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Abstract

Background: Sufficient evidence associate body shape to detrimental lifestyle diseases including the metabolic
syndrome (MetS). The prevalence of the MetS, as well as effects of the MetS and body shape on body composition,
insulin-like growth factor-1 (IGF-1), C-reactive protein (CRP) and sex hormone parameters were investigated in a

female farm worker population in the Western Cape.

Methods: Women between the ages of 20-60 years were classified according to the International Diabetes
Federation’s definition of the MetS. Assessments included body shape (android/gynoid), blood pressure,
anthropometric, bioelectrical impedance analyses and blood analyses for fasting glucose and insulin, lipid

profile, IGF-1, CRP, and sex hormone parameters.

Results: The prevalence of the MetS was 52%, with abdominal obesity 68.8%, hypertension 66.4% and low high
density lipoprotein-cholesterol (HDL-c) levels (64.1%) being the more prevalent MetS risk factors. The MetS, irrespective
of body shape, was found to be associated with body mass index (p < 0.01), fat mass (%) (p < 0.01), waist circumference
(p <0.001), HDL-c (p < 0.001), systolic blood pressure (p < 0.05) and diastolic blood pressure (p < 0.01). No significant
differences were observed for IGF-1, CRP and sex hormone parameters.

Conclusion: The prevalence of the MetS and its individual risk factors were found to be significantly high in this
female farm worker population. Additionally, the study showed that the MetS, body shape and/or both could predict
differences in body composition, physiological and biochemical parameters in women.
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Background

Following, and adapting to a westernized lifestyle (un-
healthy eating habits, dietary changes and decreased
physical activity) has significantly increased in both de-
veloped and developing countries globally [1]. This in
turn has contributed to an increase in the incidence of
obesity and various lifestyle related-diseases [2].

The metabolic syndrome (MetS), regarded as a major
risk factor for chronic diseases of lifestyle, consists of a
cluster of metabolic, physiological and biochemical risk
factors, independently associated with cardiovascular
disease, and diabetes mellitus [3]. The main constituents
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of the MetS include; abdominal obesity, dyslipidaemia,
increased arterial blood pressure (systolic and diastolic),
insulin resistance (IR) and impaired blood glucose
homeostasis, dependent on the MetS definition used [3,
4]. However, due to the complexity of the MetS, there is
still no unifying definition, which clearly defines the MetS
and its diagnostic criteria [4].

The MetS has been extensively studied in various pop-
ulations with evidence pointing toward a high prevalence
globally, including South Africa [5-9]. There also ap-
pears to be sufficient evidence indicating that women
present with a higher risk compared to men [7, 8]. More
specifically, there is an increase in the prevalence of
android body shape observed amongst women, exacer-
bating the global prevalence of the MetS and its individ-
ual components [10].
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Body composition, i.e. increased body mass (BM),
obesity and android body shape; have been associated
with an increased risk for developing metabolic-related
diseases, especially in women [10, 11]. An android body
shape (apple shape), refers to adipose tissue present in
the abdominal compartment, and is characterized with
an increase in visceral adipose tissue (VAT), which is
normally associated with a worsened metabolic risk fac-
tor profile (IR, hypertension, dyslipidaemia and inflam-
mation). The gynoid body shape (pear shape) is mostly
associated with adipose tissue distributed around the
gluteo-femoral region of the body; however, its relation-
ship with disease risk is still debateable [12, 13].

