b: ð19Þ

The analytical expressions of regression coefficients obtained in Wilson & Niv [21] correspond

to this expected value. Note that in our model-based fMRI context, the expectation is taken

over different realizations of noise in the BOLD signal, rather than over different realizations

of reward sequences or RPE (when we fixed the reward sequence, RPE and values were also

fixed).

For a case of two regressors (see the Section 3 of S1 Text for details), we obtain

E½b̂1� ¼
h
ðSðx2; x2ÞSðx1; x�1Þ � Sðx1; x2ÞSðx�1; x2ÞÞb1

þðSðx2; x2ÞSðx1; x�2Þ � Sðx1; x2ÞSðx�2; x2ÞÞb2

i

=ðSðx1; x1ÞSðx2; x2Þ � Sðx1; x2Þ
2
Þ;

ð20Þ

E½b̂2� ¼
h
ðSðx1; x1ÞSðx�1; x2Þ � Sðx1; x2ÞSðx1; x�1ÞÞb1

þðSðx1; x1ÞSðx2; x�2Þ � Sðx1; x2ÞSðx1; x�2ÞÞb2

i

=ðSðx1; x1ÞSðx2; x2Þ � Sðx1; x2Þ
2
Þ:

ð21Þ

For the GLM with only a single regressor x1, by setting Sðx1; x�2Þ ¼ 0 in Eq 20, we obtain

E½b̂1� ¼
Sðx1; x�1Þ
Sðx1; x1Þ

b1

¼
Sðx1; x�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sðx1; x1Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sðx�
1
; x�

1
Þ

p b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðx�

1
; x�

1
Þ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðx1; x1Þ

p

¼ Corðx1; x�1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðx�

1
; x�

1
Þ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðx1; x1Þ

p b1;

ð22Þ

where Corðx1; x�1Þ denotes the correlation coefficient between x1 and x�
1
. This is equivalent

with the analytical result in Wilson & Niv [21] (Eq 2 in [21]).

Next, the variance and covariance of regression coefficients need to be evaluated to obtain

the effect size of group-level statistics. The variance-covariance matrix is calculated as

Cov½β̂� ¼ ðX0XÞ� 1X0Var½Y�XðX0XÞ� 1

¼ ðX0XÞ� 1X0ðs2
�
IÞXðX0XÞ� 1

¼ s2
�
ðX0XÞ� 1X0XðX0XÞ� 1

¼ s2
�
ðX0XÞ� 1

;

ð23Þ

where I denotes the identity matrix with the size being the number of regressors. For a case
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with two regressors, we have

Cov½β̂� ¼
s2
�

Sðx1; x1ÞSðx2; x2Þ � Sðx1; x2Þ
2

Sðx2; x2Þ � Sðx1; x2Þ

� Sðx1; x2Þ Sðx1; x1Þ

" #

: ð24Þ

From this, the variance of b̂1 is obtained as follows

Var½b̂1� ¼
s2
�
Sðx2; x2Þ

Sðx1; x1ÞSðx2; x2Þ � Sðx1; x2Þ
2

ð25Þ

¼
s2
�

Sðx1; x1Þð1 � Corðx1; x2Þ
2
Þ
: ð26Þ

For the GLM with only a single regressor the variance of b̂1 is

Var½b̂1� ¼
s2
�

Sðx1; x1Þ
: ð27Þ

In common fMRI data analysis, a beta value (denoted simply here as β) fitted to each subject

(first-level analysis) is treated as a random variable and subject to a one-sample t-test (second-

level analysis) with the null hypothesis that the population mean of b̂ is zero. This test is based

on the test statistic:

t1 ¼
�̂
b

sðb̂Þ

ffiffiffi
n
p

; ð28Þ

where
�̂
b and sðb̂Þ are the sample mean and sample standard deviation of b̂, respectively. n is

the number of subjects included in the group.

Under the alternative hypothesis: population mean of b̂ is not equal to zero, t1 obeys a non-

central t-distribution with n − 1 degrees of freedom with the noncentrality parameter

l ¼ d1

ffiffiffi
n
p

: ð29Þ

where d1 denotes the group-level effect size of β (for a single group) given by Eq 8. The larger λ
is, the larger the statistical power. Thus, the effect size, d1, can be used as a measure of statistical

power.

When the regression coefficients of two groups are compared using a two-sample t-test, the

corresponding effect size, d2, is given by Eq 7.

The test statistic used for the two-sample t-test (assuming homogeneity of population vari-

ance) is

t12 ¼

�̂
b ð1Þ �

�̂
b ð2Þ

s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2

r

; ð30Þ

where n1 and n2 are the number of subjects included in the 1st and 2nd group, respectively,

and s� denotes the estimates of (common) population standard deviation given by

s� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1 � 1Þs2ðb̂ð1ÞÞ þ ðn2 � 1Þs2ðb̂ð2ÞÞ

n1 þ n2 � 2

1

n1

þ
1

n2

� �
s

: ð31Þ
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The test statistic t12 obeys a noncentral t-distribution with n1 + n2 − 2 degrees of freedom

and the noncentrality parameter given by

l ¼ d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffin1n2

n1 þ n2

r

: ð32Þ

Strictly speaking, this holds when the population variances of two beta values are equal (i.e.,

Var½b̂ð1Þ� ¼ Var½b̂ð2Þ�). Using these facts, the statistical power can be obtained using the R pack-

age “pwr.”

