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Abstract

Though malaria control initiatives have markedly reduced malaria prevalence in recent

decades, global eradication is far from actuality. Recent studies show that environmental

and social heterogeneities in low-transmission settings have an increased weight in shaping

malaria micro-epidemiology. New integrated and more localized control strategies should

be developed and tested. Here we present a set of agent-based models designed to study

the influence of local scale human movements on local scale malaria transmission in a typi-

cal Amazon environment, where malaria is transmission is low and strongly connected with

seasonal riverine flooding. The agent-based simulations show that the overall malaria inci-

dence is essentially not influenced by local scale human movements. In contrast, the loca-

tions of malaria high risk spatial hotspots heavily depend on human movements because

simulated malaria hotspots are mainly centered on farms, were laborers work during the

day. The agent-based models are then used to test the effectiveness of two different malaria

control strategies both designed to reduce local scale malaria incidence by targeting hot-

spots. The first control scenario consists in treat against mosquito bites people that, during

the simulation, enter at least once inside hotspots revealed considering the actual sites

where human individuals were infected. The second scenario involves the treatment of peo-

ple entering in hotspots calculated assuming that the infection sites of every infected individ-

ual is located in the household where the individual lives. Simulations show that both

considered scenarios perform better in controlling malaria than a randomized treatment,

although targeting household hotspots shows slightly better performance.

Introduction

The appearance and recurrence of malaria pathogens is a persistent threat for more than 91

countries and territories all over the world with implications for human health, economy and
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ecosystem integrity [1]. For this reason in the last decades many efforts were made to control

malaria worldwide [1]. Control methods include distribution of Insecticide-Treated Bed Nets

(ITNs), Indoor Residual Spraying (IRSs), diagnostic, distribution of anti-malaria treatments,

and agricultural areas management [2]. These efforts often, but not always, produced the

expected results: between 2000 and 2015 the global malaria incidence was reduced by 41%,

mortality rate by 62%, and 17 previously malaria endemic countries attained 3 consecutive

years of zero indigenous cases [1]. Furthermore, many previously high-malaria-transmission

countries currently bear significantly lower malaria prevalence than in the past. However, it is

common to observe malaria-reduction trend reversals, which are caused by multiple factors

that increase malaria potential including climate change, wars, socio-economic weakening and

migration [3]. Furthermore, when malaria incidence decreases in a given population, it is com-

mon for adherence to preventative measures to decrease as well [3]. Additionally when policy

makers in developing countries foresee the possibility of malaria eradication, they may prema-

turely divert the limited amount of public resources dedicated to control malaria, to other

areas of public health concern [3]. These practices leave endemic areas exposed to resurgence

risks. On the other hand, it is clear that, in the areas where malaria reaches low levels of trans-

mission, mass–campaigns are no longer efficient or effective, and thus optimizing resources

dedicated to malaria control in areas of low and decreasing transmission is a relevant chal-

lenge. Lack of improved, evidence-based strategies tailoring when and where to concentrate

control efforts at a global, regional and local scale remains an inadequately-solved barrier

which must be overcome to make malaria elimination an actuality.

Malaria’s transmission process is inherently spatial: Infections occur in certain locations

in space and the disease spreads when involved individuals, both hosts and vectors, move

through a geographical space [4–5]. The geographical environment—meaning its geomorpho-

logical, biophysical and hydrological characteristics—presents heterogeneities that make the

transmission spatially uneven. Especially in low-transmission conditions, environmentally-

based hotspots of high malaria-transmission risk are generated in virtually all malaria-endemic

contexts [6–7]. Environmentally-based hotspots of malaria have been observed in relation to

proximity to forests fringes [8], aquatic habitats like swamps [9], rice fields [10–11] and

marshes [12], among other ecological features. An analogous hotspot formation process is

observed when the disease meets human-based heterogeneities. Several factors contribute to

the creation of human-based hotspots, including poor housing design [13], genetic factors

[14], differential coverage of prevention methods or anti-malaria treatments [15], and other

socio-economics conditions [7]. Hotspot formation concentrates the disease’s burden on a

small fraction of the exposed populations: from analysis of transmission rates an empirical

relationship was observed suggesting that 20% of the exposed population contributes to at

least 80% of the net transmission potential [16]. Malaria hotspots can be unstable [17], but also

they can be stable over multiple years, and, since they are predictive of future malaria infec-

tions [18], they can be targeted to reduce malaria incidence [7]. Control programs should

identify and target specific high-risk populations such as adults exposed to work-related infec-

tions or people living in transmission hotspots [19]. Developing and deploying validated

malaria hotspot targeting interventions is now a top priority for optimizing controlling strate-

gies in low-transmission settings [6].

Local scale malaria transmission modeling is a remarkable tool with broad capabilities for

identifying and managing malaria hotspots. Modeling can help in understanding where, when

and how hotspots are created, in testing the effect of specific, optimized control strategies and

in guiding the implementation of field control strategies. Since every geographic area presents

distinct patterns of environmentally and human-based heterogeneities and those heterogene-

ities strongly determine malaria hotspots formation, a malaria transmission model should be
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able to include detailed descriptions of environment, vector and host populations in order to

capture those heterogeneities. For this reason models of malaria based on compartmental

structures, in which individuals are categorized in homogeneous groups as in the Ross-

McDonald models family, are not suitable [20]. A new class of models, Agent-Based Models

(ABM), is emerging and permits accounting for much finer details of the individual-based and

heterogeneous features of vector-borne diseases transmission [21]. ABMs are computer mod-

els that study complex epidemiological systems with computer simulations. Every individual is

represented in ABMs explicitly as an agent. Agents interact among each other and with an

environment creating the complex network of interactions and feedbacks typical of infectious

diseases transmission. Trough ABMs it is possible not only to study the influence of the envi-

ronment and socio-economics conditions on malaria hotspots formation but it is also possible

analyze the influence of human movements on hotspots formation. Malaria hotspots form in

geographic areas which promote a higher-than-normal malaria infectious biting rate and in

many circumstances human local scale movements may have a strong influence in determin-

ing when and where human-mosquito contacts occur. However, starting from the observation

that most anopheline species have nocturnal biting habits, the majority of published ABM

studies on malaria transmission [22–24], represent humans as located within households dur-

ing the entire simulations length. In such a configuration, humans do not move from their

homes and their protection against mosquito bites is maintained constantly high because in

most malaria-endemic ITNs are assumed to be widespread. In contrast in low-transmission

