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Abstract

Poultry and meat products contaminated with Salmonella enterica are a major cause of

foodborne illness in the United States. The food industries use a wide variety of antimicrobial

interventions to reduce bacterial contamination. However, little is known about Salmonella

susceptibility to these compounds and some studies have shown a concerning link between

biocide resistance and antibiotic resistance. To investigate this, a 96 well panel of 17 com-

mon household and commercially used biocides was designed to determine the minimum

inhibitory concentrations (MIC) of these compounds for Salmonella. The panel contained

two-fold serial dilutions of chemicals including Dodecyltrimethylammonium chloride (DC),

Benzalkonium chloride (BKC), Cetylpyridinium chloride (CPC), Hexadecyltrimethylammo-

nium bromide (HB), Hexadecyltrimethylammonium chloride (HC), Acetic acid (AA), Lactic

acid (LA), Citric acid (CA), Peroxyacetic acid (PXA), Acidified sodium chlorite (ASC),

Sodium hypochlorite (SHB), 1,3 dibromo, 5,5 dimethylhydantoin (DBH), Chlorhexidine

(CHX), Sodium metasilicate (SM), Trisodium phosphate (TSP), Arsenite (ARI), and Arse-

nate (ARA). The assay was used to test the susceptibility of 88 multidrug resistant (MDR)

Salmonella isolates from animal sources. Bacteria are defined as multidrug resistant (MDR)

if it exhibited non-susceptibility to at least one agent in three or more antimicrobial catego-

ries. The concentration of biocide at which�50% of the isolates could not grow was desig-

nated as the minimum inhibitory concentration or MIC50 and was used as the breakpoint in

this study. The MIC50 (μg ml-1) for the tested MDR Salmonella was 256 for DC, 40 for BKC,

80 for CPC. HB and HC, 1,640 for AA, 5664 for LA, 3,156 for CA, 880 for PXA, 320 for ASC,

3.0 for CHX, 1,248 for DBH, 3,152 (6%) for SHB, 60,320 for SM, 37,712 for TSP, 56 for ARI

and 832 for ARA. A few isolates were not susceptible at the MIC50 breakpoint to some

chemicals indicating possible resistance. Isolates with MICs of two 2-fold dilutions above

the MIC50 were considered resistant. Biocides for which resistant isolates were detected

included CPC (n = 1 isolate), HB (1), CA (18), ASC (7), CHX (22), ARA (16), and ARI (4).

There was no correlation detected between the biocide susceptibility of Salmonella isolates
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and antibiotic resistance. This assay can determine the MICs of bacteria to 17 biocides in a

single test and will be useful in evaluating the efficacy of biocides and to detect the develop-

ment of resistance to them.

Introduction

Salmonella enterica is highly diverse, including six subspecies and more than 2,500 serovars

[1,2,3,4]. All serovars except a few which cause typhoid fever are referred to as non-typhoidal

Salmonella (NTS). The main niche of NTS is the gastrointestinal tract of humans and farm ani-

mals such as swine, cattle, and poultry, but is also found in the intestinal tract of wild birds,

reptiles, and insects surviving harsh environments [5]. The major source of Salmonella infec-

tions in the human population is through the consumption of contaminated food such as

meat, eggs, dairy products, and fresh produce [6,7,8]. According to the Centers for Disease

Control and Prevention (CDC), Salmonella causes more than one million human infections

resulting in approximately 23,000 hospitalizations and 450 deaths in the United States each

year [4,9,10]. The organism also causes economic and social impact estimated to cost an aver-

age of $4 billion dollars each year [11,12]. The cause of outbreaks in many cases is through

cross-contamination of food with Salmonella. To reduce the risk of outbreaks, there is a need

to use proper hygienic measures and effective disinfection to prevent Salmonella transmission

to humans [13,14,15].

Biocides play an important role in controlling pathogenic bacteria and have been used for

centuries as antiseptics, disinfectants, decontaminants, and sterilants in health care facilities,

animal farms, food and meat processing industries, in household cleaning products, and as

preservatives in pharmaceuticals, cosmetics, textiles, laundry detergents, and the food indus-

tries [16,17,18]. In the United State, biocides are regulated by the Environmental Protection

Agency (EPA) and are referred as antimicrobial pesticides [19]. There are currently more than

4,000 antimicrobial products are registered with EPA containing about 275 different active

ingredients and approximately one billion dollars spent each year on different types of antimi-

crobial products [20].

With proper use, biocides are an essential part of public health; however, misuse such as fre-

quent exposure to sub-lethal concentrations of biocides could result in the development of

resistance in bacteria to biocides and also to antibiotics [21,22,23,24,25]. The use of sub-inhibi-

tory concentrations of biocides can also select for strains that are tolerant to these chemicals

[26]. This development of resistance to biocides could render them ineffective and lead to bac-

terial contamination of food and reduced food safety.

Biocides and antibiotics have different mechanisms of action. Biocides have a broader spec-

trum of activity and act on multiple target sites altering various cellular mechanisms of bacte-

ria; therefore, mutation within a single target is unlikely to result in biocide resistance.

Alternatively, antibiotics have a high level of target specificity and antibiotic resistance is often

associated with mutations in specific genes or horizontal acquisition of a foreign gene encod-

ing a resistance mechanism [27]. Despite the differences in the mode of action of biocides and

antibiotics, there are also some similarities such as the uptake through the bacterial envelope

by passive diffusion, effect on membrane integrity and morphology, and the effect on bacterial

metabolism [18,28]. Additionally, genes encoding biocide resistance are sometimes found on

horizontally transferred mobile genetic elements that also carry antibiotic resistance genes

[29,30]. Because the possibility of cross-resistance between antibiotics and biocides exist,
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selective pressure to acquire resistance genes to one may select for resistance genes to the

other. Therefore, the misuse of biocides may contribute to a potential risk for the development

of antibiotic resistance. As a consequence, effective treatment of infections with commonly

used antibiotics may fail, increasing the risk of invasive illness or death [18,31,32].