Rescorla-Wagner (RW) model

As a concrete example of computational models, we consider an RW model following [21].

We here repeat the equations for RW model in Results section (Eqs 1 and 9) with the reward

sensitivity parameter, ρ:

Vtþ1 ¼ Vt þ adt;

dt ¼ rrt � Vt:

The analytic results for the model with no reward sensitivity parameter are obtained by setting

r� ¼ r̂ ¼ 1.

Below we present the analytical result for the statistics of beta values. In the case where the

reward probability is fixed to pr, the quantities appearing in Eqs 20 and 21 are approximately

obtained as follows, by utilizing the analytical method in [21] (see S1 Text for detailed deriva-

tion):

Sðδ̂; δ̂Þ ¼ Sð� V̂ ; � V̂ Þ ¼ T �
2

2 � â
prð1 � prÞr̂

2; ð33Þ

Sðδ; δ̂Þ ¼ Sð� V; � V̂ Þ ¼ T �
a� þ â

a� þ â � a�â
prð1 � prÞr̂r

�; ð34Þ

Sðδ̂; rÞ ¼ T � prð1 � prÞr̂; ð35Þ

Sðδ; rÞ ¼ T � prð1 � prÞr
�; ð36Þ

Sðr; rÞ ¼ T � prð1 � prÞ; ð37Þ

Sðr; � VÞ ¼ Sðr; � V̂ Þ ¼ 0: ð38Þ

By substituting these expressions into the statistics of regression coefficients (Eqs 20, 21 and

22), we can obtain the expected value and variance of the beta values.

GLM 1. For GLM1 (RPE, δ̂ is a sole regressor), from Eqs 22 and 27, (We replace x1 with

RPE calculated with fit parameters, denoted by δ̂, and x�
1

with ground-truth RPE signal

denoted by δ),

E½b̂d� ¼
ð2 � âÞða� þ âÞ

2ða� þ â � a�âÞ
bd �

r�

r̂
; ð39Þ
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Var½b̂d� ¼
ð2 � âÞs2

�

2Tprð1 � prÞ
�

1

r̂2
: ð40Þ

GLM 2. For GLM2, where the reward r and negative value −V are the regressors, we

replace both x1 and x�
1

with r, x2 with � V̂ , and x�
2

with −V. We assume x2 ¼ x�
2

because the

reward sequence is assumed to be observed without error. For regression coefficient βNV (for

negative value, −V) in GLM2,

E½b̂NV � ¼
a�ð2 � âÞ

a� þ â � a�â
bd �

r�

r̂
; ð41Þ

Var½b̂NV � ¼
ð2 � âÞs2

�

Tâprð1 � prÞ
�

1

r̂2
: ð42Þ

For the regression coefficient for reward, b̂r,

E½b̂r� ¼ br � r
�; ð43Þ

Var½b̂r� ¼
s2
�

Tprð1 � prÞ
: ð44Þ

GLM 20. For GLM 20, where the regressors are RPE and reward,

E½b̂d� ¼
a�ð2 � âÞ

a� þ â � a�â
bd �

r�

r̂
; ð45Þ

Var½b̂d� ¼
ð2 � âÞs2

�

Tâprð1 � prÞ
�

1

r̂2
: ð46Þ

Note that these are identical as b̂NV in GLM2. For the regression coefficient for reward, b̂r in

GLM20,

E½b̂r� ¼
â � a�

a� þ â � a�â
bd �

r�

r̂
þ br � r

�; ð47Þ

Var½b̂r� ¼
2s2

�

Tâprð1 � prÞ
: ð48Þ

From the first equation, we notice that when a� 6¼ â, the estimate of βr is influenced by the

true value of βδ.
Simulation procedure. For results reported in Figs 1 and 2, we generated reward

sequences in a classical conditioning paradigm where the reward probability was pr = 0.4. The

task for each hypothetical subject contained 100 trials. Specifically, the reward sequence was

generated by shuffling an array containing 40 reward and 60 non-reward trials. As in [42], the

same realization of the reward sequence was used for all hypothetical subjects. We set parame-

ters of GLM for generating hypothetical neural signals to σ� = 0.5, βV = 1.0 (for the simulation

in Fig 1), and βδ = 1.0 (for other simulations).
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For the section “The effect of within-group heterogeneity” (Fig 5), true learning rates were

drawn from a (truncated) Gaussian distribution with a mean of 0.2 for Low-L group and 0.4

for High-L group, and s.d. varied between 0.05-0.5 with a step size of 0.05. Sample values of

less than 0 were replaced with 0.0, and sample values larger than 1 were replaced with 1.0. We

assumed that the common parameter, â ¼ 0:3, is used for both groups to derive estimated

RPE signal, d̂, and negative value, � V̂ . To obtain stable estimates of the effect size, we simu-

lated N = 5000 hypothetical participants for each group.

