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Abstract 

Background: Frailty and falls are two adverse characteristics of aging that impair the quality of life of senior people 
and increase the burden on the healthcare system. Various methods exist to evaluate frailty, but none of them are 
considered the gold standard. Technological methods have also been proposed to assess the risk of falling in seniors. 
This study aims to propose an objective method for complementing existing methods used to identify the frail state 
and risk of falling in older adults.

Method: A total of 712 subjects (age: 71.3 ± 8.2 years, including 505 women and 207 men) were recruited from two 
Japanese cities. Two hundred and three people were classified as frail according to the Kihon Checklist. One hundred 
and forty‑two people presented with a history of falling during the previous 12 months. The subjects performed a 45 s 
standing balance test and a 20 m round walking trial. The plantar pressure data were collected using a 7‑sensor insole. 
One hundred and eighty‑four data features were extracted. Automatic learning random forest algorithms were used 
to build the frailty and faller classifiers. The discrimination capabilities of the features in the classification models were 
explored.

Results: The overall balanced accuracy for the recognition of frail subjects was 0.75 ± 0.04 (F1‑score: 0.77 ± 0.03). 
One sub‑analysis using data collected for men aged > 65 years only revealed accuracies as high as 0.78 ± 0.07 (F1‑sc
ore: 0.79 ± 0.05). The overall balanced accuracy for classifying subjects with a recent history of falling was 0.57 ± 0.05 
(F1‑score: 0.62 ± 0.04). The classification of subjects relative to their frailty state primarily relied on features extracted 
from the plantar pressure series collected during the walking test.

Conclusion: In the future, plantar pressures measured with smart insoles inserted in the shoes of senior people may 
be used to evaluate aspects of frailty related to the physical dimension (e.g., gait and balance alterations), thus allow‑
ing assisting clinicians in the early identification of frail individuals.
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Background
Frailty and falls are two adverse characteristics of aging 
that negatively impact the well-being of senior people. 
Frailty results from cumulative declines across multiple 
physiological systems, causing vulnerability to adverse 
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outcomes and increasing the risk of dependency in older 
adults [1]. The global prevalence of frailty in people 
aged ≥50 years is estimated to be between 12 and 24%, 
depending on the diagnostic criteria [2]. Falls are a sig-
nificant health issue in older people that can result from 
a combination of intrinsic and extrinsic factors. Physical 
weakness due to frailty is one of these factors [3]. Indeed, 
Cheng and Chang (2017) have reported a higher risk of 
falls in frail people compared to their robust counterparts 
(odd ratio: 2.50; 95% confidence interval: 1.58–3.96) in 
a sample of 102,130 individuals aged over 65 years [3]. 
Falls lead to injuries ranging from simple bruises to more 
severe fractures and significantly burden healthcare sys-
tems. In the current context of aging societies, public 
health strategies to promote healthy aging need to be pri-
oritized [4]. These strategies may include early diagnosis 
of frailty and identifying falling risks to develop interven-
tions to slow down the frailty process and prevent falls 
[5, 6].

Frailty diagnosis
During the past two decades, the development of robust 
diagnostic tools for the early detection of frailty in aging 
individuals has been the object of many efforts by the 
geriatrician community [7]. Several methods have been 
developed to evaluate frailty in all dimensions (i.e., physi-
ological, physical, cognitive, and social). In Japan, the 
Kihon Checklist is the primary choice for evaluating 
frailty [8]. This questionnaire consists of a self-reporting 
survey of 25 yes/no questions that cover 7 dimensions of 
frailty, i.e., instrumental and social activities of daily liv-
ing, physical functions, nutritional status, oral function, 
cognitive function, and depressive mood (Supplemen-
tary Material 1). To complement the existing methods, 
researchers have been interested in using technological 
tools to analyze postural balance and gait stability and 
find early markers of frailty [7, 9–15]. Greene et al.  [15] 
achieved 84 and 94% accuracy in classifying pre-frail 
and healthy women and men, respectively. In this study, 
124 subjects performed the time up and go (TUG), sit-
to-stand, and standing balance tests, with accelerometer 
sensors attached to different body parts for each test 
(TUG: 2 sensors on each shin, sit-to-stand: thigh, stand-
ing balance: waist). Despite promising results, previ-
ous studies come with several limitations [7]. First, they 
have usually been conducted on a limited number of 
subjects. Second, the proposed evaluation systems may 
involve a network of sensors attached to different parts 
of the body rather than one single easy-to-use device. 
Third, these systems are essentially based on inertial sen-
sors and only Chkeir et al. (2016) have explored ground 
reaction sensing technologies [12]. Fourth, only a few of 
them integrate statistical learning-based algorithms [7, 

13, 15]. Finally, technological tools are often used in con-
junction with functional tests to produce a more robust 
testing environment [13–15]. To summarize, easy-to-use 
technology able to perform frailty assessments in free-
living conditions or short walking segments are yet to be 
developed.

