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Name recognition plays important role in self-related cognitive processes and also

contributes to a variety of clinical applications, such as autism spectrum disorder

diagnosis and consciousness disorder analysis. However, most previous name-related

studies usually adopted noninvasive EEG or fMRI recordings, which were limited by

low spatial resolution and temporal resolution, respectively, and thus millisecond-level

response latencies in precise brain regions could not be measured using these

noninvasive recordings. By invasive stereo-electroencephalography (SEEG) recordings

that have high resolution in both the spatial and temporal domain, the current study

distinguished the neural response to one’s own name or a stranger’s name, and explored

common active brain regions in both auditory and visual modalities. The neural activities

were classified using spatiotemporal features of high-gamma, beta, and alpha band.

Results showed that different names could be decoded using multi-region SEEG signals,

and the best classification performance was achieved at high gamma (60–145 Hz) band.

In this case, auditory and visual modality-based name classification accuracies were

84.5 ± 8.3 and 79.9 ± 4.6%, respectively. Additionally, some single regions such as the

supramarginal gyrus, middle temporal gyrus, and insula could also achieve remarkable

accuracies for both modalities, supporting their roles in the processing of self-related

information. The average latency of the difference between the two responses in these

precise regions was 354 ± 63 and 285 ± 59 ms in the auditory and visual modality,

respectively. This study suggested that name recognition was attributed to a distributed

brain network, and the subsets with decoding capabilities might be potential implanted

regions for awareness detection and cognition evaluation.

Keywords: stereo-electroencephalography, response classification, auditory/visual modality, name decoding,

self-referencing

1. INTRODUCTION

One’s name is one of the most socially self-related stimuli. According to the “cocktail party
phenomenon,” a quiet whispering of one’s name can arouse awareness even in a noisy environment
(Wood and Cowan, 1995; Getzmann et al., 2017). Because of the specific emotional contents, a
person’s name has the preferential status (Tacikowski et al., 2011; Blume et al., 2017). Cognitive
neuroscientists have highlighted the differences between the brain responses to one’s own name
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and other’s name. For instance, studies based on fMRI have
demonstrated that stimulus of own name elicited unique brain
functional activations in the medial prefrontal cortex, inferior
frontal gyri, anterior cingulate, and anterior insula, while these
activations were not shown under the stimulus of other’s name
(Carmody and Lewis, 2006; Tacikowski et al., 2011, 2013; Qin
et al., 2012). Also, in electroencephalography (EEG) studies, the
own name could elicit unique event-related potentials (ERP)
(Tateuchi et al., 2012; Tamura et al., 2016). In other cases, the own
name resulted in higher P300 (a positive-going ERP) amplitude
and shorter latency compared to other names (Tacikowski and
Nowicka, 2010; Kotlewska and Nowicka, 2015).

The preferential status of own name was different between
healthy subjects and patients with cognitive disorders, thus
for clinical practice, the name presentation paradigm has the
potential to assess cognition and detect awareness, which
serves as a cognitive brain-computer interface (BCI). Among
adults and infants, own name elicited enhanced P300 when
compared to other’s names in the healthy control group,
whereas individuals with autism spectrum disorder (ASD)
showed similar P300 responses to the two names (Parise
et al., 2010; Cygan et al., 2014; Arslan et al., 2020), and
also indicated a disrupted or altered task-related connectivity
(Nowicka et al., 2016). Additionally, for patients with disorders
of consciousness (DOC, e.g., chronic coma), cognitive ERPs
were also highly associated with awakening. Thus, responses of
names could be an index to estimate the degree of conscious
awareness. There has been evidence that the response to own
name, contrasted to a response to any other name, can serve
as a tool for brain function assessment in prolonged DOC
patients (Sergent et al., 2017; Kempny et al., 2018; Li et al.,
2018b).

Most of the existing name-related studies adopted non-
invasive recording techniques of physiological activities. Scalp-
EEG recording has been widely applied in name recognition
tasks (Pan et al., 2014; Nowicka et al., 2016). However, it
is challenging to investigate precise brain regions associated
with name processing by scalp-EEG recording, due to its
superficial recording and low spatial resolution. FMRI provides
a whole-brain scan with high spatial resolution, but the
rapidly changing neural processing can not be captured by
fMRI due to its low temporal resolution. High spatiotemporal
resolution is essential to the measurement of millisecond-level
response latencies in precise brain regions. In comparison,
a minimally invasive approach, stereo-electroencephalography
(SEEG), measures neural activities directly by inserting depth
electrodes containing multiple recording contacts into the
human brain, and thus has balanced millimeter-level spatial
resolution and millisecond-level temporal resolution (Parvizi
and Kastner, 2018). SEEG can record distributed cortical and
subcortical structures simultaneously. Therefore, using abundant
temporal and spatial information, SEEG has the potential to
decode name responses, measure response latencies, and locate
precise response regions over a large spatial scale. Furthermore,
the contribution for classification of each precise region can
be evaluated by SEEG, which can not be implemented using
scalp-EEG or fMRI.

In this study, we aimed to identify effective features to
distinguish name responses in precise regions. Therefore, we
recorded the neural responses to the own name and a stranger’s
name from multiple SEEG subjects, where the two different
names were presented to each subject both acoustically and
visually. Then we evaluated the feasibility and performance
of decoding these two types of cognitive responses via
spatiotemporal features of SEEG. The results show that these two
different names could be predicted using SEEG signals recorded
from multiple brain regions, where the high-frequency activity
produced superior decoding accuracy within the used spectral
features. Besides, the brain regions, including the supramarginal
gyrus (SMG), middle temporal gyrus (MTG), superior temporal
gyrus (STG), and insula could provide rich neural information
for the decoding process under both stimulus modalities.