areas a more complex pattern of malaria transmission epidemiology is emerging [25]. The pro-

portion of adult men among all infected people is increasing, and malaria burden appears to

be increasingly connected with work-related activities [26–27]. Therefore, in low-transmission

settings it appears particularly appropriate not to limit the representation of malaria transmis-

sion only to periods when humans are protected under ITNs, because transmission during

normal daily human activity can be significant. Several studies showed that anopheline mos-

quitoes’ biting hours do not overlap exactly with human sleeping hours [28–29]. In tropical lat-

itudes, sunrise is at approximately 6:00 am and sunset is at approximately 6:00 pm. Humans

carry out important activities around 6:00 am: people wake up, eat, prepare to the day, travel

to go to work among other actions. Most social and recreational activities are concentrated

after 6pm: people move outdoor, usually on foot, to shop, meet, collect water, cook meals and,

depending on age, commonly do not retire to bed until after 8:00–9:00 pm. Moreover, some

working activities overlap partially with vectors’ biting hours, fueling the observed increasing

proportion of adult men among overall malaria cases [26–30]. The overlap of mosquito biting

hours and human daily activities is accentuated by the appearance of behavioral avoidances

that mosquitoes develop to adapt to a human environment dominated by ITNs and IRSs [31–

35].

In order to study the influence of human movement on the efficacy of a targeted malaria

control efforts inside hotspots, two sets of ABMs local scale malaria transmission scenarios

representing two distinct communities of the Peruvian Amazon were developed. Across Peru

in the 20th century, malaria incidence fluctuated between periods of near pre-eradication to

periods of large-scale outbreaks, mainly afflicting the Amazon departments. The two most

notable outbreaks of the 20th century struck Peru 60 years apart: the first began in Cuzco

department in the 1930s and the second in the Loreto department in the mid-1990s [36]. Since

2012, evidence of an emerging serious outbreak in Loreto department has started to appear

[37]. The ABMs presented here reproduce mosquito vectors and human hosts at an individ-

ual-based level. The models are also composed by a spatially explicit representation of the geo-

graphical space where the communities are located. Human agents move through the

simulation area following an individualized time schedule that reproduces daily activities

Agent-based models to study local-scale human movements
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typical of people living in Amazon communities. During a simulation day, human agents pass

through various environments and change their protection status against mosquito bites,

resulting in different Entomological Inoculation Rates (EIR). To study the effect of human

movement on malaria transmission, for every community we ran and compared two “what if”

movement-testing scenarios. The first “what if” scenario corresponded to a model of human

movement representing, as closely as possible, real world human daily displacements within

the community. In this baseline scenario every activity corresponded to a specific protection

level against mosquito bites. In the second “what if” scenario, humans did not move from their

respective households, but they did change protection state against mosquito bites depending

on the hour of the day just as in the first “Human movement” scenario. The baseline scenario

is then used to study the efficacy of malaria control strategies designed to target hotspots. In

this respect, we note that the position and size of malaria hotspots depend strictly on the geo-

graphical distribution of infection sites where the transmission occurred between an infected

mosquito and a susceptible human host. When malaria is surveyed in the field it is practically

impossible to know precisely where and when a mosquito-human transmission event hap-

pened. For this reason, it is usually assumed that the infection site corresponds to the house-

hold position of the infected individual and the time of exposure is the moment when the

individual is registered as a confirmed case at the health facility. Therefore usually, the infor-

mation about the exact infection site is lost. Clearly the geographical hotspots, which are

malaria hotspots calculated considering the exact sites of infections, portray more precisely the

uneven geographical distribution of malaria risk than household hotspots calculated consider-

ing households as infection sites. At first glance then, it could be logical to think that the best

control strategy could be treating people entering inside geographical hotspots. On the other

hand, it is also true that people exposed to infection inside geographical hotspots, spend part of

their time in their respective households increasing the infection risk of people living with

them and also of people living in the household’s surrounding area. Additionally, both the geo-

graphical and household hotspots capture the exposure heterogeneities deriving from specific

households-level environmental exposures. To compare the efficacy of control strategies tar-

geting geographical and household hotspots we considered a second set of “what-if” control-

testing scenarios. The first control-testing scenario consists in considering ABMs where indi-

viduals that spend part of their time inside geographical hotspots are protected against malaria,

while the second tested strategy consists in protect individuals that inhabit households that are

included inside household hotspots.

Methods

Short models description

The ABMs presented in this paper are dedicated to the study of malaria transmission in the

environment of two small riverine communities, Padre Cocha (PC) and San Luis de Tacsha

Curaray (TC), located in the Peruvian Amazon (see Fig 1). The dominant environmental char-

acteristics of this area of low malaria transmission is periodic river flooding, which yields mos-

quito breeding sites. The geographical space around the two communities is represented in the

ABMs explicitly, including an elevation model, a land cover model, and a meteorological

model. The ABMs also include a hydrological module that converts river levels into corre-

sponding extensions of flooded areas around the communities. Flooded areas and other stag-

nant water bodies are considered, in the ABMs, suitable breeding sites for mosquito agents,

connecting seasonal river flooding with malaria incidence. Three types of agents are included

in the model: Plasmodia, mosquitoes and humans agents. The considered species of Plasmodia
agents are those observed in the study areas: P. vivax and P. falciparum [36]. Mosquito agents

Agent-based models to study local-scale human movements
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are parameterized to reproduce the characteristics of Anopheles darlingi, the almost-exclusive

vector of malaria in the study areas [38]. Mosquitoes move through the simulation areas with

the objective of attaining a blood meal from either animals near human settlements or from

humans. After that they search for suitable aquatic habitats to lay eggs and then they repeat the

cycles from blood meal to oviposition until death. Larval development is not represented

explicitly in the model [24]. Simulated mosquito agents do not have memory about already vis-

ited sites, but they are sensitive to the environment they go through and they are attracted by

simulation pixels containing human agents or breeding sites. Humans are represented as

genetically homogeneous individuals. Several “what-if” scenarios are presented in this paper in

which human agents’ behaviors are depicted differently. A common feature shared by all sce-

narios is that, while sleeping at home, a high fraction of human agents is protected by ITNs.

ITNs not only protect humans but also kill mosquito agents. When human agents are not

sleeping at home, human behaviors and infection risks depend on the considered scenario.