Fall risk assessment
Several approaches have also been considered for assess-
ing the risk of falling in older adults. First, functional 
tests, such as the TUG, have been diverted from their 
initial use to predict future falling events in senior peo-
ple [16, 17]. The reports showed contrasting results. 
Second, the evaluation of gait stability by measuring a 
panel of spatial-temporal parameters (cadence, stride 
length, speed, etc.) has been suggested. Early observa-
tions are promising. Hausdorff et al. (2001) identified gait 
stride time variability as a good predictor of future fall-
ing events in older adults living in community dwellings 
[18]. However, the limited number of studies associated 
with a wide variability of methodologies and results does 
not allow the identification of standardized tests [19]. 
Finally, several studies have analyzed plantar pressures 
during walking trials [20–23]. Svoboda et al. (2017) used 
a prospective trial protocol. They observed a statistical 
relationship between the inter-step variability of displace-
ment of the center of pressure (COP) in the medial-lat-
eral direction and future falling events in senior people 
[22]. A greater variability was found among fallers com-
pared to non-fallers. Despite these promising observa-
tions, space and cost are two significant challenges in 
implementing multiple-step walking trials in hospitals or 
community dwellings. The installation of walkways fea-
turing force plates to collect spatiotemporal gait parame-
ters requires a large space. Alternatively, portable devices 
such as the F-scan insole (Tekscan Inc., MA, USA) can 
be used to measure plantar pressure. In practice, the 
high cost associated with the inclusion of hundreds of 
pressure-sensitive transducers on each insole has limited 
its use to research trials only. The recent development of 
non-expensive wearable plantar pressure measurement 
insoles might help increase the portability and accessibil-
ity of COP measurement methods while providing access 
to a wide range of gait-sensitive parameters [24–26].

The present study addresses the feasibility of using a 
simple 7-sensor plantar measurement insole inserted 
in Velcro shoes [26–28] to predict frailty and evaluate 
the risk of falling in older adults. Plantar pressure data 
were collected from 774 senior Japanese people dur-
ing a standing balance test and a 20 m walking trial. We 
hypothesized that statistical learning models trained with 
spatial-temporal and COP parameters extracted from 
the plantar pressure data collected during these two tests 
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allow classifying subjects relative to their frailty status 
and history of falling events. A secondary analysis aims 
to elucidate the features of plantar pressure that may play 
the most crucial role in the classification.

Method
Plantar pressure measurement insole
This study measured plantar pressure with a 7-sensor 
plantar pressure measurement insole device developed at 
Ochanomizu University and described elsewhere [26–29] 
The insole consists of a 2 mm thick shoe insole with seven 
pressure-sensitive conductive rubber sensors. The sen-
sors respond to force stimuli ranging from 25 to 550 kPa, 
and the output ranges from 0 to 3.0 V. The analog-to-dig-
ital converter uses a 10-bit scale. Data from mechanical 
load repeatability tests are available in Supplementary 
Material 2. The data were sampled at 100 Hz. The sensors 
are located in the heel, lateral midfoot, center of the mid-
foot, lateral forefoot, center of the forefoot, medial fore-
foot, and big toe (Fig.  1). The 7-sensor insole has been 
reported to provide valid COP measurements [28]. A 
wireless data transmission unit (Bluetooth Ver. 2.0, Class 
1) was connected to each insole. The system is reusable 
and fully portable, allowing real-time recording during 
normal ambulatory activities. The insoles (left and right 
feet) were inserted into commercial Velcro shoes (Kaiho-
shugi M003, Asahi Corp., Japan). The shoes were light-
weight and easy to use. They have a stiff midsole with a 
2 mm medial drop in the heel area and an additional 
1 mm drop in the medial forefoot region. They are also 
commonly used in community dwellings. The insoles 
were available from 22 cm to 28 cm to fit each partici-
pant’s foot size. This material is shown in Fig. 1. For one 
given shoe size, the same pair of insoles was used for the 
whole experiment. The sensor calibration was verified 
every 4 months using standardized mechanical loads. No 
significant deviation was noted over time, emphasizing 
the durability of the material and ensuring measurement 
consistency over the whole experimental period.

Apart from the 7-sensor plantar pressure measurement 
insole devices, no other sensing technology was used in 
the present study.

Subject recruitment and data collection
A total of 774 senior people who could walk indepen-
dently and live in both rural and urban areas of Japan 
participated in the study. Exclusion criteria at the time 
of recruitment included (i) presence of paresis or any 
other musculoskeletal diseases, (ii) history of heart dis-
ease or stroke, and (iii) history of any surgery in the 
6 months preceding the measurement. Some subjects 
were recruited in Shiki city, Saitama prefecture, Japan, 
with the help of  the municipality health and welfare 

administration. Other subjects were recruited in the 
northwestern part of Akita Prefecture through Peaberry 
Corporation (Ogata city, Japan), a local healthcare pro-
vider. Measurements were performed at the Shiki City 
Health Promotion Center, the Shiki City General Welfare 
Center, the Shiki City Fourth Elementary School, and in 
the premises of the Peaberry Corporation. Measure-
ments were performed between 2014 and 2016.