Generally, adipose tissue seems to be involved in the
pathophysiology of the MetS, where it plays a role in sex
hormone production, as well as providing a source of
low-grade inflammation and hence involved in the de-
velopment of IR [13, 14]. The MetS is characterised by a
deregulated adipokine profile (increased interleukin-6
and C-reactive protein (CRP)), which in turn leads to
chronic low-grade inflammation [14, 15]. Since adipo-
kines has such diverse functions, a dysregulation in the
synthesis of these adipokines and their actions in rela-
tion to obesity, have been linked to the MetS [16]. Fur-
thermore, the MetS is also characterised by excessive
androgen (decreased sex hormone binding globulin
(SHBG) and increased testosterone) synthesis via the in-
creased conversion of oestrogens and androgenic precur-
sors in adipose tissue [17]. It has furthermore been
hypothesised that the MetS is also associated with in-
creased insulin-like growth factor-1 (IGF-1) synthesis,
which can exacerbate the development of the individual
MetS risk components [18]. The role of the MetS as a
single entity and/or its components in inflammation, sex
hormones and growth factors however still needs to be
elucidated, since no single component can explain the
complexity of the MetS pathophysiology.

Despite this, no MetS prevalence data exist for women
in a farm working environment as well as the individual
components in the Western Cape region of South Africa.
Therefore, determining the prevalence of the MetS in this
specific population as well as region of South Africa, will
partly enable us to describe, understand and resolve asso-
ciations of the MetS, and provide significant insights into
the extent of the MetS in the Western Cape. The primary
aim was to first describe the prevalence of the MetS in this
female farm worker population, and then to classify these
women based on their body shape, body composition, as
well as selected biochemical parameters.

Methods

Study design, ethical considerations and recruitment
Ethical approval was obtained from the Human Research
Ethics Committee of Stellenbosch University (protocol
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number N13/04/052). A cross-sectional, baseline de-
scriptive study design was followed between March until
July 2015.

Farming communities were identified, after which
farm workers from three different wine estates
including, Villiera at the Owethu Clinic (Stellenbosch),
Neethlingshoff (Stellenbosch), and Solms-Delta Wine
Estate (Franschhoek), were invited to attend information
sessions regarding the specific research project. Farm
workers could volunteer to participate, where after visita-
tions were scheduled for each volunteer on different days
during the week. At each scheduled visitation, the re-
searcher verbally explained to the participant what was ex-
pected of them during the data collection process, and
that there would be a time investment of approximately
30 min. Participants were given sufficient time to thor-
oughly read through the participant information leaflet
and consent form, after which they were free to ask any
questions. After reading through the informed consent
form, written informed consent was obtained from all
volunteering participants based on inclusion criteria.
Participants were informed that they could withdraw at
any time point, and were assured of their anonymity and
confidentiality within the study.

Body composition assessments

Body mass was measured using a Seca 634 automatic
scale (Seca, United Kingdom, Birmingham, England) to
the nearest 0.01 kg. Height was measured using a
portable, standard stadiometer (Leicester™; Leicester,
England), assuming the correct anatomical stance, to the
nearest 0.1 cm. The body mass index (BMI) (l<g/m2) was
calculated using these base measurements. Waist
circumference and hip circumference were assessed to
the nearest 0.1 cm using a Lufkin tape measure (Lufkin,
USA). Waist-to-hip ratio (WHR) was subsequently cal-
culated using these measures.

Bio-electrical impedance analysis (BIA) measurements
were performed using the multi-frequency Bioscan 920
II analyser (Maltron 920, UK), to assess fat mass (%) and
muscle mass (kg).

Body shape was estimated using the WHR ratio as
well as visual inspection of the volunteers standing in
the anatomical position as being either android or
gynoid. We excluded n=7 due to inability to align
calculated WHR with the visual presentation of the
body shape.

Study population

For this part of the study population, volunteering ap-
parently healthy women between the ages of 20-60 years
were included. Inclusion criteria included volunteers had
to be, (i) women between the ages of 20-60 years old,
(ii) residing in the Western Cape Province (Winelands
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region), (iii) all included women had to have all parame-
ters for this part of the study measured, and (iv) must
have been able to provide informed consent. Those who
were excluded were either younger, or older than 20—
60 years, not usual residents from the WestCape Prov-
ince, pregnant or lactating at the time of data <font sty-
le=132#collection, or excluded due to missing
parameters as a result of technical issues.