Two groups of scenarios are presented here: the first group, called “movement-testing” scenar-

ios, is designed to study the effect of human movements on malaria transmission while the sec-

ond group, called “control-testing” scenarios is aimed to study the effectiveness of control

interventions when malaria hotspots are targeted. One movement-testing scenario considered

is the “Human Movement” scenario, or baseline scenario, where humans move freely during

waking hours carrying out several activities like work, school, sport, etc.. During diurnal activi-

ties humans are exposed to mosquito bites depending on the specific activity they are carrying

out. During night hours a fraction of human agents are protected by ITNs. The second move-

ment-testing scenario considered is the “No Human Movement” scenario, in which human

Fig 1. The ABMs study areas centered on the communities of Padre Cocha (PC) (a) and San Luis de Tacsha Curaray (TC)

(b).

https://doi.org/10.1371/journal.pone.0193493.g001
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agents behave exactly as in the “Human Movement” scenario with the exception that they never

move from the positions of their respective households. A second set of “what-if” scenarios, cre-

ated as variation of the baseline scenario, is then considered to study the effect on malaria trans-

mission of protecting specific groups of human agents. The definition of the target groups of

human agents follows three different strategies. The first control strategy considers the protec-

tion of an increasing fraction of human agents selected at random inside the human population.

The second control strategy considers the protection of an escalating proportion of the human

agents that, at any time during the simulation, enter inside a malaria hotspots when malaria hot-

spots are calculated considering the actual infection sites (geographical hotspots). The third set

of control-testing scenarios considers as constantly protected an escalating fraction of humans

entering in a malaria hotspots when the malaria hotspots are calculated locating the human

malaria cases in the household locations of infected individuals (households hotspots).

Environmental, entomological and Plasmodia modules, describing how agents behave dur-

ing the simulations are implemented in the ABMs as shown by Pizzitutti et al. [24]. A resume

of parameter sets used in the ABMs modules is shown in Tables 1, 2 and 3 for both PC and TC

simulations. The human module is implemented as in [24], excluding the human movement

component described in detail here in subsection “Human module”.

Process overview and scheduling

The models’ time step is 1 hour. Every 12 hours mosquito agents emerge as adult mosquitoes

from aquatic habitats where eggs were previously laid by other mosquito agents. A simulation

geographical pixel is considered suitable as aquatic habitat for mosquitoes if it is covered by

water, but also if it is not in the middle of a river where the flowing water would wash away the

eggs. Eggs hatch into adult mosquitoes if the water cover persists for more than the time needed

for eggs to mature (Table 1, Entomological Module Parameters). The mosquito agents attempt

to find blood meals and subsequently to lay eggs. To achieve these goals the mosquitoes move

through the simulation area from one pixel to an adjacent one every time step following an algo-

rithm described in detail by Pizzitutti et al. (Pizzitutti et al., 2015). The Plasmodium agents are

represented as living inside the bodies of human and mosquito agents, passing through several

stages of development that correspond to different stages of infection of both vectors and hosts

(see [24] for details). The simulation area water cover changes according to the river level

Table 1. Environmental module parameters.

Environmental Module

Parameter name PC TC Notes

Simulation time step 1 hour 1 hour

Study area extension 2370 x 2520 m 10252 x 4200 m

Centroid of the study area bounding box 3˚41’54.17"S, 73˚

16’43.24"W

2˚48’15.83"S, 73˚

32’35.23"W

Geographical grid cover pixel size 10 m 10 m

Mosquito grid cover pixel size 30 m 30 m

Geographical grid extension 237 x 252 pixels 398 x 971 pixels

Mosquito grid extension 79 x 84 pixels 131 x 324 pixels

Number of mosquito agents generated per oviposition 13.5 mosquito agents/

oviposition

7.0 mosquito agents/

oviposition

calibration

parameter

Maximum number of mosquito agents generated per unit of breeding area every 12

simulation hours

0.30 mosquito agents/

m2/12 h

1.43 mosquito agents/

m2/12h

calibration

parameter

Reduction factor of the number of mosquitoes generated per unit of breeding area per

unit of time in permanent water covers

1.5 14.0 calibration

parameter

https://doi.org/10.1371/journal.pone.0193493.t001
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registered on the date corresponding to the simulation time: higher river levels flood more

extended areas. The algorithm used by the model to simulate the rivers’ floods is described by

Pizzitutti et al. in [24]. The “No Human Movement” model scenarios represent humans that are

statically assigned to their household position. While in the baseline “Human Movement” sce-

nario, every simulation day, a new 24 hour daily schedule is created for every human agent.

During the 24 hours of a simulation day, human agents change their positions every time step

following the assigned daily schedule.

Study areas

The ABM study areas are defined by two rectangular bounding boxes centered on the communi-

ties of PC and TC, both located in the Loreto Department of Peru (see Fig 1). PC [3˚41054.17@S,

Table 2. Entomological module parameters.

Entomological Module (PC & TC)

Parameter name Value Notes and references

Aquatic stage development time 15 days [39]

Random walk pixels weight 0.85 host-seeking mode

calibration parameter

Random walk pixels weight 0.85 blood-seeking mode

calibration parameter

Biting hours From 6pm to 6 am [28]

Probability to fail the bite when human is

sleeping

0–1 0 when the human agent is protected against

malaria

1 when the human agent is not protected

against malaria

Resting time after blood meal 4 hours [40]

Time required for eggs maturation after the

blood meal

48 hours [39]

Daily survival probability function ps ¼ e�
1

� 4:4þ1:3�T� 0:03�T2 [41], T is the temperature

Survival probability factor during a rainy day 0.7 calibration parameter

Minimum rain of a rainy day 100 mm /day calibration parameter

Probability of having a blood meal from

domestic animals

TC: 0.42, PC: 0.88 calibration parameter

https://doi.org/10.1371/journal.pone.0193493.t002

Table 3. Plasmodia module parameters.