2. MATERIALS AND METHODS

2.1. Subjects
Nine right-handed subjects (Table 1) participated in this study.
All subjects were intractable epilepsy patients undergoing SEEG
monitoring for seizure localization. SEEG electrodes implanting
configurations were determined strictly for diagnostic purposes

rather than the needs of this study. All subjects signed informed
consent, which was approved by the Ethics Committee of
Huashan Hospital, Shanghai, China (No. 2019-518).

2.2. Experimental Paradigm
It was possible that differences between responses of the two
names were not caused by the inner meanings of the names,
but different pronunciations and intonations in the auditory
modality, or glyphs in the visual modality. But for regions
showing cross-modal high accuracies, it was more likely that
the difference represented the inner meanings of the names. To
investigate the distribution of cross-modal regions, we designed
the name-presented experiment, which contained the auditory
session and the visual session (Figure 1), and the two sessions
were implemented successively. All subjects participated in both
sessions and received their customized stimuli, namely the
subject’s full name and a stranger’s full name. The two names
had the same length, but with different pronunciations. In the
auditory session, the auditory stimulus was presented to each
subject by an in-ear headphone. Two different names were
repeated for fair trials in a pseudo-random sequence. In the
visual session, the own name and the control (other) name were
presented to the subject using a 23 inch LCD monitor.

The subject was asked to discriminate his/her name and the
other name in the mind, without other reactions and movements
during the experiment. For each subject, the two sessions
consisted of the same number of trials with equal duration of
the stimulus. Trial size, duration of the stimulus, and inter-trial
interval kept unchanged across the auditory and visual tasks for
each subject, shown in Table 1. After preliminary analysis for the
first three subjects S1, S2, and S3, we found that 1 s stimulus
duration was enough to elicit the subject’s response, and 1 s
inter-trial interval was enough for the response to revert to the
baseline. Therefore, the stimulus duration and inter-trial interval
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TABLE 1 | Subject demographics, implanting information, neural recording details.

Subject
Age

(years)

Implanting

information

Sampling

frequency

Trial

size per

session

Cue and

preparation

existence

Stimulus

duration

(ms)

Inter-trial

interval

(ms)

S1 30 Left (138), Right (32) 2,000 80 – 2,000 2,000

S2 31 Left (144) 2,000 60 – 2,000 2,000

S3 27 Left (114), Right (30) 2,000 80 – 2,000 2,000

S4 24 Right (104) 2,000 120 – 1,000 1,000

S5 24 Right (108) 1,000 120 – 1,000 1,000

S6 16 Left (104), Right (33) 2,000 120 * 1,000 1,100–1,300

S7 33 Left (150) 2,000 120 * 1,000 1,100–1,300

S8 15 Right (102) 2,000 120 * 1,000 1,100–1,300

S9 32 Left (30), Right (96) 2,000 120 * 1,000 1,100–1,300

The numbers in brackets in the column of “Implanting information” indicates the number of contacts in the hemisphere. The “*” or “−” in the column of “Cue and preparation existence”

indicates whether or not the subject received the cue and preparation time before the name presentation.

were set as 1 s for the following subjects. Furthermore, to avoid
the subject’s adaption, another floating inter-trial interval from
100 to 300 ms was added (Nowicka et al., 2016) for subjects S6,
S7, S8, and S9, and these subjects received a 100 ms cue and
500 ms preparation time before the name presentation to attract
attention. The cues were a short burst of sound in the auditory
session and a fixation cross in the visual session, respectively.

2.3. Data Recording and Electrode
Localization
SEEG data were recorded with a clinical recording system (EEG-
1200C, Nihon Kohden, Irvine, CA) and were digitized at 1,000
or 2,000 Hz. Each depth electrode shaft contains 8-16 contacts.
Each contact is 2 mm long with a 0.8 mm diameter and 1.5
mm spacing distance. For each subject, using pre-implant MRI
and post-implant CT images, we first rebuilt the individual
brain by performing brain reconstruction and segmentation
in Freesurfer (Fischl et al., 2002), which parcelled a range of
different cortical areas and also subcortical structures. Based on
results from Freesurfer, we then identified the 3D coordinates and
the anatomical labels within the brain for all the SEEG contacts
with the iEEGview Matlab toolbox (Li et al., 2019) (Figure 2).