Over the past several decades, there has been an increased emergence of MDR bacteria,

defined as non-susceptibility to at least one agent in three or more antimicrobial categories

[33]. This includes pathogens such as Salmonella and other bacteria causing a serious threat to

public health worldwide [34,35,36,37,38,39]. The MDR bacteria have the possibility for trans-

fer to humans via contaminated foods, potentially resulting in untreatable infections. The

CDC estimated that approximately 100,000 persons are sickened and 40 deaths occur annually

as a result of infection with antibiotic-resistant NTS in the United States [40]. There is no clear

evidence that emergence of antibiotic resistant bacteria are due to the use of biocides. How-

ever, laboratory based studies suggest that there are associations between antibiotic and bio-

cide resistance [24,25,41,42,43,44]. This may be because biocide-resistant organisms in

laboratories are developed using higher than recommended concentrations of biocides so

these organisms may not be representative of in situ conditions [15,18,45]. Currently there is

not enough field survey data to provide clear conclusions that the use of biocides is related to

emergence of antibiotic resistant bacteria. In addition, some studies have suggested that bacte-

ria acquired antibiotic resistance first and then became resistant to biocides [46,47,48]. Other

studies showed that there was no cross-resistance between the susceptibility of antibiotics and

disinfectants among the Salmonella isolated from turkeys in commercial processing plants or

from feedlot water-sprinkled cattle.[49,50]. Higher MICs in antibiotic resistant bacteria for

biocides has been reported whereas biocide-tolerant bacteria have also been found to be more

susceptible towards antibiotics [47]. Other studies reported that clinical isolates were more

antibiotic-resistant than isolates from industrial environments based on the Total Susceptibil-

ity Index and found correlations between antibiotic and biocide resistance in clinical strains,

but not in industrial isolates [46,51]. These conflicting results have caused confusion on this

subject.

As there is no standard method available for biocide susceptibility testing, the primary

objective of this study was to develop a biocide panel to determine the susceptibility of Salmo-
nella isolates to 17 commonly used commercial poultry processing and/or household biocides

in a single assay. A secondary objective was to determine if a correlation between biocide and

antimicrobial resistance was observed. The biocide panel contained two-fold serial dilutions of

quaternary ammonium compounds (QACs) (DC, BKC, CPC, HB, HC); organic acids (AA,

LA, CA, PXA, ASC); biguanides (CHX); halogen based compounds (SHB, DBH); alkaline

compounds (SM); phosphate based compounds (TSP); and arsenical compounds (ARI, ARA).

The panel was used to determine the MICs of antimicrobial susceptible negative control

strains, quaternary ammonium resistant positive control strains, and 88 MDR Salmonella
isolates.

Materials and methods

Preparation of biocide solutions

Dodecyltrimethylammonium chloride, benzalkonium chloride, cetylpyridinium chloride, hex-

adecyltrimethylammonium bromide, hexadecyltrimethylammonium chloride, lactic acid, cit-

ric acid, peroxyacetic acid, sodium chlorite, 1,3 dibromo, 5,5 dimethylhydantoin,

chlorhexidine, sodium metasilicate, trisodium phosphate, and sodium arsenite, were pur-

chased from Sigma Aldrich Laboratories, Inc. (St. Louis, MO, USA). Acetic acid was obtained

from Spectrum (Spectrum Chemical & Laboratories Products, Gardena, CA, USA) and
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sodium arsenate purchased from MP Biomedicals (Solon, OH, USA). Sodium hypochlorite

was Clorox brand regular bleach purchased from a retail grocery store. All stock solutions

were prepared in autoclaved de-ionized water. Chemicals which were partially soluble in water

(CPC, DC, BKC, TSP, HB, and HC) were incubated in hot water for 10 min (~95˚C) and vor-

texed. CHX was dissolved in mixture of isopropanol (6ml) and ethanol (2ml), incubated in hot

water for 1h and made the volume 50 ml with water. SM was also incubated in hot water for 1

h and vortexed frequently. DBH was dissolved in 0.5 ml ethyl alcohol and left at room temper-

ature for 15 minutes until it turned orange and then water was added to achieve the final

desired concentration. ASC solution was prepared by mixing sodium chlorite (SC) solution

with acetic acid to a final pH 3 to 3.5. All stock solutions except CHX, DBH, and SHB were fil-

ter sterilized using a 0.2 μm pore size, 25mm sterile syringe filter (Nalgene, Rochester, NY,

USA) and were diluted with equal volume of 2x Mueller Hinton broth (MHB) (Thermo Fisher

Scientific, Pittsburg, PA, USA). The 2- fold serial dilutions of each chemical was prepared in

1x MHB.