Plasmodia Module (PC & TC)

Parameter name P.

falciparum
P. vivax Notes and references

Tmin extrinsic incubation 16˚C 14.5˚C [42], minimum temperature of incubation in mosquitoes

DD extrinsic incubation 111˚C DD 105˚C DD [42], number of degree days to complete the sporozoites development in mosquitoes

Intrinsic incubation time (9–14) days (12–17)

days

[43–44], (min—max) range. Actual value extracted as uniformly distributed between

min and max

Transmission efficiency from asymptomatic

human to mosquito

0.1 0.1 [45]

Transmission efficiency from human to mosquito 0.4 0.4 [46]

Transmission efficiency from mosquito to human 1 1 The value is chosen to maximize the number of infectious bites and reduce the

simulations computational weight

Human infectious period if treated 300 hours 24 hours [47], calibration parameter only for P. falciparum
Recurrence time 203 days [48], only for P. vivax
Recurrence risk 0.3 [48], only for P. vivax
Gametocytemia starting time (10–14) days (9–13)

days

[47–49–50], (min—max) range. Actual value extracted as uniformly distributed

between min and max

https://doi.org/10.1371/journal.pone.0193493.t003
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73˚16043.24@W] is situated close to the river Nanay, 5.5 km north-east of the city of Iquitos, the

capital of the Loreto district. TC [2˚48’15.83"S, 73˚32’35.23"W] is positioned on the shore of the

Napo River, 100 km north of Iquitos. Both communities are surrounded by cleared agricultural

areas and vast tropical rain forest patches (both primary forest and secondary regrowth). Much of

the land around the communities is subjected to periodic river flooding. The main differences

between the PC and TC are the registered malaria incidence and the spatial configuration of com-

munity buildings. TC is stretched along the river, with few houses located more than 100 m far

from the river banks, and overall has low malaria incidence during the study period. In contrast,

PC has a well-defined village center, with houses both close to the river and houses as far as 700 m

from the river. PC, during the study period, had relatively high malaria incidence. Malaria is

endemic in both communities and is transmitted almost exclusively by Anopheles darlingi [38].

The simulation area around PC is 2370 m wide and 2520 m long while the bounding box defining

the simulation area around TC is 10252 m wide and 4200 m long. The ABMs included on average

2093 human agents distributed in 349 households in TC simulations while the PC simulations

included an average number of 1400 human agents distributed in 244 households.

Inputs to the models

Meteorological data in PC are obtained from government meteorological station number 843770

(SPQT) located near the Iquitos airport, approximately 9500 m from PC. Meteorological data for

TC are obtained from the “Servicio Nacional de Meteorologı́a e Hidrologı́a de Perú” (SENAMHI

—Governmental Peruvian Institute of Meteorology and Hydrography), meteorological station

000177 located in Santa Clotilde [2˚29’14.9’’S, 73˚40’45.2’’W], approximately 37 km north of TC.

As described by Pizzitutti et al. (2015), the ABM’s hydrological module converts river levels into

corresponding water covers over the study areas. The inputs to the hydrological module are: the

river levels time series, a study area elevation model and two high resolution satellite images per

community taken in correspondence to the high and to the low water levels. The Nanay river lev-

els were obtained from the paper of Bautista et al. [51] while the Napo river levels are obtained

from the SENAMHI hydrological station 240111 [3˚28’ 55.4’’S, 73˚4’24.6’’W], located in Bellla-

vista 91 Km South from TC. Elevation models for both communities are from processed Shuttle

Radar Topography Mission (SRTM) [52]. The high resolution satellite images of PC were

acquired from Google Earth, while the images of TC are from satellite Rapid Eye (low river level)

and satellite SPOT6 (high river level). Malaria counts used to calibrate the models are epidemio-

logical data released by the DIRESA-Loreto (Direccion Regional de Salud, Loreto–Regional

Health Directorate of Loreto). Data used to model human daily activities are adapted from the

paper of Chuquiyauri et al [26] and from field surveys data [53].

Human behavior module

Every human agent is assigned randomly to a village house and the number of humans

assigned to a house is determined by a Gaussian distribution as specified in Table 4. The

Table 4. Human module parameters.

Parameter name PC TC Notes

Average number of human agents 1400 2093

Fraction of human agents protected against mosquitoes bites while sleeping 0.84 (�) 0.89 (�)Average fraction of protected agents. See [24] for

details.

Parameters of the Gaussian distribution of the number of human agents assigned to

every house

mean = 6

σ = 3

mean = 6

σ = 3

Fraction of asymptomatic human agents 0.07 0.04 P. falciparum, calibration parameter
Fraction of asymptomatic human agents 0.05 0.07 P. vivax, calibration parameter

https://doi.org/10.1371/journal.pone.0193493.t004
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minimum number of people assigned to a household is 1. A certain fraction of human agents

are represented as asymptomatic. All the asymptomatic individuals are able to transmit the

pathogen to mosquitoes biting them (no transmission blocking) (see Table 4). No human or

mosquito superinfection is considered in the models. As usual in the Peruvian Amazon, no

seasonal malaria chemoprevention is included in the model.

Following the census population distribution data shown in Table 5, published by the INEI

(Instituto Nacional de Estadı́stica e Informática—Peruvian National Institute of Statistics and

Informatics) [54], every human agent is assigned an age in the ABM simulation.

Then human agents are separated in age segments [54], and every age segment is associated

to a number of ideal number of sleeping hours (Table 6).

The humans belonging to young, adult and senior age segments are “workers”. To each

worker is assigned a working activity. Then, based on the parameters shown in Table 7, work-

ing hours are filled in individuals’ daily schedules. To every worker agent is assigned a work

location inside or outside the simulation area. Farmers are placed on designated farms. The

positions of farms are determined assigning a farm location to every cleared plot around the

community in the simulation area. Due to constant rainfalls and stable temperatures, in the

Amazon there are no agricultural seasons as in others areas of the world. The farmers can use

their land, when not flooded, continuously all over the year. Craftsmen and “others” are

assigned to a workshop in the village. Office workers are assigned to health posts, government

buildings and shop keepers to shops, etc. Unemployed workers do not have a defined working

place, but during the working hours these agents move randomly in an area close to the com-

munity houses. “Homemaker” laborer are assigned their respective houses as working

locations.

Following the respective priorities, the remaining 24 hours of the day are filled with sleeping

and with the additional non-work activities (Table 8). The column ‘priority’ in Table 8

Table 5. Loreto population age structure.

Age Segment (years)

0–5 17%

6–12 17%

13–17 12%

18–24 13%

25–39 20%

40–55 13%

> 55 75%

2007 country-wide census, INEI (www.inei.gob.pe).

https://doi.org/10.1371/journal.pone.0193493.t005

Table 6. Human agents age segments.