2.4. Signal Pre-processing
Neural activities from frequency bands, high-gamma (60–145
Hz), beta (13–30 Hz) (Kirkby et al., 2018; Sani et al., 2018),
and alpha (8–12 Hz) were examined, and the corresponding
spatiotemporal features were extracted based on their band
power, respectively. Offline data processing was implemented in
the Matlab platform. First, the contacts whose line noise power
at 50 Hz was larger than a significance level were removed from
further analysis. The significance level was defined as median
line noise power across all contacts plus ten times their median
absolute deviation. Then a 50 Hz comb notch filter was applied
to remove the possible line noises and their harmonics. Second,
we referenced the signals using the Laplacian reference method
(Li et al., 2018a). In brief, the signals of each time point were
subtracted by the average signals from adjacent contacts at the

same time point. Third, we band-pass filtered the signals using
a 6th-order Butterworth filter at high-gamma, beta, and alpha
frequency bands separately. The power trace of each contact at
each frequency band was extracted by squaring the absolute value
of the Hilbert transformed signals. The derived power trace was
divided into trials according to the markers at the stimulus onset.
For each trial, we defined the 200 ms interval preceding the
stimulus onset as the baseline, and normalized the power trace
from 0 to 1,000 ms following the stimulus onset using Z-scored
transformation against the baseline. This 1,000 ms power trace
under name presentation was used for the feature extraction.
The trace of each trial was convoluted with an 80-ms Gaussian
window for smoothing (Miller et al., 2016). We computed the
mean and standard error of the power trace across trials for each
contact, and the contacts influenced by artifacts were removed,
where the standard error of power across trials was larger than its
average at a time point. The pre-processing procedure kept 1,027
(auditory session) and 1,041 (visual session) contacts out of 1,185
contacts in total (Figure 2).

2.5. Feature Extraction and Dimensional
Reduction
The procedure of feature extraction was performed for each
subject at each frequency band separately, with the purpose
of identifying the suitable frequency band to classify the two
names. For each contact, the 1,000 ms power trace following
the stimulus onset was separated into 100 non-overlapping
bins with a length of 10 ms. We calculated the mean power
amplitude in each bin and concatenated them as v. The feature
vector of each trial, V, was generated by splicing v from all
contacts. Considering there might be redundancy in such a high
dimensional feature vector V, according to the training set, we
then implement a permutation test to select the most informative
features for decoding at each frequency band (Schalk et al.,
2007; Adriana et al., 2016; Li et al., 2018a). The permutation
test was performed for each feature dimension. In the first
step of the permutation test, for each feature, we aligned its
values across all own/other name trials as x and y, separately,
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FIGURE 1 | Experimental paradigm. In each session, the subject received his name and the other name aurally or visually. The two names were repeated in a

pseudo-random sequence. Subjects performed mental recognition of the name. Four of the subjects heard a short burst in the auditory session and saw a cross in

the visual session before the name presentation.

FIGURE 2 | Electrode locations projected on the individual brain. For each subject, sagittal and transverse views of the hemisphere with electrodes are shown.

Subjects S1, S3, S6, and S9 have electrodes in both hemispheres, and only the hemispheres containing the majority of electrodes are shown. Different colors of the

SEEG contacts indicate the session in which the contact was utilized: green for the auditory session, blue for the visual session, red for both sessions. Small black

dots indicate the SEEG contacts excluded from this study.

and then concatenated x and y as z and then correlated z
with the corresponding labels to obtain the Spearman r-value.
In the second step of the permutation test, we randomly shuffled
the own/other labels and calculated the r-value between z and
randomized labels. Then the randomization step was repeated
1,000 times, and thus, generating a Gaussian distribution with
1,000 surrogate r-values. The p-value was analyzed, which was
the percentage of the original r-value belonging to the Gaussian
distribution. The significance level was set as 0.05 divided by

the feature dimension of V according to Bonferroni correction.
Finally, p-values of all features were calculated, and the 20 most
informative features with the smallest p-value were extracted.
The selected 20 features were derived from different contacts
and time bins among subjects. For a subject, the 20 features
came from 1 to 10 contacts, and they were all significant. The
20-dimensional feature vector (V20), representing task-related
spatial and temporal information, was used for the following
classification process.
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FIGURE 3 | Comparison between the actual classification accuracy and the

empirical distribution of random accuracies. The significance level was set as

the accuracy corresponding to the 95th percentile of the empirical distribution.

This example data was from subject S6’s visual modality.

2.6. Classification
2.6.1. Classifier
The classification was implemented within each frequency band.
Linear discriminant analysis (LDA) and random forest were used
separately to verify the consistency of the analysis results. For
the LDA classification, the extracted feature set V20 was first
subjected to a principal component analysis, and the number of
principal components used for the classification corresponded to
>90% of explained variance, which was 2–6 in different subjects.
For the random forest, 200 decision trees were chosen to avoid
overfitting (Liaw and Wiener, 2002), where each tree randomly
selected a subset of V20 and generated a decision independently,
and then votes of all trees generated the final decision of the
random forest (Breiman, 2001).

2.6.2. Validation
For both classifiers, we evaluated the classification using a leave-
one-out cross-validation (Sani et al., 2018) within each subject.
In brief, a single-trial V20 was left out to be predicted, and the
rest of trials were used for fitting the decoding model, therefore,
there was no overlapping between the training trials and the test
trial. Additionally, the statistical significance of the classification
result was calculated using a permutation test, which aimed
to verify that the classification accuracy exceeded the chance
level significantly (Figure 3). In detail, for each subject, we kept
the output labels of the classifier unchanged, and randomly
shuffled the actual labels across classes. Then the permuted
classification accuracy was calculated using pairs between the
unchanged output labels and the permuted actual labels. This
procedure was repeated 1,000 times under the same frequency
band and classifier, and the significance level of classification
accuracy corresponded to the 95th percentile (p < 0.05) of
the empirical distribution established by randomly permuting
the data (Figure 3; Combrisson and Jerbi, 2015; Branco et al.,
2016). A two-way ANOVA was performed to test the significant
difference in the performance of the three frequency bands
(high-gamma, beta, and alpha) and the two classifiers (LDA and
random forest).