Preparation of biocide panel

Throughout the design, development, and use of this assay, CLSI methods were followed as

outlined in the CLSI methods manual [52]. The Minimum Inhibitory Concentration (MIC) is

defined as the lowest concentration tested of the biocide at which no visible bacterial growth

was observed. The concentration range of each biocide was selected based on preliminary

MIC bioassays using 2-fold serial dilution of a wide range of concentrations of each biocide in

a sterile 96-well, clear flat bottom microplate with lid (Product #353072, Falcon, Thermo

Fisher Scientific). Five two-fold dilutions were selected for each biocide except ARA, ARI and

CHX for which 7–8 two-fold dilutions were used. As the MIC50 became apparent from the ini-

tial assay results, dilution ranges were adjusted to best bracket the MIC50; therefore, some

plates had different ranges of dilutions. The 2-fold serial dilutions of each chemical were pre-

pared in 50 ml centrifuge tubes. Dilutions were prepared at twice the required final concentra-

tion because addition of equal volume of inoculum in MHB reduced the concentration in half

to yield the desired final concentration. From each dilution, 100 μl was dispensed into sterile

96 well plates and more than 100 plates containing all 17 chemicals were prepared (Fig 1). All

plates were sealed using adhesive foil (cat No. 60941–074, VWR, Randnor, PA, USA) and fro-

zen at -20˚C until used. This type of assay design is analogous to those that determine suscepti-

bility to antibiotics and report an MIC for an unknown isolate to multiple antibiotics using a

broth microdilution method (e.g. Sensititer).

Isolates

Eighty-eight MDR Salmonella isolates were obtained from the National Antimicrobial Resis-

tance Monitoring System (NARMS) bacterial culture collection located in the Bacterial Epide-

miology and Antimicrobial Resistance Research Unit, Athens, GA. The bacteria were isolated

by NARMS partners, and originated from animal sources including cattle, swine, chickens,

turkeys, horses, dogs, cats, and retail meat during 1998–2011. Salmonella from food animals

were isolated from carcass swabs, carcass rinses, or ground meat by inspectors of the Food

Safety Inspection Service (FSIS). Isolates from companion animals were from the National

Veterinary Services Laboratories (NVSL), Ames, IA. One isolate of serovar Heidelberg was

from a human infection associated with the 2011 multistate outbreak linked to ground turkey

in the United States [53,54]. The identity of animal and human isolates were made anonymous

before submission to the culture collection. Isolates were serotyped with Pulsed-Field Gel Elec-

trophoresis (PFGE) and SMART-PCR (Salmonella Multiplex Assay for Rapid Typing) and the
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Fig 1. Example of 96 well biocide panel: Susceptibility assay of S. Heidelberg using 17 biocides panel. Panel A is an image of biocide

panel inoculated with S. Heidelberg after 18–24 hrs incubation. Panel B is showing the distribution of 2-fold serial dilutions of 17

biocides in 96-well plate and interpretation of results. Gray region (turbid well) is indicating growth and white region (clear well) is

indicating no growth.

https://doi.org/10.1371/journal.pone.0209072.g001
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Kauffman and White method [55,56]. Antimicrobial susceptibility was previously determined

using custom-made broth microdilution plate CMV3AGNF for the theSensititre System fol-

lowing the manufacturer’s instructions (Thermo Fisher, USA). Results were interpreted fol-

lowing Clinical and Laboratory Standards Institute (CLSI) guidelines [57].

Three mutant strains with reduced susceptibility (SRS) to DC and the reference (parental)

strain they were derived from L1, L2, L3, and ATCC 4931 were provided by Dr. Diane Herson,

U. Delaware and were used as positive controls with the biocide panel. These SRS strains were

previously developed from the reference strain Salmonella enterica subsp. enterica serovar

Enteritidis ATCC 4931 by sub-culturing the reference strain in increasing concentrations of

DC [58,59,60]. As a MDR positive control, S. enterica serovar Typhi CT18, MDR including

ampicillin [61] and a MDR negative control S. enterica serovar Typhimurium LT2, ampicillin

susceptible [62] was obtained from the American Type Culture Collection (ATCC, Manassas,

VA) [63] were also tested for biocide susceptibility.

Preparation of isolates

The isolates were streaked from -80˚C frozen glycerol stocks onto Mueller Hinton agar plates

and incubated at 37˚C for 18–24 h. From this plate, 3–4 colonies were selected and suspended

in Mueller Hinton broth (MHB). Turbidity of inoculums was adjusted to 108 cells ml-1 using

0.5 McFarland standards and diluted to a final concentration of inoculum 105 cells ml-1.

Minimum inhibitory concentrations (MIC)

Frozen plates were thawed at room temperature and inoculated with 100 μl of 105 cells ml-1.

The plates were then covered with a sterile lid and incubated for 18–24 h at 37˚C. Growth of

bacteria was observed visually; turbid wells indicated growth and clear wells were recorded as

no growth (Fig 1). The MIC was recorded as the lowest concentration of biocide at which no

visible bacterial growth was observed. The MIC50 (median MIC) and MIC90 represented the

MIC at which�50% and�90% of all of the isolates were susceptible, respectively. The median

MIC50 for all isolates was defined as the breakpoint for each chemical, the median used as the

MIC is a interval-censored variable and not a continuous variable. A difference of one 2-fold

dilution factor MIC (+/-) from the breakpoint was considered allowable variation, therefore,

isolates with� two 2-fold dilutions MICs higher than the breakpoint was considered to have

reduced susceptibility (“resistance”) to that compound; isolates with MICs� two 2-fold dilu-

tions lower than the breakpoint were considered hyper susceptible.Each batch of plates was

tested with negative control strains LT2, CT18, and ATCC4931, and also SRS positive control

strains L1, L2, and L3 which are resistant to DC. Any batch of plates that did not give the

expected results +/- one 2-fold dilution with these control strains were discarded and all assays

were repeated with new plates. This step was done to detect pipette error during dilutions and/

or replicate plating and to detect the decay of any of the compounds during storage. Any batch

of plates with greater than one 2-fold dilution MIC change for any chemical for the control

strains were discarded, after the developmental stage, no plate batches failed this test. Each

experimental isolate was tested two to four times with different plate batches, on different days

to ensure reproducibility. Data was accepted only if the two assays determined that the MIC

differed by less than one 2-fold dilution.