Age segment Age min Age max Number sleep hours

child 0 12 11

young 13 24 8

adult 25 49 8

senior 50 69 8

retired 70 - 7

Sleep durations are from ref.: [55]

https://doi.org/10.1371/journal.pone.0193493.t006
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indicates the importance that is given to every activity when the time schedule of each agent

have to be filled. High priority values indicates important activities that will be added to the

schedule before low priority value activities. For workers, the work activity scores always the

highest value.

Twenty-four hour simulation day schedules are generated in this way for each individual

human agent. Following their assigned schedule, the humans change location depending on

the locations of assigned activities. Additionally, human agents change protection state against

mosquito bites depending on location and activity, as specified in Table 9.

Models calibration and validation

The baseline “Human Movement” scenarios for both communities were calibrated in order to

be validated against observed malaria incidence time series. For PC the study period starts

from the beginning of 1996 to the end of 1998, while the TC simulations were calibrated

against malaria epidemiological data starting from the beginning of 2011 to the end of 2012.

For both ABMs a calibration vector was composed with the simulation parameters indicated

as “calibration parameter” in Tables 1, 2 and 3 [56]. A calibration vector is a vector whose ele-

ments are model’s parameters whose values have to be tuned in order to achieve the validation

[24]. At the beginning of the calibration process, 10 random calibration vector values were

generated inside reasonable values ranges. Then 15 independent runs were simulated for each

calibration vector value. The fitness of every calibration model was then evaluated in term of a

score function, being the score function, the square distance between the time series of the

observed malaria incidence and the simulated incidence time series obtained as average over

the 15 independent outputs. The calibration vector values corresponding to the 3 most per-

forming or “fitting” models were then mutated changing the values of some vector elements or

alternatively they were recombined among them creating new calibration vectors as recombi-

nation products. Then the simulations corresponding to the newly created calibration vectors

were run 15 times more and the process was repeated until the performance of new genera-

tions of models is no more increasing. Once the model was calibrated, 150 independent runs

were then simulated. The data presented in the “Results” section are the product of these aver-

ages over these 150 simulations. The number of 150 repetitions was chosen to get the statistical

error associated to the averages below 5%. Every simulation run of both calibration and pro-

duction is preceded by a 365 days equilibration period.

The model have been implemented in the MASON [57] environment. MASON is a free,

Java-based, discrete-event, multi-agent simulation library core used to reduce the repetitive

code writing effort necessary to develop an ABM.

Table 7. Human work parameters.

Work From To Time per week Days Max. hours per day Working population fraction

farmer 5:00 20:00 6 1 2 3 4 5 6 10 0.12

office 8:00 18:00 5 1 2 3 4 5 8 0.01

shop keeper 6:00 23:00 7 1 2 3 4 5 6 7 12 0.03

transport 0:00 23:00 6 1 2 3 4 5 6 7 10 0.1

other 7:00 19:00 6 1 2 3 4 5 6 10 0.1

homemaker 6:00 20:00 6 1 2 3 4 5 6 10 0.31

craftsman 7:00 19:00 6 1 2 3 4 5 6 10 0.03

unemployed 8:00 20:00 6 1 2 3 4 5 6 10 0.05

Data from ref. [26], and from personal communications from J. Lana and B. Pan authors of the study in ref. [53]

https://doi.org/10.1371/journal.pone.0193493.t007
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Spatial analysis

Once the model was validated the simulation outputs were analyzed to identify hotspot posi-

tions inside the simulation areas. To ease the comparison with other malaria local transmission

studies, in this paper the SaTScan v9.4.4 [58] software was used to spatially analyze the outputs

and produce maps of high malaria transmission clusters or malaria hotspots. Several studies

Table 8. Additional human agent daily activities parameters.

Child From To Time per week Days Max. hours per day Priority

Sport Field 16:00 21:00 7 1 2 3 4 5 6 7 4 4

Leisure Place 16:00 21:00 7 1 2 3 4 5 6 7 4 4

Shop 7:00 21:00 7 1 2 3 4 5 6 7 1 3

Church 18:00 19:00 1 7 1 5

Governmental 7:00 18:00 1 1 2 3 4 5 1 6

Health Post 8:00 14:00 1 1 2 3 4 5 1 3

School 7:00 12:00 6 1 2 3 4 5 6 6 1

Sleep 19:00 6:00 7 1 2 3 4 5 6 7 16 2

Young From To Time per week Days Max. hours per day Priority

Sport Field 16:00 22:00 6 1 2 3 4 5 6 7 4 3

Leisure Place 16:00 22:00 6 1 2 3 4 5 6 7 4 3

Shop 7:00 22:00 5 1 2 3 4 5 6 7 1 3

Church 18:00 19:00 1 7 1 4

Governmental 7:00 18:00 1 1 2 3 4 5 1 5

Health Post 8:00 14:00 1 1 2 3 4 5 1 2

Sleep 22:00 6:00 7 1 2 3 4 5 6 7 12 1

Adult From To Time per week Days Max. hours per day Priority

Sport Field 16:00 22:00 5 1 2 3 4 5 6 7 4 3

Leisure Place 16:00 22:00 5 1 2 3 4 5 6 7 4 3

Shop 7:00 22:00 7 1 2 3 4 5 6 7 1 3

Church 18:00 19:00 1 7 1 3

Governmental 7:00 18:00 1 1 2 3 4 5 1 3

Health Post 8:00 14:00 1 1 2 3 4 5 1 2

Sleep 22:00 6:00 7 1 2 3 4 5 6 7 12 1

Senior From To Time per week Days Max. hours per day Priority

Sport Field 16:00 22:00 5 1 2 3 4 5 6 7 4 3

Leisure Place 16:00 22:00 5 1 2 3 4 5 6 7 4 3

Shop 7:00 22:00 7 1 2 3 4 5 6 7 1 2

Church 18:00 19:00 1 7 1 2

Governmental 7:00 18:00 1 1 2 3 4 5 1 2

Health Post 8:00 14:00 1 1 2 3 4 5 1 2

Sleep 22:00 6:00 7 1 2 3 4 5 6 7 12 1

Retired From To Time per week Days Max. hours per day Priority

Leisure Place 16:00 22:00 7 1 2 3 4 5 6 7 6 3

Shop 7:00 22:00 7 1 2 3 4 5 6 7 2 2

Church 18:00 19:00 1 7 1 1

Governmental 7:00 18:00 1 1 2 3 4 5 1 2

Health Post 8:00 14:00 1 1 2 3 4 5 1 2

Sleep 22:00 6:00 7 1 2 3 4 5 6 7 12 1

Data from ref. [26], and from personal communications from J. Lana and B. Pan, authors of the study in ref. [53]

https://doi.org/10.1371/journal.pone.0193493.t008
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have employed SaTScan to evidence the formation of stable and unstable malaria hotspots

[10–17–18–59]. SaTScan is a software package, based on the statistical method developed by

Kulldorff [60], where multiple circular windows around infection sites in a geographical space

are built. For ABMs scenarios where positions of humans are kept constantly located at their

houses, the considered sites of infections are human houses, while for scenarios with moving

humans the sites of infection are the actual pixels of the simulation where mosquito-human

transmission occur. In the first case the reference population is the number of human agents

resident in every household while in the second case the reference population is the normal-

ized number of people that have spent some time in the considered pixel. SaTScan software

changes the circular windows size around each populated site. Then for each considered circle,

the number of observed malaria cases and the number of expected malaria cases are compared.