Selection of participants

The total number of successfully recruited volunteering
participants (which initially included both men and
women) were 1 =191. From this sample, a sub-sample
was drawn in which n =63 were excluded; n =42 men
for this particular part of the study, n =2 women who
had withdrawn consent due to time constraints, n=7
women due to the inability to classify their body shape,
and 7 =12 due to technical errors in data collection for
the BIA measurements.

Stratified sub-sampling and metabolic syndrome
classification

Of the remaining # = 128 women, the group was subse-
quently classified using International Diabetes Feder-
ation (IDF) criteria as having the MetS. This definition
includes the compulsory elevated waist circumference
(WC) (= 80 cm for women), plus any two of the follow-
ing components: (i) elevated blood pressure (systolic
blood pressure (SBP) =130 mmHg, and diastolic blood
pressure (DBP) =85 mmHg), (ii) elevated fasting blood
glucose (FBG) (= 5.6 mmol/L), (iii) low high density
lipoprotein-cholesterol (HDL-c) (<1.3 mmol/L for
women) or elevated triglycerides (TG) (> 1.7 mmol/L)
[19]. Applying this classification, a total of n = 66 women
were classified as having the MetS, while #n = 62 partici-
pants were classified into a non-MetS group.

Female participants within these two respective groups
were further classified according to body shape (gynoid
or android), to render the four respective groups: MetS
with gynoid body shape (MetSG) (n = 29), MetS with an-
droid body shape (MetSA) (n=37), non-MetS with
gynoid body shape (NMetSG) (n =50), and non-MetS
with android body shape (NMetSA) (n = 12).

Due to logistical reasons and time constraints, only
n =80 could be included for data and laboratory ana-
lyses. This sub-sample was randomly selected from
the total n = 128, however, for the NMetSA group all were
included. The n =80 women were randomly allocated to
the specific subgroups as follows: MetSG (n = 23), MetSA
(n=23), NMetSG (n = 22) and NMetSA (1 =12).

Blood pressure
Blood pressure was measured in duplicate on the right
arm, using a calibrated aneroid sphygmomanometer
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(Erka Perfect Aneroid 48, Germany), and stethoscope
(Littmann 3 M stethoscope, USA) with an appropriate
sized cuff after a stabilising period of ten minutes in a
sitting position.

Blood sampling and analysis

Plasma blood glucose, serum insulin and a full blood
lipid profile were assessed through the chemical Path-
Care laboratories (Stellenbosch) to assist in classify
women as having the MetS or not. Female serum testos-
terone, sex hormone binding globulin (SHBG) and free
androgen index (FAI) were also assessed. Highly sensi-
tive enzyme linked immunosorbent assay (ELISA) kits
were used to quantify CRP (CRP human simple set
ELISA kit°, Abcam, UK) [20], and IGF-1 concentration
(IGF-1 human ELISA kit°, Abcam, UK) [21]. Serum sam-
ples were diluted 25,000 times for CRP, and 20 times for
IGF-1. The optical densities of all participant samples
were measured using an EL800 universal microplate
reader (Bio-tek Instruments, South Africa) at 450 nm,
within 15 min after the stop solution was added.

Statistical analysis

All data was analysed using Statistica Software version
12 (StatSoft, Inc., USA). Significance was accepted at p <
0.05. All normally distributed results are reported as
means and 95% confidence intervals (CI), and not nor-
mally distributed results as medians and interquartile
ranges (IQR). For normally distributed data, student t-
tests were performed to determine the difference in vari-
ables between two groups. Factorial analysis of variance
(ANOVA) with Bonferonni post hoc test was done to es-
tablish significance between the four respective groups.
The Mann-Whitney U test was employed to determine
the difference in variables between two groups, and a
one-way Kruskal-Wallis ANOVA was performed to de-
termine the difference in variables between all the study
groups, for data that was not normally distributed.