Reinforcement learning with forgetting

In simulations examining the effects of model-misspecification, we used the RL model with

forgetting as a true model. In the model fitting to the synthesized dataset, the standard RL

model without forgetting processes and the RL model with forgetting, which had the same

model structure as the true model, were used. In these models, the action value for the chosen

option i, V(i) was updated similarly to the RW model (Eqs 1 and 2). For the unchosen option

j (j 6¼ i), the action value, V(j), was updated in the RL model with forgetting as follows (we

repeat Eq 10, with the index of actions):

Vtþ1ðjÞ ¼ VtðjÞ þ �ðm � VtðjÞÞ; ð49Þ

where ϕ is the forgetting rate and μ is the default value [32, 33]. In the standard RL model, the

action value of the unchosen option was not updated (this corresponds to ϕ = 0). The initial

action values were set to the default value (i.e., V1(1) = V1(2) = μ). Throughout the simulation,

we set the default value as μ = 0.5 in both the true and fit models.

Based on the set of the action values, the model assigns the probability of choosing the

option i using the soft-max function:

Pðchoosing option iÞ ¼
1

1þ expð� b½VtðiÞ � VtðjÞ�Þ
; ð50Þ

where j indicates another option and β is termed the inverse temperature parameter (not to be

confused with regression coefficients), which determines the sensitivity of the choice probabil-

ities to the differences in action values.

Simulation procedure. The details of the simulations are as follows. First, we simulated

repeated choices using the RL model with the forgetting process in a probabilistic reversal

learning task where one of the options was associated with a high reward probability of 0.8,

while the other option was associated with a low reward probability of 0.2. With the probability

for the chosen option, the reward was given (rt = 1); otherwise, no reward was given (rt = 0).

After 90 trials, the contingencies of the two stimuli were reversed. In total, data for 180 choice

trials were generated for each hypothetical subject. We employed the probabilistic reversal

learning task because the reversal of the reward contingency emphasizes the effect of forgetting

[31]. In supporting material (S2 Fig), we performed simulations with various number of

reversals.

Tasks with different reward sequences were generated and 100 simulations were run; half

of them used the RL model with large involvement of the forgetting component (ϕ = 0.4) as a

true model. The data were regarded as those from the hypothetical patient group (High-F

group). The other half used the RL model with little involvement from the forgetting compo-

nent (ϕ = 0.05) as a true model, and the data were regarded as those from the hypothetical con-

trol subjects (Low-F group). Common true parameters for all cases were α = 0.5, and β = 4.0.

We generated target neural signals reflecting RPE, using Eq 4 where βδ = 1 and σ� = 0.5. To

estimate the RL model parameters, maximum likelihood estimation (MLE), which searches a
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parameter set that maximizes the log-likelihood for all choices was separately performed for

data from each hypothetical subject. These estimations were performed using the rsolnp 1.16

package, which implements the augmented Lagrange multiplier method with an SQP interior

algorithm [68]. To facilitate finding the global optimum solution, the algorithms were run 10

times; each run was initiated from a random initial value, and the parameter set that provided

the lowest negative log likelihood was selected.

Software and code availability

For all simulations, analysis, and plots, we used R, version 3.2.0 (http://cran.us.r-project.org).

All codes required to reproduce the results presented in this paper are available on https://

github.com/kkatahira/model-based_fMRI (Github).
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S4 Text. Effects of reward contingency.
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S5 Text. Effects of normalization (z-scoring) in GLMs.
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S6 Text. Impacts of ignoring time course of BOLD signal.
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S1 Fig. Checking the validity of analytical expressions for the effect size of group compari-

son for different number of trials, T. (A) For beta value of RPE in GLM1. (B) For beta value

of negative value, −V, in GLM2. Gray dots represents the results of single simulation run. The

number of trials was varied within 3, 10, 25, and from 50 to 500 with the step size 50. Except

for that, the simulation setting is the same with those for Fig 2: We assumed the true learning

rate of Low-L group (patient group) was α = 0.2, and that of High-L group (healthy control)

was α = 0.4. The fit learning rate was â ¼ 0:3.

(PNG)

S2 Fig. Effect of the number of reversals in the simulation of model-misspecification (RL

model with forgetting). The effect size (Cohen’s d) for between-group difference of beta val-

ues are plotted as a function of the number of reversals of reward contingency. We simulated

different frequencies of reward-contingency reversal (0, 1, 2, 5, 8, 17, or 35). For each reversal

condition, we ran 100 simulations by producing anew reward history. Settings other than the

reward contingency were the same with Fig 7 (“Effect of model-misspecification” section).

This panel shows the mean effect size in each condition with error bars representing the stan-

dard error. For beta values of RPE in GLM1 and negative value in GLM2, the higher the fre-

quency of the reversal, the larger the effect size. This reflects that the effect of the forgetting

component has a larger effect on choice behavior when reversals are frequent. However,

too many reversals (35 reversals in the panel) diminished effect size by ambiguating group
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