A likelihood ratio test is calculated to compare the malaria incidence inside and outside the

circle permitting the identification of hotspots as circles of higher than expected incidence.

The hotspots shown in this paper here are statistically significant high risk clusters (p< 0.05)

calculated by SaTScan through a purely Poisson spatial analysis including in the considered

circles a maximum of 50% of the simulations human population.

Results

Movement-testing scenarios

The baseline “Human Movement” scenario was designed to accurately represent daily human

activities. Alternatively, the “No Human Movement” scenario was conceived as a variation of

the baseline scenarios to study the effects of human movement on malaria transmission. The

main interest in the “No Human Movement” scenario was to compare a realistic representa-

tion of human movements with an unrealistic representation, which has been extensively used

in the past to represent humans in malaria transmission ABMs. As shown in Fig 2 the PC sim-

ulations study period corresponds to the mid 90’s Loreto malaria outbreak while the TC simu-

lations study period corresponds to the descendent tail of the same 90’s outbreak [36]. For that

reason the incidence in PC is considerably higher than in TC. Also the periodic effect of river

flooding is more accentuated in PC as shown by the pronounced periodic incidence peaks.

The temporal behavior of simulated malaria monthly incidences, shown in Fig 2, reflects the

evolution of corresponding observed malaria incidences with the exception of some evident

differences. First of all, we note that the simulated curves are smoother than the observed ones.

This outcome is expected since the simulated curves are the product of 150 independent runs

of the same model. On the other hand the observed incidence curves are built considering the

malaria cases registered at the local health posts without the intervention of any averaging

Table 9. Dependence on location of protection against mosquitoes bites.

Location–activity Protection against mosquitoes bites

Household–sleeping 0 for the fraction of human agents sleeping under a bed net

1 for the fraction of human agents not sleeping under a bed net

Inside building of the community–not sleeping 0.7

Inside office 0.6

Farm—farming 1

The protection against mosquitoes bite is expressed as the probability of been bitten when a mosquito agent attempt

to get a blood meal from the human agent. The fraction of human agents sleeping under a bed net is different for the

ABMs of the two considered communities and is specified by the parameter: “Fraction of human agents protected

against mosquitoes bites while sleeping” (see Table 4).

https://doi.org/10.1371/journal.pone.0193493.t009
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process. Since, just like the output of a single simulation, the observed series of malaria inci-

dence can be regarded as a single realization of a highly stochastic process the statistical

Fig 2. Simulated malaria incidences. Solid black line: observed incidence; dashed brown line: “Human Movement

scenario”, dashed blue line: “No Human Movement” scenario. PC: Padre Cocha, TC: Tacsha Curaray.

https://doi.org/10.1371/journal.pone.0193493.g002

Table 10. Simulated relative malaria incidence as calculated inside specific groups of human agents.

PC TC

Agent Type Human Movement No Human Movement Human Movement No Human Movement

farmer 0.15 0.08 0.0029 0.0018

shop keeper 0.11 0.08 0.0010 0.0024

other manual 0.08 0.08 0.0017 0.0015

other 0.08 0.08 0.0021 0.0016

craftsman 0.07 0.08 0.0022 0.0018

unemployed 0.07 0.08 0.0015 0.0019

office 0.06 0.08 0.0020 0.0020

homemaker 0.06 0.07 0.0018 0.0018

transport 0.06 0.07 0.0018 0.0020

child 0.05 0.06 0.0008 0.0012

https://doi.org/10.1371/journal.pone.0193493.t010
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fluctuation are large relatively to the average values. This explains why the observed time series

present fluctuations that produce for instance spikes like the high peak of malaria incidence in

TC in June 2011. Additionally we want to note that a model will always reproduce approxima-

tively what observed in the real world. This is true especially with models like the ones pre-

sented in this paper that are not forecasting models but they are focused on mechanism

reproduction and scenario planning.

A comparison between the simulated incidence curves of “Human Movement” and “No

Human Movement” scenarios show that the movement of human agents through the simula-

tion area does not seem to produce major effects on malaria incidence in both PC and TC.

Even if the overall malaria incidence is not affected by human movement, human move-

ment changes the malaria risk levels to which certain categories of human agents, like the

farmers, are exposed. When a farmer agent does not move from its home it is exposed to EIRs

that are in average lower than those, the same agent, experiments when it spends part of its

daily time working in the farm. The farmers, when movement is considered (see Table 10), are

the group of agents that show the highest change in relative malaria incidence, as observed in

many epidemiological studies in Loreto [26],. On the other hand, as shown in Table 9, close to

the households in the communities, due to IRSs the EIR is lowered respect to the place where

Fig 3. Malaria hotspots. Malaria hotspots revealed by the baseline “Human Movement” scenario. a and c: hotspots

calculated locating human malaria cases in the actual place of infection. b and d: hotspots calculated locating the

human malaria cases in the households of infected individuals. PC: Padre Cocha C, TC: Tacsha Curaray. LLR: log-

likelihood ratio.

https://doi.org/10.1371/journal.pone.0193493.g003
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the farms are located. The group of people that shows the smaller relative malaria incidence is

the group of children due to the more extended sleeping time under bed nets.

An additional difference between the movement-testing scenarios is the spatial distribution

of high risk malaria clusters. When the SaTScan spatial analysis is considered for the “Human

Movement” scenario, big primary and secondary hotspots both for PC and SC are observed in

the areas where farms are located (Fig 3, panes a and c). On the other hand since in the “No

Human Movements” scenario all infections occur in the location of human households, this

scenario produces only hotspots centered on household positions (hotspots not shown). We

note that, following both simulated scenarios, as observed by Bautista et al. [51], the village

center of PC is a place of relatively low transmission risk.