Results

Prevalence

From the total sample (n =128 women), n =66 women
were identified with the MetS (52%), while n =62 did
not present with the MetS (48%). For all the women in
this study (n=128), the most prevalent individual risk
factor was a high WC (68.8%, n=288), followed by
elevated blood pressure (BP) (66.4%, n=85), and low
HDL-c levels (64.1%, n =82), with approximately 26.6%
presenting with elevated TG levels (n =34), and 25.8%
with elevated FBG (n = 33).

Anthropometric characteristics
In the subsample (#=280), women in the MetS group
were significantly older (40.1 (8.9-13.5) vs 32.2 (6.4—10.
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4) years, p =0.00056), and also displayed a significantly
higher BM, BMI, WC, WHR, and fat mass (%) (p <0.001
for all, except WHR: p =0.02), compared to the non-
MetS counterparts (Table 1). With reference to BMI
(Fig. 1), approximately two thirds of the MetS popula-
tion were classified as obese (67.0%), and 31.0% as over-
weight, (Fig. 1a). In the non-MetS group, 47.0% of the
females were overweight and 21.0% were obese (Fig. 1b).

Biochemical blood parameters

In the subsample (#=80), women with the MetS re-
vealed significantly higher fasting insulin (p = 0.02), and
FAI (p=0.03), while SHBG were significantly lower
compared to their non-MetS counterparts (p = 0.0083)
(Table 2). All other parameters were found to be not sig-
nificantly different (Table 2).

When considering the association of both metabolic
status and body shape on various blood-specific parame-
ters compared between the four respective groups, no
significant differences were reported for CRP, IGF-1, fe-
male testosterone, or SHBG (Fig. 2a-d). However, even
though no significance was observed, women with the
MetS (irrespective of body shape) displayed at least a 1.5
fold higher CRP level (Fig. 2a), compared to their non-
MetS group. Women in both the non-MetS groups dis-
played a 1.7 fold higher SHBG level compared to their
MetS counterparts (Fig. 2d).

Differences between respective groups according to both
metabolic syndrome and body shape

For a more thorough investigation into the association
of metabolic status and body shape, various anthropo-
metric, BIA and blood-specific parameters were com-
pared between the four respective groups (n=280):
MetSA, MetSG, NMetSA and NMetSG.

Body composition
Women in both MetS groups (irrespective of body
shape) (Fig. 3a and b) showed significantly higher BM

Table 1 Summary of anthropometric and BIA characteristics for
the MetS and non-MetS groups

Variable MetS (n = 46) Non-MetS (n=34)  p-value

Age (years) 40.1 (89-13.5) 322 (64-104) p =0.00056
BM (kg) 84.81 (14.3-21.7) 69.10 (16.1-26.3) p=0.00033
BMI (kg/mz) 344 (5.2-7.9) 274 (58-94) p=0.000014
WC (cm) 93.10 (8.7-13.2) 7948 (10.7-17.5) p =0.000002
WHR 0.81 (0.053-0.078)  0.78 (0.068-0.11) p=0.02

Fat mass (%) 4242 (922-14.00)  32.04 (12.9-21.0) p=0.00097

All values are presented as mean and 95% Confidence Intervals (Cl). Student t-
tests were employed, and p < 0.05 was considered statistically significant. BM-
Body mass, BMI-Body mass index, MetS-metabolic syndrome, Non-MetS-non-
metabolic syndrome, ns = not significant, WC-waist

circumference, WHR-waist-hip-ratio
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and BMI compared to the non-MetS groups (p < 0.01),
whereas women in the NMetSA group showed a signifi-
cantly higher WHR compared to those from the
NMetSG group (p=0.0003) (Fig. 3c). A significantly
higher fat mass (%) (Fig. 3e) was observed in the MetSG
group compared to the NMetSG group (p =0.003). No
differences were observed for muscle mass between any
groups (Fig. 3d).