2.6.3. Contribution to Classification
All contacts were clustered according to their anatomic
locations for each subject. To further explore the brain regions’

contribution to the classification accuracy, for each subject, we
first identified the region that contributed the most features
to V20, when multi-region SEEG contacts were used. Second,
classification accuracies of single regions were calculated. In brief,
for each region within the subject, we implemented the same
feature extraction procedure again using contacts in the single
region, and then calculated the classification accuracy of this
single region.

2.7. Identification of Cross-Modal Regions
We then addressed whether each subject had specific single
regions, that both their auditory and visual classification
accuracies exceeded the significance levels (section 2.6.2), and
we termed them as cross-modal regions. For each modality,
to quantify the extent to which the classification accuracy was
caused by the physical difference between the two stimuli,
we evaluated the physical difference between stimuli using
cross-correlation, and then implemented a least-square linear
regression analysis between the cross-correlation values and the
classification accuracies in the cross-modal regions. Besides, the
response latency in these cross-modal regions was calculated.
In each contact, we identified the first time point in which
the response to own/other name showed significant difference
compared with the baseline (the rest state), and identified the first
time point with a significant difference between responses to own
name and other name.

2.7.1. Physical Difference Between Stimuli
Naturally, the two names presented by the in-ear headphone in
the auditory modality had different instantaneous amplitudes,
which was the most distinctive characteristic to distinguish the
two sound sequences in our case. Therefore, the difference
between the two names was assessed by the cross-correlation
of their instantaneous amplitude. In detail, we first extracted
the amplitude envelopes of the two sound sequences using the
Hilbert transform, and then evaluated the difference of the
two envelopes by the Matlab function xcorr, which returned
the cross-correlation of the two time sequences. We used the
cross-correlation value corresponding to 0 lag between the two
sequences. In the visual modality, we adopted an approach
in image processing to compare the two names presented by
the monitor. In detail, the difference between the two name
images was evaluated by the Matlab function xcorr2, which
was the two-dimensional version of xcorr. We used the cross-
correlation value corresponding to 0 shift between the two
images. Finally, the cross-correlation values were normalized in
the range from−1 to 1.

2.7.2. Response Latency
For each contact in the cross-modal region, the response latency
of own/other name was first calculated using a permutation test
similar to that in section 2.5. In detail, we first got the average
high-gamma power amplitude in the 200 ms baseline (rest state)
for each trial, and aligned its samples across all own name trials as
x. At a time point (a bin with a length of 10 ms) after the stimulus
onset, the amplitudes of all own name trials were aligned as y.
Second, the permutation test was used to verify whether there
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was a significant difference between x and y. We explored the first
time point that showed a significant difference between x and y,
and termed it as the response latency of own name. The response
latency of other name was calculated with the same procedure.
Besides, using the same permutation test, we also explored the
first time point in which the responses to own name and other
name showed significant difference.

Besides the latency of response difference, the generation
times of features in V20 were also analyzed. Further, the
generation times of features in V20 depicted not only the first
time point with a significant difference, but also all points with
significant differences through the name presentation, which
were used in the classification.

2.8. Controlling for Rest State
To further validate the proposed classification scheme and
demonstrate the extent of the neural response under name
presentation, we added a control scenario, where the baseline
activity (rest state) was considered and a three-class classification
was conducted. This three-class classification could further
validate not only the classification between two name responses,
but also the activations compared with the baseline. The 1,000
ms interval preceding the stimulus onset was used as the sample
of the rest state, and then it was normalized by Z-scored
transformation. Using multi-region contacts, we implemented
the feature extraction again. Especially, the permutation test
was conducted three times for dimensional reduction, because
the spatiotemporal features were selected using three pairwise
combinations among three classes (rest, own, and other). Each
execution of the permutation test selected ten features, and thus
the total feature dimension after permutation tests was thirty.
The significance level was corrected by Bonferroni correction,
and these thirty features were all significant. For each class, its
sensitivity and precision were defined as follows:

Sensitivity =
TP

TP+ FN
× 100% (1)

Precision =
TP

TP+ FP
× 100% (2)

For each class, TP was the number of samples of the current class
that identified by the classifier; FN was the number of samples
of the class, which were missed by the classifier; FP was defined
as the number of other-class samples, which were identified as
the current class by the classifier. The definition of classification
accuracy for each class was the same as the sensitivity. Therefore,
the classification performance of each class was further assessed
in terms of sensitivity and precision, confusion matrix, and
receiver operating characteristic curve (ROC).

3. RESULTS

3.1. Classification Performance of
Multi-Region Contacts
Figure 4 shows the classification accuracy computed using
different spectral features across multiple regions. The average

accuracy across all subjects calculated using high-gamma power
(81.2 ± 7%) was significantly higher (F = 18.89, p < 0.001) than
that calculated using beta (76.1 ± 7.4%) and alpha power (69 ±

7.6%) based on all sessions. Moreover, the performance achieved
using the combination of high-gamma power and beta power
features (80.1 ± 8.2%) had no significant (p = 0.53) difference
with that of high-gamma power only (Figure 4). Therefore, these
results indicated that high-gamma power activity can provide
the most distinguishable neural information for the classification.
Only features from the high-gamma band were used in the
following classification.