Fig 4. Simulation outputs of malaria control-testing scenarios. The monthly malaria incidence, averaged over the

entire ABM study period is presented as a function of the fraction of protected human population in three different

control-testing scenarios. Every scenario considers as protected from mosquito bites different categories of human

agents. Randomized: an increasing fraction of human agents selected at random in the human population is protected

against mosquito bites. Geographical (Households) hotspots: an increasing fraction of human agents entering inside

geographical (households) hotspots is protected against mosquito bites. PC: Padre Cocha, TC: Tacsha Curaray.

https://doi.org/10.1371/journal.pone.0193493.g004

Agent-based models to study local-scale human movements

PLOS ONE | https://doi.org/10.1371/journal.pone.0193493 March 6, 2018 15 / 23

https://doi.org/10.1371/journal.pone.0193493.g004
https://doi.org/10.1371/journal.pone.0193493


Control-testing scenarios

The “what if” control-testing scenarios are designed to study the effectiveness of targeting

malaria hotspots as a control strategy. As expected (see Fig 4), when increasing proportions of

randomly picked human agents are protected against mosquito bites, the monthly average

incidence shows a remarkable reduction. The malaria incidence is reduced by almost 95%

when 75% and 62% of human agents are protected against mosquito bites in PC and TC

respectively. The simulations in PC show a slower decline in malaria incidence than TC as a

function of the fraction of protected humans. This difference is probably due the fact that the

baseline scenario presented a lower incidence in TC than PC.

When human agents protected against mosquito bites are not selected randomly, but

instead are selected among the agents that entered hotspots at least once during the simulation,

the malaria incidence reduction is more pronounced especially when considering low fractions

of protected people. The control-testing scenarios considered are: control of people inside geo-

graphical hotspots and control of people inside household hotspots. Both geographic and

household hotspots for PC and TC are shown in Fig 3. When 34% of humans are protected in

PC, the household scenario is 1.7 times more efficient in reducing malaria incidence than the

randomized treatment while the geographical hotspots scenario is 1.3 times more efficient.

Considering the simulation outputs for TC we can observe that when the protected fraction is

14% household hotspots and geographical hotspots scenarios are respectively 7.8 and 2.6 times

more efficient in controlling malaria than the randomized treatment scenario. When higher

fraction of protected people are considered, the geographical hotspots and household hotspot

scenarios tend to perform similarly to the randomized scenarios. Nevertheless, we can observe

that in the case of TC simulation, due to low baseline malaria incidence, the geographic and

household scenarios produce almost complete malaria eradication at values of protected peo-

ple fraction of 0.28 and 0.14 respectively. In contrast, the randomized protection scenario pro-

duces almost complete malaria eradication only when the fraction of protected people is 0.43.

In this respect we can conclude that in TC, if eradication costs are considered, the malaria con-

trol of households scenario is about 3 times cheaper than the randomized protection scenario

while the geographical human protection is about 1.4 times cheaper than the randomized

protection.

Discussion

Malaria transmission modeling and specifically ABMs are a valuable resource to malaria man-

agement and control, both because models can improve our understanding of malaria trans-

mission dynamics and also because through modeling it is possible to test control strategies

and optimize the management of resources assigned to malaria prevention [19–61]. The

ABMs presented in this paper are dedicated to studying local malaria transmission by imple-

menting two sets of “what-if” scenarios in two different locations in Loreto, Peru. When the

baseline scenario outputs (“Human Movement” scenario) were compared with the “No

Human Movement” scenario outputs, the resulting simulated malaria incidence time series

appeared to be similar. Those two scenarios differed only in representing movements of

human agents. The comparable incidences time series generated by these two scenarios seems

to suggest, as noted in other theoretical studies [62], that mosquito dispersal dominates the

malaria transmission process at local scale, relegating the dispersion due to human local scale

movements to a negligible role. It is worthwhile to note that the average mosquito flight ranges

in the simulations were: 266 m (σ = 230 m, maximum flight range: 2704 m) and 258 m (σ =

128 m, maximum flight range: 1944) for PC and SC respectively. Clearly if we only consider

mosquitoes that have given one infectious bite, the flight ranges are longer because these
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mosquitoes tend to show a longer life span: 371 m (σ = 256 m, maximum flight range: 1944 m)

and 523 m (σ = 239 m, maximum flight range: 982) for PC and SC respectively. Therefore,

even if the linear extensions of PC and particularly of TC (9 km along the Napo River) are

much larger than the mosquitoes’ flight ranges observed in the simulations, no effects of

human movement on malaria incidence are observed. Mosquitoes seems to create a mixing

network that continuously covers the entire extension of the simulation areas. In this respect

we can define local scale malaria transmission as the transmission that is dominated by the

mosquitoes’ dispersal. In contrast large scale malaria transmission occurs when the contact

network generated by the mosquitoes’ movements is no more able to connect all the exposed

individuals and the major determinant of pathogen spreading are human movements. The

simulated values of mosquito agents flight ranges, that are compatible with what has been

observed in the field for A. darlingi [63], can explain also the higher influence of local scale

human movements in shaping the transmission of other vector-borne diseases like dengue

virus. In the case of dengue, the vector, Aedes aegypti, shows typically shorter flight range (100

m) than anophelines [64] limiting the spreading effect of vector movements. It is worth noting

that mosquito movements, as represented in the models, only approximately portrays the real

dispersal of A. darlingi. Many factors contributing to the dynamics of mosquito dispersal are

neglected or included only partially in the ABMs. For instance it is well known that mosquitoes

can locate humans following the concentration gradients of several compounds emitted by

humans. This process is only partially represented in the models through weights that push the

mosquito agent random walk toward pixels containing humans or human households [24]. It

is then possible, during windy days that plumes of human odors expand beyond the extension

of the random walk weighting mechanism, which is only equal to a mosquito grid pixel (30

m). Another factor not considered in the ABMs is the supposed propensity that some species

of Anopheles have shown in memorizing the location of places earlier visited [65]. Although

there are some serious doubts about the validity of observation about Culicidae spatial learning

[66], supposing that mosquitoes partially guide their movement using memories about loca-

tions of human houses and breeding sites, the mosquitoes dispersion would be much higher in

the model than in the real world.