MetS risk factor measurements

Women in the MetSG group displayed a significantly lar-
ger WC compared to the NMetSG counterparts (p =0.
000002) (Fig. 4a), while the WC for the NMetSA group
was significantly larger than that of the NMetSG
group (p =0.000007) (Fig. 4a). No significant differ-
ences were observed for FBG between any groups
(Fig. 4b). The women in the MetSG group further-
more showed both a significantly lower HDL-c and
elevated TG levels compared to the women in the
NMetSG group (p = 0.000008 for HDL-c, and p =0.03
for TG) (Fig. 4c and d). No other significant differences
were observed for HDL-c, but TG levels were also signifi-
cantly higher in the MetSA group vs the NMetSA group
(p=0.04) (Fig. 4c and d). The MetS groups displayed
significant higher SBP and DBP vs the non-MetS groups,
irrespective of body shape (Fig. 4e and f).

Discussion

Prevalence

More than 50% of the women in the current study (total
population) were categorized with the MetS, which is
considerably higher than what was previously reported
by international [5, 8, 9], as well as other South African
studies [6, 7]. Our results confirmed data reported in a
local South African-based study [22], where it was
shown that the prevalence (IDF criteria) of the MetS in a
Capetonian urban black women population to be even
higher (67.8%), however, the current population was spe-
cifically from farm working communities. The current
study also reports that abdominal obesity (measured by
WC) (68.8%), elevated blood pressure (66.4%) and de-
creased HDL-c (64.1%) were the most prevalent MetS
risk factors, which is comparable to other South African
studies [6, 7].

Studies have further proposed that abdominal obesity
might be responsible; either independently, or through
the induction of insulin resistance (via inflammatory me-
diators released from adipose tissue), to contribute to
both the development of systemic hypertension and dys-
lipidaemia [6, 7, 16]. Since our population presented
with an increased WC and overall higher prevalence of
overweight, and obesity, this notion could also be plaus-
ible in this study. Obesity thus poses a major health
problem in South African farm working women and
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may even predispose individuals to develop the MetS if
it overlaps with other MetS risk factors. Since limited
evidence exist with regards to the prevalence of the
MetS, as well as its individual components in this study
population as well as specific region, this study enabled
us to partly describe and gain insight on the extent of
the MetS in the Western Cape amongst women from
farm working communities. It also allowed us to make
substantial contributions regarding initiatives required to
counter-act the rising prevalence of the MetS by increas-
ing the awareness of the importance metabolic health in
terms of health implications. Appropriate and cultural
sensitive interventions are currently being developed to
help address these public health issues.

Additionally, we determined if metabolic dysfunction
and body fat distribution could predict differences in
body composition, physiological and various blood (in-
flammatory, growth factor and steroid sex hormones)
parameters to help identify the underlying pathophysi-
ology, and/or associations.

Body composition

We reported significantly higher BM, BMI, WC, WHR
and fat mass (%) in the MetS groups compared to their
non-MetS counterparts, which is well supported by
others [23, 24]. During a chronic positive energy state,

adipose tissue stores excess energy in the form of TG in
adipocytes, this adipose tissue becomes dysfunctional
(hyperplasia/hypertrophy) and eventually leads to an in-
crease in fat mass [16]. A change in fat free mass may
lead to changes in insulin sensitivity and glucose dis-
posal, which contribute towards the development of the
MetS and its components [25], which further exacerbate
metabolic dysfunction.

Physiological and blood parameters

Women in the MetS group showed significantly higher
fasting insulin and FAI, while SHBG were significantly
lower. Studies have suggested that the altered sex
hormone profile may be ascribed to obesity and IR/
hyperinsulinemia, which in turn can decrease oestrogen
production and increase FAI by directly decreasing
SHBG levels [17, 26, 27]. This might be a plausible ex-
planation for our population, since the fasting insulin
levels were also significantly higher in the MetS group.