The average classification accuracies of the auditory session
were 84.5 ± 8.3% (LDA) and 83.1 ± 8.2% (random forest). The
average accuracies for the visual session were 79.9± 4.6% (LDA)
and 77.7 ± 4.7% (random forest). Each of these classification
accuracies exceeded its significance level (p < 0.05, section
2.6.2). There was no significant difference (F = 0.09, p = 0.75)
between accuracies calculated using LDA and random forest, and
thus only accuracies calculated using LDA were shown in the
following classification.

3.2. Brain Regions Relevant to
Classification
Table 2 shows the classification accuracy using the single region,
which contributed the most features to the feature set V20

when multi-region SEEG contacts were used. Results showed
that only nine out of eighteen regions in Table 2 achieved
the highest accuracy among all regions for the subject. In
certain regions, including the left insula and the transverse
temporal region of subject S1, the left transverse temporal and
the STG of S7, as well as the STG of S9, the single-region
accuracy of the auditory modality exceeded or approached 90%
(Supplementary Figure 1), which was close to the multi-region
accuracy. The above regions produced the best performance
among all the regions and provided the majority of the features,
where contacts in these regions tended to present prominently
different responses to the two stimuli (own name and other
name, Figure 5A). The results of permutation test in section
2.5 were shown in representative contacts in Figures 5A–F,
where intervals highlighted with yellow indicated that there were
significant differences between the two responses (p < 0.05).
The locations of these representative contacts were shown in
Figures 5G,H. In Figure 5A, there are continuous intervals with
significant differences (p < 0.05). Though other regions such
as the left inferior temporal region of S7 (Table 2) provided
maximum features, they showed relatively low classification
accuracy. Contacts in these regions showed similar responses
to different stimuli (Figure 5B), and they had relatively less or
shorter intervals with significant differences than contacts in
Figure 5A.

3.3. Performance of Cross-Modal Regions
3.3.1. Classification Accuracy
The cross-modal regions were termed as single regions, that both
their auditory and visual classification accuracies exceeded the
significance levels. For easy to compare, in each subject, the
significance levels of all single regions were uniformly set as
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FIGURE 4 | Classification performance of multi-region contacts for all the subjects. The accuracy of each subject was plotted by line graph, and their mean value was

plotted by bar graph for convenient observation. In both auditory (A) and visual (B) modalities, classification was conducted using LDA and random forest. Error bars

depict the standard deviation of the classification accuracies across subjects. The “*” indicates the significant difference. The horizontal black dashed line on the bars

of mean accuracy indicates the mean significance level of classification (section 2.6.2) using high-gamma band across subjects.

the significance level resulted from multi-region contacts. The
results showed that, for each subject, at least seven different
cross-modal regions were found, and all cross-modal regions for
each subject were shown in Supplementary Figure 1. Figure 6
shows the relationship between the physical difference of stimuli
and the classification accuracies in cross-modal regions. During
the calculation of linear regression analysis, several cross-modal
regions of the same subject shared the same physical difference
(cross-correlation value) for each modality. The result showed
there was no correlation between these two measurements for
both auditory modality (k = −3.54, r2 = 0.01, p < 0.001,
Figure 6A) and visual modality (k = −3.91, r2 = 0.02, p <

0.001, Figure 6B), suggesting that the classification accuracy in
the cross-modal region might be not caused by the physical
difference between the two stimuli.

Some cross-modal regions were common across different
subjects, such as SMG (in 100% of subjects), MTG (in
89% subjects), STG (in 78% subjects), insula, fusiform gyrus,
and inferior parietal lobule (in 67% subjects). Representative
cross-modal high-gamma responses of SMG were shown in
Figures 5C,D, and cross-modal responses of MTG were shown
in Figures 5E,F. Average classification accuracies of the above

common cross-modal regions were shown in Figure 7. Among
these common regions, STG achieved the highest auditory
classification accuracy (78.9 ± 11.7%), and insula achieved the
highest visual classification accuracy (69.8± 7.1%).

3.3.2. Response Latency
Within the cross-modal regions of each subject, we then
further identified the locations of cross-modal contacts, which
were defined as the contacts that contributed spatiotemporal
features to V20 of the corresponding region in both auditory
and visual modalities. Across all nine subjects, 260 cross-
modal contacts were identified and the 3D locations of
these cross-modal contacts projected into a standard
Montreal Neurological Institute (MNI) brain model were
shown in Figures 8A–C. Across the cross-modal regions,
SMG and MTG had the most cross-modal contacts (27 in
total for each region), accounting for 20.8% of the total
(Figure 8D).

The response latency in a cross-modal region was considered
as the average latency across all cross-modal contacts within
the region, shown in Figure 9. In all the above common cross-
modal regions, compared to the baseline, latencies of the first
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TABLE 2 | Regions providing maximum features in each session.