Results and discussion

Biocides are essential for controlling the spread of pathogens and are beneficial for public

health. The effectiveness of biocides depends on several factors such as concentration, status of

bacteria (biofilm or planktonic) and presence of interfering materials such as organic matter.
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Bacteria in biofilms are more resistant to disinfectants than their planktonic counterparts

because bacteria in biofilm are less permeable than those of free bacteria [64,65,66]. The most

important factor in controlling pathogens is the concentration of biocide used which should

be determined cautiously alongside other physical and chemical factors such as organic load,

humidity, pH, and temperature [18,67,68]. The unnecessary use of high concentration of bio-

cides could be an environmental hazard whereas sub-inhibitory concentrations of biocides

may contribute to the development of resistant bacteria posing a public health hazard. There-

fore, it is important to determine the minimum concentration of biocide needed to stop the

growth of bacteria and this testing should be performed more frequently. The effective use of

biocides also depends on selection of the most suitable biocide for a particular environment

because different microorganisms vary in their response to different biocides due to their

intrinsic properties and impermeability [69,70,71]. For example, Gram-positive bacteria are

more susceptible to biocides than Gram-negative bacteria because of the structure of the outer

membrane of Gram-negative bacteria which acts as a permeability barrier [72]. It is important

to understand the mechanism of action of biocides to improve the antimicrobial formulation

and to prevent the emergence of resistance in bacteria [73]

Standard methods are available for antibiotic susceptibility testing of bacteria. One of the

most widely used method is broth microdilution which allows approximately 12–17 antibiotics

to be tested in a range of 8 two-fold dilutions in a single 96 well plate [74,75]. However, there is

no standard method available for biocide susceptibility testing. In the present study, we

adopted the broth microdilution method for testing susceptibility to biocides and designed a

96 well plate to accommodate 17 biocides containing five two-fold dilutions of each biocide

except ARI, ARA, and CHX which used seven to eight two-fold dilutions. The concentration

range of each biocide was selected based on the results of preliminary susceptibility testing of a

wide range of concentrations of each biocide starting at the limit set by Food and Drug

Administration (FDA) for use in processing, and diluting from there (data not shown). The

biocides selected for susceptibility testing belong to diverse groups of chemicals including qua-

ternary ammoniums, organic acids, biguanides, halogens, alkaline, phosphate, and arsenical-

based compounds. These compounds were selected for the biocide susceptibility testing panel

because they are widely used antimicrobial interventions as disinfectants in household, poul-

try, and healthcare facilities as well as preservatives in cosmetics and food industries. The U.S.

Food and Drug Administration (FDA) has approved most of these biocides in poultry process-

ing plants as GRAS (generally recognized as safe) substances [76]. The MIC of 95 Salmonella
isolates including 88 MDR isolates from the NARMS collection was determined using the

designed biocides panel as depicted in Fig 1. The biocides’ MICs for the isolates were deter-

mined more than once to find the best concentration range of each biocide suitable for analyz-

ing different isolates. However, the results shown here are from one replicate of MICs

determination using final designed 96 well panels of 17 biocides. The precision of this method

is plus or minus one two-fold concentration which can likely be improved by automating all

processes robotically. Currently no Clinical and Laboratory Standards Institute (CLSI) guide-

lines have been defined for biocide testing and also no criteria for categorization of bacteria as

susceptible or resistant to a particular biocide. Since there is no reference breakpoint MICs

available for biocides, we recorded the MIC50 as the breakpoint MIC. Bacteria were catego-

rized as susceptible if the MIC was equal or lower than the MIC50 and defined as resistant if

the MIC was 4-fold (two 2-fold dilutions) greater than the MIC50. All isolates from the

NARMS collection used in this study met the criteria to be defined as MDR as they were resis-

tant to a minimum of 2 and a maximum of 13 antibiotics tested.
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Quaternary ammonium compounds, QACs

These compounds are cationic surfactants which primarily target the cytoplasmic membrane

of bacteria. They possess antimicrobial activity against a broad range of microorganisms and

are widely used in clinical facilities, households, and also in numerous industrial and pharma-

ceutical products as preserving agents [77,78]. The susceptibility of five QACs (DC, BKC,

CPC, HB, and HC) were tested against 88 MDR Salmonella isolates using concentrations rang-

ing from 5 to 1024 μg ml-1 (0.0005–0.10%). Results showed that 99% to 100% of the isolates

were susceptible to all 5 QACs at either the MIC50 or 2-fold higher concentration than the