Metabolic syndrome showed associations on certain body
compositional and MetS risk factor measurements in
women with either gynoid or android body shapes
Evidence suggests that body shape, rather than total adi-
posity, potentially show strong clinical significance in
the development of the MetS [10]. The android body

Table 2 Summary of physiological and biochemical blood parameters for the MetS and non-MetS groups

Variable MetS (n = 46) Non-MetS (n = 34) p-value
Fasting Insulin (mIU/L) 35.69 (35.82-54.39) 17.36 (9.7-15.9) p=002
CRP (mg/L)* 10.86 (7.9-12.3) 6.68 (4.8-8.8) p=0.18
IGF-1 (ng / mL) b 79.50 (56.16-88.57) 61.85 (44.6-82.8) p=041
SHBG (nmol/L) 4257 (20.51-31.15) 73.84 (58.9-96.1) p=0.0083
DO 1.20+0.80-7.75 0.70+0.30-1.70 p=0.03

All values are presented as mean and 95% Confidence Intervals (Cl) with the exception of FAI, which is presented as median + IQR. Student t-tests were employed
for all parameters except for FAI, where Mann-Whitney U tests was employed. p < 0.05 was considered as statistically significant.?Only n =64 samples included for
analysis. Only n =61 samples included for analysis. CRP-C-reactive protein, FAl-free androgen index, IGF-1-insulin-like growth factor-1, MetS-metabolic syndrome,
non-MetS-non-metabolic syndrome, SHBG-sex hormone binding globulin
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shape is characterized by the presence of large ab-
dominal fat deposits [12], whereas anthropometric in-
dices (WC and WHR) increase as a result of an
increase in VAT and subcutaneous adipose tissue [13].
These body composition changes, especially those as-
sociated with VAT, can therefore also increase the risk
to for the MetS [10].

In the current study, the MetS showed a relationship
on certain body compositional and MetS risk factors
measurements in both body shape groups (android and
gynoid). These discrepancies may be due to the follow-
ing: firstly, our study had a relatively small sample size,
which could have affected the statistical power, therefore
did not reveal differences. Secondly, women in both the
android and gynoid groups had relatively high BMIs,
and we speculate that this could have accounted for the
lack of differences in body compositional and blood pa-
rameters as seen in this study.

IGF-1 axis: Metabolic syndrome and body shape
combined does not predict differences in IGF-1

Adipose tissue distribution seems to play a role in the
pathophysiology of the MetS through a correlation on
growth factor levels [18]. Evidence on IGF-1 in relation
to metabolic diseases is still controversial, i.e. low levels
of IGF-1 have been suggested to have beneficial effects
on glucose homeostasis and may also sensitise insulin
actions, thereby decreasing metabolic disease risk [28].
Friedrich et al. (2013) showed that participants with the
MetS had significantly higher IGE-1 levels vs healthy
age-matched controls [18], whereas no significant differ-
ences were observed for IGF-1 between any of the
respective groups in the current study, which is in agree-
ment with the findings of Kabir et al. (2010) [29]. This
suggests that although free IGF-1 may change due to
adiposity, total IGF-1 remains within the reference range
[30], and therefore remain unchanged. In addition, the
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observation of “no difference” includes the variability of
IGF-1 levels found in this sample population. It should
also be noted that IGF-1 levels are sensitive to age, gender,
ethnic background, as well as degree of obesity [28].

Inflammation: Metabolic syndrome and body shape does
not predict differences in CRP

Adipose tissue distribution is also proposed to have a
primary role in the pathophysiology of the MetS by

affecting inflammatory mediators [32—34]. The MetS is
characterized by a deregulated inflammatory profile,
leading to a persistent low-grade inflammatory state
[15]. An increase in pro-inflammatory markers in obes-
ity [31], android body shape [32] and the MetS [15]
have been well documented. One proposed mechanism
states that an increase in adipose tissue, as a result of
adipose tissue dysfunction and adipokine deregulation,
can lead to an increase in interleukin-6 synthesis. This
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regulates hepatic CRP-synthesis and thereby increases
CRP levels [33]. Seeing that these adipokines have such
diverse functions, a dysregulation in the synthesis of
these adipokines and their actions, in relation to obes-
ity, have been linked to the MetS and its individual
components [31, 32].