Subject Session Region Number of feature Accuracy (%) Highest accuracy

S1 Auditory Left insula/Left transverse temporal 9/11 90/95.1 *

visual Left insula 12 74.1 –

S2 Auditory Left superior parietal 5 78.3 –

visual Left supramarginal 6 81.6 –

S3 Auditory Right precuneus 6 76.5 *

visual Left superior parietal 7 69.2 –

S4 Auditory Right superior temporal 7 73.3 *

visual Right inferior parietal 5 70.9 –

S5 Auditory Right superior temporal 14 82.5 *

visual Right supramarginal 9 70 –

S6 Auditory Left pars opercularis 7 61.3 –

visual Right caudal middle frontal 14 64.8 –

S7 Auditory Left transverse/superior temporal 10/9 97.7/97.7 *

visual Left inferior temporal 19 71.8 *

S8 Auditory Right precentral 8 70.8 *

visual Right precentral 6 68.4 *

S9 Auditory Right superior temporal 20 88.4 *

visual Right superior temporal 8 70 –

The “*” or “−” in the column “Highest accuracy” indicates whether or not the region achieved the highest accuracy among all single regions for the individual.

activation for own name and other name were relatively short:
in the auditory modality, the average latencies were 88 ± 25
and 85 ± 25 ms for own name and other name, respectively.
Please note that the number following the “±” indicated the
standard error across regions. In the visual modality, the average
latencies were 72 ± 16 and 114 ± 35 ms for own name and
other name, respectively. In contrast, the first time point in
which own name and other name showed significant difference
had a longer latency, and the values were 354 ± 63 and 285 ±

59 ms in the auditory and visual modality, respectively. In all
common cross-modal regions, using cross-modal contacts from
different subjects, a permutation test showed that there was no
significant difference between latencies for own name activation
and other name activation, while the latency for the own-other
difference was significantly longer than the above two latencies
(p < 0.05).

3.3.3. Distribution of Generation Time of Features
Figures 10A–F shows the probability density function of
generation times of features in V20. For each cross-modal region,
the generation time distribution of features varied between
modalities, whereas the probability density functions reached
a maximum at about 300–800 ms under both modalities: in
different cross-modal regions, the maximums of probability
density functions occurred at 310–831 ms for the auditory
modality, and the maximums occurred at 278–772 ms for the
visual modality.

3.4. Classification Performance With Rest
State
Figure 11 shows the evaluation of the three-class classification
performance when multi-region contacts and high-gamma band

features were used. The average sensitivities across classes were
80.4 ± 6.1 and 76.4 ± 8.8% for the auditory and visual
modalities, respectively (Figures 11A,D), which were slightly
lower than the accuracies in the above two-class classification.
Figures 11A,D also show the average precisions across classes,
and the values were 80.6 ± 7.2 and 76.8 ± 10.9% in the auditory
and visual modality, respectively. Further, the confusion matrices
showed that the rest state achieved the highest average accuracy
among the three classes, and the values were 85.7 ± 5.9 and
85 ± 3.7% in the auditory and visual modality, respectively
(Figures 11B,E). However, the average accuracy for each name
stimulus was much lower, with a range from 70.1 to 78.3%
in both modalities. This finding indicated that it was relatively
easy to discriminate the rest state from different stimuli states
because the features in the rest state were different from features
under name stimuli. Therefore, the ROC curve of the rest state
showed the highest area under curve (AUC), and the values
were 0.985 and 0.986 in the auditory and visual modalities
(Figures 11C,F).

4. DISCUSSION

4.1. Influencing Factors of Classification
Performance
In this study, we demonstrated the feasibility of classifying
the subject’s name and the other name using SEEG from
multiple brain regions. The accuracies were 84.5 ± 8.3% in the
auditory modality and 79.9 ± 4.6% in the visual modality, where
spatiotemporal features of high-gamma power achieved the best
classification performance (Figure 4). When the rest state was
added for the control scenario, the three-class classification
accuracies did not show sharp declines because the high-gamma
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FIGURE 5 | Representative high-gamma-power traces following own and other name presentation. (A–F) Shows responses to the two names in different contacts.

The blue and pink shaded region represents the standard error across trials. The intervals highlighted with yellow indicate that there were significant differences

between the two responses (p < 0.05). Vertical dashed lines (Time = 0 ms) indicate the stimulus onset. (G,H) Show six contact locations in the sagittal and transverse

view of the standard MNI brain model. The response traces in (A–F) and the corresponding contact locations in (G,H) are matched with different numbers and colors.

activity in the rest state was different from activations of name
stimuli, which could be captured by the feature extraction
approach relatively easily. The performance of high-gamma
band was in accordance with the results reported in motor-
task studies (Chestek et al., 2013; Bleichner et al., 2016).
These excellent performances of the high-gamma band had
potential physiological interpretations. The high-gamma band
is considered to reflect the local neural population’s activity
directly around or underneath the recording electrode (Ray
et al., 2008). Thus, the high-gamma activity indicates the
excitability of the local region (Cardin et al., 2009; Parvizi
and Kastner, 2018), and could be used as a reliable index
to discriminate the task state from the rest state (Li et al.,
2018a). On the other hand, accuracies computed using the
beta and alpha bands could also exceed the significance
levels (Figure 4). As we know, low-frequency oscillations in
beta and alpha bands are considered carrier frequencies for
communication between distant brain regions (Potes et al.,

2014; Parvizi and Kastner, 2018). It was likely that the beta
and alpha band provided a degree of Supplementary Material

for the classification besides the high-gamma band, because
beta and alpha activity may modulate the high-gamma
response, especially in cognitive tasks (Parvizi and Kastner,
2018).