MIC50 (Fig 2A–2E, Table 1). The MIC50 for DC was 256 μg ml-1 at which growth of all isolates

except one was inhibited (Fig 2A). One isolate from swine, resistant to 11 antibiotics, was sus-

ceptible at 2-fold higher concentration (512 μg ml-1) than the MIC50. The MIC of one SRS

with reduced susceptibility to DC was 2-fold higher than the MIC50 and two other SRS were

not inhibited at the maximum concentration tested (512 μg ml-1) and could be considered

resistant. The MIC of the reference (parental) strain Salmonella enterica subsp. enterica sero-

var Enteritidis ATCC 4931 was 2-fold lower than the MIC50. The MIC of SRS and the refer-

ence strain is in agreement with a previous report [58]. DC affects the bacterial membrane

causing leakage of cell contents resulting in cell death [59]. The MIC50 for CPC was 80 μg ml-1

at which 98% of the isolates were susceptible (Fig 2B). Growth of an S. Heidelberg isolated

from turkey carcass, resistant to 5 antibiotics was not inhibited at the highest CPC concentra-

tion (160 μg ml-1) tested and was categorized as resistant to CPC. The maximum concentration

of CPC approved by the FDA to treat the surface of raw poultry carcasses with a solution con-

tains a maximum of 0.8% (8000 μg ml-1) CPC, followed by a potable water rinse or immersion

in chiller water [79]. The breakpoint MICs found for MDR Salmonella in this study was 100

times lower than that allowed by the FDA. The MIC50 for BKC was 40 μg ml-1 at which 100%

of the Salmonella was susceptible (Fig 2C). The MIC50 for both HB and HC was 80 μg ml-1 and

99% of isolates for HB and 100% of isolates for HC were susceptible at 2-fold higher concentra-

tion (Fig 2D and 2E) than the MIC50. An S. Agona isolated from swine in 2005, resistant to 11

antibiotics was also resistant to HB. This isolate was also resistant to CHX and was the only iso-

late with 2-fold higher MIC than the MIC50 for DC. It is possible that the repeated exposure of

bacteria to QAC biocides could reduce susceptibility to other biocides or to antibiotics which

may be due to temporary phenotypic adaptations or the selection of stable genetic mutations

[44].

QAC resistance genes were found among Escherichia coli isolated from retail meat and

associated with MDR phenotypes suggesting that QACs in the food industry may not be as

effective as expected and bacteria could develop resistance to other antimicrobials [80]. The

recommended concentration of QACs when used as disinfectants is below 1,000 μg ml- 1 [81]

and is a concentration at which most of our tested strains would not grow.

Organic acids

These chemicals work by lowering the intracellular pH causing damage to outer or cyto-

plasmic membrane resulting in bacterial death [82,83]. They are widely used in the poultry

industry as additives for drinking water or in feed [84,85,86]. The USDA Food Safety and

Inspection Service (FSIS) allows 1.5 to 2.5% solutions of most of the organic acids for pre-

chilled carcasses washing in commercial plants for both beef and lamb processing [87]. Suscep-

tibility of MDR Salmonella isolates was tested against five organic acids LA, CA, AA, PXA,

ASC using concentrations ranging from 80 to 15,104 μg ml-1, 0.01–1.5% (Fig 3A–3E, Table 1).

These organic acids are GRAS at recommended concentrations and are approved by the FDA

in food for human consumption [88,89]. They are highly soluble and cannot accumulate in
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organisms or in the environment [90]. Acetic acid (vinegar in the U.S. sold as 5% acetic acid)

is active against most bacteria [77,80]. The MIC50 for AA and PXA was 1,640 and 880 μg ml-1,

respectively, at which 75 to 79% of isolates were susceptible and the remaining isolates were

susceptible at a 2-fold higher concentration. The MIC of CA and ASC showed variation

between isolates; 52–57% of isolates were susceptible at 3,156 μg ml-1 for CA and 320 μg ml-1

Fig 2. Frequencies of the MICs of the 88 MDR Salmonella isolates to quaternary ammonium compounds (QAC).

X-axis is the 2-fold increase of biocide concentration; y-axis is percentage of isolates susceptible at each concentration

of the QAC tested. 2A. Dodecyltrimethylammonium chloride, DC; 2B. Cetylpyridinium chloride, CPC; 2C.

Benzalkonium chloride, BKC; 2D. Hexadecyltrimethylammonium bromide, HB; and 2E.

Hexadecyltrimethylammonium chloride, HC.

https://doi.org/10.1371/journal.pone.0209072.g002
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for ASC which is the median MIC. Another 21% of isolates for CA and 8% of isolates for ASC

were resistant with a 4-fold higher MIC than the MIC50. The MIC50 for LA was 5,664 μg ml-1

(average of two MICs), because 50% of bacteria susceptible at 3,776 and other 50% were sus-

ceptible at 2-fold higher concentration (7,552 μg ml-1).

SC is commonly used in poultry processing water as a spray or dip solution at concentra-

tions between 500 and 1,200 μg ml-1 combined with a GRAS acid to achieve a pH ranging

from 2.3 to 2.9 [79,91,92]. The concentration and pH of ASC significantly affect its antimicro-

bial activity [93]. It is commercially supplied as a kit containing citric acid (CA) and SC which

are combined to produce active chlorine dioxide. We have used acetic acid instead of citric

acid to lower the pH. It has been shown that the type of acid used to lower the pH does not

have an effect on its activity [94]. Several laboratory studies have reported reduction in patho-

genic bacteria using ASC on carcasses and surfaces of fresh beef [95,96,97].

Peroxiacetic acid (PXA), is a strong oxidizing agent and effective under a wide variety of

conditions. It affects the bacterial cell wall permeability and denatures proteins, enzymes, and

inhibits other cellular activities. According to the CDC, PXA inactivates both gram-positive

and gram-negative bacteria as well as fungi, and yeasts in < 5 minutes at<100 μg ml-1. Treat-

ment with PXA showed reduction of pathogenic bacteria on beef carcasses [96,98]. The

USDA-FSIS permits the use of PXA at concentrations of 220 μg ml-1 on poultry products in

extended dwell time chillers and at concentrations of 2,000 μg ml-1 short dwell time post-chill

dip tanks. Biofilm containing Campylobacter jejuni were tested and found to be highly suscep-

tible to PXA treatments [99]. In this study, 75% of Salmonella isolates were susceptible at

Table 1. Minimum inhibitory concentration (MIC) of 17 disinfecting chemicals / biocides for 88 MDR Salmonella isolates.