The current study contradicts this evidence, since we
did not report any association between MetS, or body
shape, on CRP levels, even though clear differences were
observed for other body compositional measures of
obesity. It is plausible that similar reasons could be at
play for the no differences observed in IGF-1. Although
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no significance was observed, we did however observe
the mean CRP levels in the MetS groups to be greater
than 10 mg/L. This concentration is indicative of an
underlying systemic infection and/or low-grade inflam-
mation. Evidence shows that CRP levels greater than
10 mg/L in obesity have been documented and may be
associated with overweight/obesity [34]. Thus, the in-
creased CRP levels in the MetS group could be attrib-
uted to either being overweight/obese, an underlying
systemic infection, or both; however, more research is
needed to clarify these results.

Sex hormone profile: Both metabolic syndrome and body
shape does not predict variances in female T and SHBG
The MetS is characterized by an altered sex hormone
profile, ie. an increase in androgen concentration, in-
creased female testosterone, FAI and decrease in SHBG
[17, 26]. Androgen surplus has been associated with an
increase in VAT and an android body shape, which in-
creases the risk to develop the MetS [10, 17].

As a result of obesity, and its association with hyperin-
sulinemia, female testosterone can increase with a
concomitant decrease in SHBG by having an effect on
hepatic synthesis of SHBG [27]. However, no differences
were observed for female testosterone, SHBG, as well as
FAIL Since, hyperinsulinemia/hyperglycaemia has been
shown to affect the sex hormone profile [35], the no
differences observed for insulin and glucose; might
explain the “no differences” observed for all the sex
hormone parameters measured. Other confounding
factors could include age, menopausal status, obesity,
ovarian failure, polycystic ovarian syndrome, as well
as the small sample size [36].

This current study provides significant contributions
towards existing literature. To our knowledge, this is the
first study to assess the prevalence of the MetS and its
individual risk factors in a female farm working popula-
tion in South Africa. It furthermore emphasized the
problem of obesity in this gender specific South African
farm working population, and the pathophysiology of
the MetS in relation to adiposity and its distribution by
including several factors (metabolic, growth and inflam-
matory factors, as well as sex hormone parameters), and
measures of adiposity.

Although the current study has enabled us a better
understanding of the MetS, the study was limited by the
following: (i) the cross-sectional nature of the study hin-
dered us to generalize our findings to the total popula-
tion, or elucidate a causal relationship; (ii) CRP is a non-
specific marker of inflammation; and (iii) the WC cut-off
values used are not South-African specific. Lastly, we do
acknowledge that each sub-group should at least con-
sisted of n = 30 participants per group, to obtain a power
of 80%, according to post-hoc sample size analysis. For
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future investigation we propose to include both pro- and
anti-inflammatory markers, i.e. interleukin-6, interleukin-
10 and TNF-alpha, combined with a full white blood cell
count to rule out acute or chronic infections. We propose
to include factors that could have confounded the sex hor-
mone parameters including menstrual phase, age, meno-
pausal status and parity.

Conclusion

The prevalence of the MetS and its individual risk fac-
tors were found to be considerably high in this female
farm worker population. Women with the MetS dis-
played a significantly exacerbated body composition and
sex hormone profile. In addition, the MetS and body
shape combined showed a relationship with certain body
composition, physiological, as well as biochemical blood
parameters, which in turn could exacerbate metabolic
dysfunction. Although the effect of both metabolic status
and body shape on inflammation, growth factors and sex
hormone levels remains inconclusive, women need to
recognize the burden of obesity and its associated meta-
bolic dysfunction, and should be motivated to make
changes regarding their metabolic health. Interventions
should therefore be employed that are focused on meta-
bolic health, which focusses specifically on exercise and
nutrition in order to address the current status of the
MetS in a culturally sensitive South African setting.
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