We noticed that classification accuracies varied across subjects
(Figures 4A,B). This might be caused by individual differences in
electrode implantation. The most typical example was subject S1,
S7, and S9’s auditory session (Figure 4A). These cases achieved
high accuracies (93.4% on average) with a large number of
electrode contacts (24 on average) in their STG and transverse
temporal gyrus, covering parts of the primary auditory cortex. In
contrast, subjects S2, S4, S5, and S6 had a comparatively small
number of contacts in STG (11 on average), which might not
capture enough information in the primary auditory cortex, and
thus, might account for the inferior accuracies in the auditory
session. The current result also emphasized the importance
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FIGURE 6 | Results of the linear regression analyses between the physical difference of stimuli and the classification accuracy. The physical difference of stimuli was

evaluated by the cross-correlation value, and several cross-modal regions of the same subject shared the same cross-correlation value for each modality. (A,B) Show

results for the auditory modality and visual modality, respectively (p < 0.001).

FIGURE 7 | Average classification accuracies of cross-modal regions across

subjects. These regions were common in at least 67% of subjects, even the

supramarginal gyrus was common in all subjects. Error bars depict the

standard deviation of the classification accuracies across subjects.

of accurately localizing the selective neural regions in further
decoding study.

4.2. Significance of Cross-Modal Regions
In this work, we found some regions produced cross-modal
responses, and these regions were more likely name-related
(Tacikowski et al., 2013). The classification accuracies of these
cross-modal regions exceeded the significance level (Figure 7
and Supplementary Figure 1). It has been known that the
physical features of stimuli in the auditory and visual modality
are processed in the primary auditory cortex and primary
visual cortex, respectively, and these two functional areas locate
differently (Brodmann, 2007). STG was a cross-modal region in
the current study. Not surprisingly, STG showed high accuracy
in subjects S1, S7, and S9’s auditory sessions; this was possible

because the auditory cortex in this region was sensitive to
different phoneme stimuli (Mesgarani et al., 2014). Interestingly,
as a part of the auditory cortex, STG also showed significant
accuracy in subjects S1, S2, S4, and S9’s visual session in the
current study. Previous studies have shown that STG is a
higher-order visual region involved in the analysis of biological
stimuli and can be activated by observation of biological motion
(Matthys et al., 2009), it also participates in visual search, spatial
perception (Ellison et al., 2004; Gharabaghi et al., 2006), and
speech perception via facial expressions (Reale et al., 2007).
Moreover, brain responses in STG during social cognition were
significantly reduced in patients with borderline personality
disorder and ASD compared to controls (Dziobek et al., 2011;
Mathersul et al., 2013). STG also showed greater activation to
one’s own name, self-related name, or familiar name than a
stranger’s name (Carmody and Lewis, 2006; Tacikowski et al.,
2013). Therefore, parts of the STG might process cross-modal
information and even the high-order cognitive process of self-
related information. While auditory accuracies in STG were
much higher than visual ones, the visual accuracies still exceeded
the chance level significantly. One possible explanation was that
parts of STG were involved in high-order cognition processing in
both auditory and visual sessions. Especially, it also participated
in low-order sound processing. Additionally, there might exist
other possibilities. An fMRI study scanned both the auditory
cortex and the visual cortex, and suggested that aurally presented
names elicited more extensive and more reliable activations
than visually presented names (Tacikowski et al., 2013). This
phenomenonmight be natural because people more often receive
names by spoken versions in everyday life (Nowicka et al., 2016).

SMG was the most common cross-modal region in all
subjects, suggesting its partial roles in self-related or name
information processing. Similarly, studies have shown that self-
other distinction in the emotional domain might be subserved by
SMG (Sugiura et al., 2006; Silani et al., 2013), and even spared
self-other distinction during empathy in ASD was relevant to an
intact SMG network (Hoffmann et al., 2016).
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FIGURE 8 | Cross-modal contacts projected on the three-dimensional standard Montreal Neurological Institute (MNI) brain model. (A–C) Show the brain model and

cross-modal contacts in a sagittal, coronal, and transverse view, respectively. These contacts were all from cross-modal regions in Figure 7, and they provided

informative features to both modalities. (D) Shows the proportion of single-region contacts in all cross-modal contacts. In brief, the number of total cross-modal

contacts from all subjects was added, and the number of cross-modal contacts in each region from different subjects was divided by the total, generating the

proportion. Common cross-modal regions in at least 67% of subjects were highlighted with different colors, and other regions were displayed with gray.

FIGURE 9 | Latencies for own name activation, other name activation, and the difference between the two types of responses, marked as “Own vs. Rest,” “Other vs.

Rest,” and “Own vs. Other,” respectively. (A,B) Correspond to the auditory and visual modality, respectively. The error bar indicates the standard error across all

cross-modal contacts within the region. The “*” indicates the significant difference (p < 0.05).

As the second most common cross-modal region in this
study, MTG showed greater activation to one’s own name in
fMRI studies (Carmody and Lewis, 2006), its activation was
also displayed when the subject recognized characteristics that

described himself/herself (Feng et al., 2018). Also, it was reported
that MTG and SMG might play a role in word recognition,
which mapped the physical structure of stimuli to the lexicon
and accessed a lexical candidate (Stoeckel et al., 2009; Tacikowski
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FIGURE 10 | Distribution of generation time of features. (A–F) Indicate the single region’s probability density function of generation time of features in V20. In each

cross-modal region, the generation times of features derived all cross-modal contacts were used to generate the probability density function.