Noticeably human movements are essential for hotspot formation, not because humans

contribute to the disease spreading, but because humans spend differing amounts of time in

places with dissimilar infection risks. The inclusion of human movements in the baseline sce-

nario generated work-related hotspots centered on farms. The same hotspots do not appear in

the “No Human Movement” scenario since, in this second scenario, all the hotspots are cen-

tered on households where the human are located during the simulations. In this regard, the

ABM simulations tell us that human movements modify the spatial distribution of malaria

hotspots and their inclusion in the models is essential to evaluate the correct spatial patterns of

malaria risk. The formation of hotspots around farms confirms field observations about

increased work-related risks of malaria. ABMs do show that farming is connected with an

increased risk of malaria due to the higher EIRs experimented in farms outside the commu-

nity. These results seem to suggest that spatially explicit ABMs where no human movements

are represented, as seen in recent publications [22–24–67], are suitable to track the overall inci-

dence of local scale malaria transmission. Moreover, it is worth noting that when the effect of

mosquito bite prevention methods like ITNs is included, it is necessary to consider the change

in protection state passing from sleeping to waking hours, as in the “No human Movement”

scenario because simulations showed that the “No Human Movement” scenario presents a

much lower malaria incidence if the protection state of human agents is not changed from

ITN protected to the daily life not protected state (data not showed).
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The second set of control-testing scenarios showed that controlling malaria targeting hot-

spots is more efficient, in terms of resource requirements, with respect to controlling malaria

targeting randomly selecting exposed individuals. The first of these control-testing scenarios

protects from malaria human agents entering into geographical hotspots. In this scenario, the

areas delimited by hotspots typically contain farms, extended mosquito breeding sites, and con-

tain low people densities. As a consequence, the EIR is much higher in these places than inside

the households near the village centers. This first control-testing scenario represents an ideal

experiment where it is supposed that it would be possible to efficiently protect from malaria all

the people entering in malaria high risk areas during the simulations. We note that the actual

way by which human agents are protected from malaria is not specified because not relevant.

This protection could be any method of vector control or pathogen control such as clothes,

mosquitoes repellents, antimalarial treatments, a hypothetical vaccine or any combination of

these methods. The ideal setting of this first control-testing scenario is nearly impossible to

implement in the real world because it is impossible to know the exact location of every infec-

tion site. Still, we considered this scenario as a reference for the second set of control-testing sce-

narios, which involved protecting individuals inside household hotspots. This second scenario

corresponds to what is generally done when epidemiological malaria data are collected, given

the impossibility of knowing exactly the infection sites for all cases. Furthermore, the household

hotspots scenario was designed to test if a strategy aimed to protect or treat people living in

households where registered infection incidences are above the averages, produces results com-

parable to those obtained targeting people that actually are exposed to the highest EIRs inside

geographical hotspots. It is clear that household hotspots do not correspond to the real observed

transmission dynamics since the real transmission sites are not considered. Nevertheless, it is

possible to imagine that a subset of the people infected in geographical hotspots contribute to

the cases involved in the formation of household hotspots. Moreover household hotspots are

also shaped by environmental heterogeneities. It is thus not completely unexpected that, as par-

tially observed in the field by Bejon et al. [17], the simulation results characterize the household

control strategy as, on average, more efficient than the geographical hotspots targeting strategy.

Protecting or treating people in household hotspots could result in an increased level of com-

munity protection, blocking the transmission in households where environmental factors are

particularly adverse. We want to note that the ABMs presented here do not include human-

based heterogeneities that are formed when certain socio-economics conditions cluster, which

may generate an increase in malaria risk. Those socio-economics conditions can include poor

household construction, low economic conditions, high density of work-related exposed indi-

viduals, etc. Furthermore clusters of malaria reservoirs (such as clusters of asymptomatic indi-

viduals) do generate high-risk hotspots. Such human-based heterogeneities are connected with

living conditions and are therefore significant at the household level. Presumably, the inclusion

in the ABMs of these human-based heterogeneities would result in an increase efficiency of

household-control strategy. Along the same lines, we acknowledge, that within this modeling

framework, we do not take into consideration in- and out-migration from and between com-

munities. Taking into consideration that ABMs have the ability to capture the broad spectrum

of migration behaviors among individual agents [68] and that migration is one of the factors

contributing to the reemergence of malaria at global scales [69], temporal and long-term migra-

tion will be the next following step within our modeling efforts.

Conclusions

World malaria eradication will be an arduous challenge for future years. Not only global

warming and anthropogenic environment changes [70] make this challenge increasingly
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difficult to address, but the control techniques developed in past decades have been demon-

strated not to be fully effective in eliminating malaria [19]. During the past three decades sev-

eral weakness of malaria control methods have emerged like resistance to antimalarial drugs,

resistance to IRSs, appearance of mosquito progressive adaptation strategies. Also we are

becoming aware of environmental issues associated with the use of insecticides to alter the

environment where mosquitoes live. It is reasonable to say that malaria will be defeated only

by expanding our knowledge about the ecology of mosquitoes [71] and adopting a systematic

and multi-pronged control approach, including a coordinated set of methods able to tackle the

disease from several fronts [72].

The major strength of this study is that, contrary to previous ABM implementations, in

which humans have typically been represented as statically assigned to the positions their

respective households, the ABMs presented here let humans move around the simulation area.

The simulation results show that when community-level malaria incidence is considered, the

community-scale human movement inclusion has a little effect on community-simulated inci-

dences. Nevertheless, the models show that the changing human protection states from night

to day have a profound influence on individual malaria risks. Human movement has an obvi-

ous strong influence on determining the places where mosquito-human and human-mosquito

transmission events occur, thus determining an increased risk of malaria for certain categories

of individuals that spend time inside high EIR areas, like in the case of farmers in the presented

simulations. Simulations showed that malaria control strategies designed to target cases inside

household hotspots produce good results in terms of resource optimization.

The models presented here have several limitations. First, the simulations presented are

limited to only two communities, while the complexity of the malaria transmission process

would require to repeat the same theoretical results across multiple environmental and social

conditions where malaria. Moreover it would be interesting to test targeted control of malaria

inside hotspots generated by human-based heterogeneities, given that considering human-

based heterogeneities the control strategy would in principle be more effective. A possible

future expansion of the presented ABMs would include the explicit representation of human

activities and movements outside the communities, such as those of laboring miners, fisher-

men and loggers, and also to consider a full implementation of human movement including

migration and long-term travels out of the communities.
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