Biocidesa Range tested (μg ml-1) MIC 50

(μg ml-1)

MIC 90

(μg ml-1)

% Isolates susceptible at MIC 90

DC 32–512 or 64–1024 256 256 99

CPC 10–160 80 80 98

BKC 5–80 40 40 100

HB 10–160 or 20–320 80 160 99

HC 10–160 or 20–320 80 160 100

AA 410–6560 1640 3280 100

LA 944–15104 5664 7552 100

CA 789–12624 3156 12624 100

PXA 220–3520 880 1760 100

ASC 80–1280 320 640 92

CHX 0.75–48.0 3.0 12.0 100

DBHb 156–2496 1248 2496 100

SHBc 394–6304 3152 6304 100

SM 7540–120640 60320 120640 100

TSP 4714–75424 37712 37712 100

ARA 52–6656 832 3328 88

ARI 7–896 56 112 96

a DC- Dodecyltrimethylammonium chloride; CPC- Cetylpyridinium chloride; BKC- Benzalkonium chloride; HB- Hexadecyltrimethylammonium bromide; HC-

Hexadecyltrimethylammonium chloride; AA- Acetic acid; LA- Lactic acid; CA- Citric acid; PXA- Peroxyacetic acid; ASC- Acidified sodium chlorite; CHX-

Chlorhexidine; DBH- 1,3 dibromo, 5,5 dimethylhydantoin; SHB- Sodium hypochlorite; SM- Sodium metasilicate; TSP- Trisodium phosphate; ARI- Sodium arsenite;

ARA- Sodium arsenate. The MIC50 and MIC90 were defined as the biocide concentrations that inhibited growth of 50 and 90% of the isolates respectively.
b DBH data shown here is for 65 isolates
c Actual hypochlorite concentration in household bleach. Clorox brand household bleach is a solution of 5.25% or 52,500 ppm of sodium hypochlorite.

https://doi.org/10.1371/journal.pone.0209072.t001
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Fig 3. Frequencies of the MICs of 88 MDR Salmonella isolates to organic acids. X-axis is the 2-fold increase of biocide concentration; y-axis is

percentage of isolates susceptible at each concentration of organic acids. 3A. Acetic acid, AA; 3B. Lactic acid, LA; 3C. CA, Citric acid; 3D. Peroxyacetic

acid, PXA; and 3E. Acidified sodium chlorite, ASC.

https://doi.org/10.1371/journal.pone.0209072.g003
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880 μg ml-1 and the remaining 25% were susceptible at 1,760 μg ml-1, which is higher than rec-

ommended by the CDC. This may be due to the presence of high organic matter in MH broth,

as it has been reported that antibacterial activity of PXA can be reduced in the presence of

organic matter [94].

Bigunide

The bigunide biocide used was CHX which is widely used as a disinfectant, an antiseptic and a

preservative in both medical and agricultural environments, and in domestic cleaning prod-

ucts [100]. It is also used in food industries, but is most commonly used in hand sanitizers,

usually at a concentration of 2 to 4% [101]. It is effective against a wide range of both gram-

positive and gram-negative bacteria causing damage to the cell membrane [101]. Despite the

advantages of CHX, its activity is pH dependent and is greatly reduced in the presence of

organic matter. The MIC for these isolates ranged widely, from <0.75 ug ml-1 to 12 μg ml-1.

Results showed that 70% of isolates were susceptible at MIC50 (3.0 μg ml-1) and 25% were resis-

tant with 4 fold higher MIC compared to the MIC50(Fig 4). The MIC of CHX for 70% isolates

was in similar range as found previously which showed that 85% of Salmonella isolates from

feedlot water-sprinkled cattle were susceptible at 4 μg ml-1 [49].

Six out of seven control strains were resistant to CHX, with the reference strain to the DC

resistant strains being the only sensitive control at 3.0 μg ml-1. Two control strains which were

resistant to DC showed highest MIC for CHX (24 μg ml-1) and the reference strain was suscep-

tible to 2-fold below the MIC50 for both DC and CHX. DC and CHX both target the cell mem-

brane, so it is possible that strains with resistance to DC would also be resistant to CHX. More

interestingly, 8/9 S. Newport isolates were CHX resistant, and most of these were cattle associ-

ated isolates. These CHX resistant S. Newport were also resistant to ARA, as discussed below.

Six out of nine S. Typhimurium were CHX resistant, and three of these were also ARA resis-

tant, however, the Typhimurium were isolated from a variety of sources. All four S. Agona

Fig 4. Frequencies of the MICs of 88 MDR Salmonella isolates to the biguanide, Chlorhexidine, CHX. X-axis is the

2-fold increase of biocide concentration; y-axis is percentage of isolates susceptible at each concentration of CHX.

https://doi.org/10.1371/journal.pone.0209072.g004
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isolates were resistant to CHX. Three of the S. Agona were from cattle and one was from

swine. Finally, four out of seven S. Dublin were resistant to CHX, with three isolated from cat-

tle and one from chicken.

Halogen-based compounds

In this study, susceptibility of Salmonella was also tested against chlorine and bromine based

biocides. Household bleach is an aqueous solution of 5.25%–6.15% sodium hypochlorite con-

taining 52,500 to 61,500 μg ml-1 available chlorine. We used Clorox brand bleach which was

5.25% sodium hypochlorite. It is a powerful oxidant and has a broad spectrum of antimicrobial

activity [102,103] and induces lysis in gram-negative bacteria by affecting the cell wall [73].