FIGURE 11 | Classification performance for three classes including rest state. (A–C) Show evaluation of the auditory modality. (D–F) Show evaluation of the visual

modality. Specifically, (A,D) show the sensitivity and precision. In these two sub-figures, the bars indicate the mean across three classes, and the error bars indicate

the standard deviation across classes. (B,E) Show the average confusion matrices across subjects, and (C,F) show the average receiver operating characteristic

curves of three classes across subjects.

et al., 2011). Therefore, it was probably that high-order roles of
SMG and MTG in self-other distinction or word recognition led
to response differences in both modalities.

Further, in a hypothetical case, if the classification accuracy
of two names was mainly caused by physical differences between
the stimuli, there would be a negative correlation between

the cross-correlation value of stimuli and the classification
accuracy. However, we did not find a correlation between the
two measurements in these cross-modal regions under both
modalities. This finding further reduced the possibility that
the difference between responses in these cross-modal regions
was caused by low-order physical stimuli. Therefore, it was
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more likely that the classification performance was associated
with high-order cognition. Additionally, for both modalities, the
analyses of response latency showed there was significant early
activation for own name and other name, with an average latency
in the range from 72 to 114 ms. These latencies were close to
some ERP components including P100 (a positive component
peaking approximately 100ms after the stimulus onset) andN170
(a negative deflection reaching its maximum 170 ms after the
stimulus onset), which reflect exogenous processes modulated
by physical attributes of stimuli but not by cognitive processes
(Coles and Rugg, 1995; Cygan et al., 2014). In contrast, the
own-other difference had a longer latency of 354 ± 63 and
285 ± 59 ms in the auditory and visual modalities. These
latencies were close to the P300 (a positive component peaking
∼300 ms after the stimulus onset), which is considered to be
an endogenous potential, reflecting decision making, stimulus
evaluation, and recognition (Coles and Rugg, 1995; Smigielski
et al., 2020). Therefore, the current cross-modal regions might
process low-order physical information of the stimuli at about
100 ms after the stimuli onset, and then the meaning of names
might be processed at about 300 ms after the stimuli onset.
The significant response difference after about 300 ms mainly
contributed to the classification. Analyses for the generation
times of features in V20 suggested that the two names could be
distinguished best at about 300–800 ms after the stimulus onset.
This time range was close to the results of scalp-EEG studies,
which suggested that ERPs between 350 and 850 ms after the
stimulus onset were the most distinguishable for different names
(Tacikowski and Nowicka, 2010). Especially, the current study
located precise cross-modal regions that generated the response
difference of cognitive contents, which couldn’t be achieved by
scalp-EEG measurements.

All subjects presented at least seven cross-modal regions. It
was feasible to decode cognitive contents using these regions
(Figure 7 and Supplementary Figure 1), where STG, MTG,
middle frontal gyrus, insula, fusiform gyrus, and SMG are
discussed in previous name-related researches (Carmody and
Lewis, 2006; Sugiura et al., 2006; Tacikowski et al., 2011, 2013;
Qin et al., 2012). In the macroscopic view, these critical cross-
modal name-related regions spanned the frontal, temporal, and
parietal lobe, indicating that the processing of name-recognition
involves complex distributed networks (Qin and Northoff, 2011;
Tacikowski et al., 2011).

4.3. Implications
Awareness and cognition assessment by direct observation of the
responses might be influenced by inherent variabilities among
individuals. For ease of comparison, the classification accuracy
of responses to different stimuli has seemed like an alternative
evaluation index to compensate for the above shortcoming (King
et al., 2013). A study has detected potential awareness in patients
with DOC via a hybrid BCI (Pan et al., 2014), owing to the
promising classification accuracy of the patient’s facial photo and
an unknown facial photo. Studies have also shown that name-
response and facial photo-response have a variety of similar
components and trends (Tacikowski and Nowicka, 2010; Pawel
et al., 2011; Cygan et al., 2014). Therefore, the classification

accuracy of name-responses is another potential index for
conscious awareness detection and cognitive function evaluation.
In a scalp-EEG study, aurally presented own name and other
name could be distinguished using P300 with accuracies of
80.9 and 74.5%, when the length of names was three Chinese
characters and two Chinese characters, respectively (Yang et al.,
2020). The accuracy using scalp-EEG was slightly lower than
the auditory accuracy using high-gamma band (84.5%) in the
current study. Besides, our name classification framework could
serve for the decoding process of a bidirectional cognitive
BCI system. Depth electrodes also provided a way for deep
brain electrical stimulation in the meantime, where cross-
modal regions were potential target regions of stimulation for
patients with disorders of cognition and consciousness (Lemaire
et al., 2014; Sankar et al., 2014). Gradual improvements in
techniques of name decoding would benefit patients with ASD
and DOC eventually.

4.4. Limitations and Future Work
Even though we have demonstrated the possibility of decoding
names using SEEG signals, there were several limitations in this
work. We only presented the subject’s name and a stranger’s
name to patients to limit their psychological burden. In future
work, we would present more diverse names to a larger number
of subjects to further exclude the possibility of physical features
of stimuli. Also, the names would be subdivided into different
levels of familiarity and emotional content to generate more
comprehensive evaluations. Additionally, connectivity networks
involving in name processing would be further investigated using
distributed SEEG.

5. CONCLUSION

We provided a decoding framework for name processing using
SEEG. The results of the current work indicated the feasibility
of decoding names from both multiple brain regions and
a certain crucial region. Cross-modal significant classification
accuracies in a single region might locate subsets of the name-
recognition network. Abundant spatiotemporal information of
SEEG provides new insights into the cognitive processes and
would encourage further clinical applications.
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