The MIC of SHB in this study showed variation between isolates. The MIC50 was 3,152 μg ml-1

(6%) at which 57% of isolates were susceptible. The other 43% were susceptible at a 2-fold high

concentration (12%) which is slightly higher than the recommended concentration 10% (v/v)

solution (Fig 5B). We also observed that the MIC of isolates was below 6% when a fresh bottle

of bleach was opened. The free available chlorine levels of hypochlorite solutions reduced to

40% to 50% of the original concentration over a period of one month at room temperature in

both opened and closed polyethylene containers (https://ehs.colorado.edu/resources/

disinfectants-and-sterilization-methods/).

The bromine disinfectant biocide (DBH) hydrolyzes in water to form the active antimicro-

bial compound, hypobromous acid (HOBr), which works within a wider range of pH and is

also more stable than SHB in the presence of organic matter. It also does not cause corrosion

to plant equipment or concrete floors. DBH is not GRAS by FDA, but is used in post-slaughter

processing [104]. The aqueous solution is allowed up to 100 ppm on poultry carcasses,

300 ppm on beef and 500 ppm on swine. DBH can also be used in water to make ice for poultry

and beef processing [105]. It reduces Salmonella contamination in hides when treated with

220–500 ppm of HOBr. In this experiment MIC of 65 isolates were determined using 156 to

2496 μg ml-1 and MIC of remaining 23 isolates were determined using 228 to 3648 μg ml-1.

Fig 5. Frequencies of the MICs of 88 MDR Salmonella isolates to halogen based compounds. X-axis is the 2-fold increase of biocide

concentration; y-axis is percentage of isolates susceptible at each concentration. 5A. 1,3 dibromo, 5,5 dimethylhydantoin, DBH and 5B. Sodium

hypochlorite, SHB.

https://doi.org/10.1371/journal.pone.0209072.g005
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Results showed that the MIC50 of 65 isolates was 1248 μg ml-1 at which 66% of isolates were

susceptible while the remaining 34% were susceptible at a 2-fold higher concentration (Fig

5A). The MIC50 of other 23 isolates was 3648 at which all 23 isolates were susceptible (data not

shown). The MIC of DBH is 2 to 5 fold higher in this study than the maximum concentration

recommended by FDA. It may also be possible that this solution is not stable in water at room

temperature and loses its active bromine.

Alkaline compounds

Sodium metasilicate is considered GRAS and is permitted to be added directly to food for

human consumption [106]. It was approved by USDA-FSIS in 2012 as an alkaline antimicro-

bial component of marinades for poultry [107]. It is ineffective after neutralization. SM acts on

the cytoplasmic membrane and causes lysis of the cells and leakage of intracellular contents.

Susceptibility of Salmonella isolates was tested against SM using a 2- fold serial dilution rang-

ing from 7,540 to120,640 μg ml-1 (1 to 12% SM). Results showed that the MIC50 was 60320 μg

ml-1 (6%) at which 81% of isolates were susceptible; the remaining 19% were susceptible at a

2-fold higher concentration (Fig 6). The MIC of the isolates in this study was higher (6 to 12%)

than the USDA-FSIS maximum approved level of 2% for poultry. The disadvantages of the

chemical include discoloration of the fillets and a suitable pH for microbial growth [108,109].

Phosphate based compound

Trisodium phosphate is recommended as GRAS by the USDA-FSIS. The allowed concentra-

tion of TSP is 8 to 12% (80,000–120,000 μg/ml) to decontaminate poultry carcasses either by

spraying or dipping in the solution [110,111]. It is more effective on gram-negative bacteria

than against gram-positive. It removes bacteria that are not firmly attached to the skin surface

and also removes some surface fat which facilitates the removal of bacteria by the washing pro-

cess [112]. Several studies have shown that TSP treatment of poultry carcasses and meat

Fig 6. Frequencies of the MICs of 88 MDR Salmonella isolates to alkaline compound, Sodium metasilicate, SM. X-

axis is the 2-fold increase of biocide concentration; y-axis is percentage of isolates susceptible at each concentration of

SM.

https://doi.org/10.1371/journal.pone.0209072.g006
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effectively reduced various pathogenic bacteria [113,114]. In this study, the MIC50 was

37,712 μg ml-1 at which 100% of isolates were susceptible (Fig 7 and Table 1). The MIC of Sal-
monella isolates was 50% lower than the allowed concentration.

Arsenical compounds

Susceptibility of Salmonella isolates against two arsenical compounds, ARI and ARA, was

tested. Results from our preliminary experiments showed higher variability in MICs of Salmo-
nella isolates for both compounds. Eight dilutions were tested instead of 5 ranging in concen-

tration from 52 to 6,656 μg ml-1 for ARA (Fig 8A) and 7 to 896 μg ml-1 for ARI (Fig 8B). The

MIC50 was 56 μg ml-1 for ARI and 832 μg ml-1 for ARA at which 84% (ARI) and 61% (ARA) of

isolates were susceptible. The MICs of 4% of isolates for ARI and 19% of isolates for ARA was

4 to>6 fold higher than the MIC50 and were categorized as resistant. The MIC of resistant iso-

lates was 6 to 20-fold lower than previously reported for two arsenic resistant bacteria isolated

from agricultural soil with an MIC of 400 mM (83,200 μg ml-1) for arsenate and 40 mM

(5,200 μg ml-1) for arsenite [115]. Three of our control isolates were ARA resistant including S.

Typhi CT18, S. Typhimurium LT2, and S. Typhimurium 14028. As stated above eight out of

nine S. Newport isolates were resistant to both ARA and CHX, as well as three out of the five

CHX resistant S. Typhimurium isolates were ARA resistant. As the targets of ARA and CHX

are energy metabolism and membranes respectively, no clear method of cross resistance

would be obvious, other than perhaps membrane permiability/transport of the compounds.

Arsenical biocides are commonly used as herbicides, insecticides, fungicides, plant growth reg-

ulators, and animal feed additives. Both arsenite and arsenate are toxic but arsenite As III is 60

times more toxic than arsenate As V [116]. Only four of these isolates were resistant to ARI

and all were resistant to ARA. Arsenic-based animal drugs, such as roxarsone, have been

widely used in poultry feed for more than 60 years to promote faster weight gain with less food

and also to produce healthy colored meat [117,118,119,120,121]. It was estimated that 9 × 105

Fig 7. Frequencies of the MICs of 88 MDR Salmonella isolates to phosphate compound Trisodium phosphate,

TSP. X-axis is the 2-fold increase of biocide concentration; y-axis is percentage of isolates susceptible at each

concentration of TSP.

https://doi.org/10.1371/journal.pone.0209072.g007
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kg of roxarsone was excreted in poultry litter each year which degrades into more toxic water

soluble inorganic arsenic [122,123,124]. In 2011, an FDA study found higher levels of inor-

ganic arsenic residues in chicken livers which were fed roxarsone-supplemented feeds [120].

In response to this study, the manufacturer of roxarsone in the United states voluntary sus-

pended its supplies [120]. At the end of 2015, the FDA completely banned the use of arsenic-

based drugs in food-producing animal feed [120,121]. It was reported that Campylobacter spp

from conventional poultry showed significantly higher MICs for roxarsone than from antimi-

crobial-free poultry suggesting bacteria which are exposed to arsenic feed develop resistance

towards the arsenic [125] However, MICs of arsenate and arsenite were the same for both loca-

tions. This could be because arsenic is one of the most abundant toxins present in the natural

environment and many bacteria have resistance pathways to detoxify arsenic [126]. In one sys-

tem the substrate for the ArsB transport protein and ArsC activity is closely coupled with its

efflux from the cells so that intracellular arsenite does not accumulate [127].

Conclusions

Our custom designed biocide panel provides a rapid method to determine the MICs of 17 bio-

cides for ~50 isolates in less than 48 hours. This biocide plate can be produced in high volume

using an automatic dispenser and can be frozen for future use. The biocide panel would also

be useful in evaluating incremental changes in resistance to biocides over time as bacteria that

were susceptible may develop resistance. The routine monitoring of MICs will be useful in

selecting the most effective and economical antimicrobial agents for decontamination of a par-

ticular environment. The panel was used to test the susceptibility of 88 MDR Salmonella iso-

lates from animal sources obtained from the animal arm of NARMS. All Salmonella isolates in

this study were resistant to a minimum of 2 and a maximum 13 antibiotics and no clear corre-

lation of biocide resistance to antibiotic resistance was detected. All biocides were effective in

killing bacteria and 98 to 100% of isolates were susceptible at either the MIC50 or 2-fold higher

concentration than the MIC50 except ASC, CA, ARA, ARI, and CHX. A positive correlation

was apparent between resistance to ARA and CHX, as well as a correlation between ARA and

Fig 8. Frequencies of the MICs of 88 MDR Salmonella isolates to arsenical compounds. X-axis is the 2-fold increase of biocide concentration; y-

axis is percentage of isolates susceptible at each concentration. 8A. ARA, arsenate; and 8B. ARI, aresenite.

https://doi.org/10.1371/journal.pone.0209072.g008
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ARI. The associations between ARA and CHX also seemed to be serovar specific with S. New-

port, S. Agona, and S. Dublin demonstrating the most co-resistance to ARA and CHX. The S.

Typhimurium controls and a few other Typhimurium isolates also showed some ARA and

CHX co-resistance. The ARI and ARA showed some correlation with each other but not with

other biocides, and there may be correlations between other biocides such as ASC, ARA, and

CHX.

Future work

No breakpoint MICs are defined for biocides to distinguish between resistant or susceptible bacte-

ria. Our study focused on mostly MDR Salmonella, thus a randomly selected group of wild type

isolates from the NARMS collection would be required to determine true wild type MICs. In addi-

tion, more testing of Salmonella known to be resistant to biocides would help define “resistant”

MICs. Therefore, a future goal is to determine the MICs of a large population of Salmonella using

the biocide panel to establish breakpoints. More studies of antibiotic resistant and MDR Salmo-
nella are also necessary to continue to investigate any linkage between biocide resistance and anti-

biotic resistance. Additionally, the MICs of bacteria belonging to other important food-safety

genera or species need to be established; consequently, the panel and methods can be modified to

address different bacteria. Other potential applications for this assay include monitoring develop-

ment of biocide resistance upon repeated exposure to biocides in processing environments. Moni-

toring would also detect the development of biocide cross-resistance leading to insights for

selective rotation of biocides in processing plants. The correlations between ARA and CHX, and

ARA and ARI, as well as other potential associations between different biocides, require further

investigation to determine if these resistances are related to each other through mechanism or a

genetic linkage. As biocides are important in controlling Salmonella, monitoring their efficacy

and detecting any development of biocide resistance or links between biocide and antimicrobial

resistance would be a very valuable application for this tool.
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