The experimental visits were conducted as follows. 
First, anthropometric data were collected for all partici-
pants. Second, the subjects put on a pair of the above-
described Velcro shoes equipped with two 7-sensor 
insoles and performed a 45 s standing balance test and a 
20 m walking trail test. In the standing test, subjects kept 
their feet in a specified position with a heel distance of 
80 mm and tips of shoe toe distance of 120 mm. They 
were asked to gaze at one fixed circle of 10 cm diameter 
attached at eye height on a wall located 1.5 m before 
them [30]. The basic instruction consisted in asking the 
subjects to maintain the posture for “approximatively 1 
minute”. The last 45 seconds of the test were used for the 
analysis. In the walking experiment, the subjects walked 
straight for 10 m at a self-selected pace toward a goal 
materialized by a mark on the ground. Then, the subjects 
were asked to turn around and come back to the starting 
point. On their way back to the starting point, again, the 
subjects walked straight for 10 m at a self-selected pace. 
Data were collected and analyzed for the two 10-m walk-
ing segments. Data were collected at a sampling rate of 
100 Hz.

During the interviews, 147 subjects indicated that they 
had experienced at least one falling event within the 
12 months preceding the visit. The subjects confirmed 
the results from the Japanese frailty Kihon checklist 
obtained from Shiki City Health and Welfare Adminis-
tration and Peabearry Corporation. A total of 203 sub-
jects were considered frail. Frailty was assessed using the 
20 first questions of the Kihon checklist and the original 
“4-criteria treatment method” described in Supplemen-
tary Material 1 and elsewhere [8]. Forty-five subjects who 
could not remember whether they had fallen during the 
preceding 12-month period or did not present any Kihon 
checklist result record were excluded from the analysis.

The data of three subjects who had mistakenly worn 
an insole with faulty sensor connections were excluded 
from the analysis. Additionally, the data of 14 subjects 
for whom it was impossible to detect at least three steps 
for each foot (c.f., “signal processing and data reduction”) 
were also withdrawn from the analysis. Finally, the data of 
712 subjects (age: 71.3 ± 8.2 years, women: 505, men: 207, 
frail: 203, history of falling in the previous 12 months: 
142) were used for the extraction of data features and sta-
tistical analysis.
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Signal processing and data reduction
The raw data were converted into Newtons (N). Each 
data file contained 14 plantar pressure time series cor-
responding to the 7-sensor data for the left and right 
feet. The overall data reduction process is illustrated 
in Fig.  2. The plantar pressure data obtained during 
the balance test were used to compute the 2-foot COP 
excursion trajectory. The information was used to 
compute features related to “the standing COP analy-
sis” (Fig. 2). Plantar pressure time-series data obtained 
from the walking tests were cleaned to focus on steps 
executed at a constant traveling speed. Depending on 
the subject, two to four steps corresponding to the 
acceleration and deceleration phases were manually 
removed from each 10 m test segment. Examples of 
the raw 2-foot plantar pressure time series are shown 
in Supplementary Material 3. Then, the time series was 
reduced in two different ways. First, the sum of the 

pressure outputs of the 14 pressure sensors was calcu-
lated at each sampling time. This new single time-series 
was used to compute the data features in the frequency 
domains (Fig.  2). Second, data corresponding to the 
stance phase of each foot was selected using an algo-
rithm capable of detecting strike and lift events to build 
a new data set comprising the plantar pressure infor-
mation for each isolated stance. This set of isolated 
steps (i.e., stance phases) was used for the computation 
of four categories of data features, extracted from the 
“peak analysis,” “1-foot COP trajectory analysis,” “gait 
phase analysis,” and “wavelet analysis.”

Feature extraction
A total of 182 data features were extracted. They were 
adapted from parameters described in previous studies 
that used plantar pressure information to investigate the 

Fig. 1 Overview of the 7‑sensor plantar pressure measurement insole device and output. A: Seven pressure sensors are inserted in a 2 mm‑thick 
hygienic shoe insole. The insole is inserted in a commercial Velcro shoe, and the data acquisition unit is attached using an additional piece of Velcro 
on the tong. B: A five‑second example of plantar pressure data was collected from a walking test
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risk of falling [12, 22], explore gait alterations in various 
populations [20, 23, 31], or predict activities of daily life 
[29]. Features were derived from six different analyses of 
the data. In this section, the medial-lateral and anterior-
posterior axes are denoted as x and y. One category of 
features was extracted from plantar pressure data col-
lected during the standing balance test.

– Standing COP analysis. After computation of the 
COP excursion trajectory, the range of variations in 
x and y, the total length of the excursion trajectory, 
and the total surface covered by the COP excursion 
were calculated (Fig. 3A). This category includes four 
extracted features.

Five categories of features were extracted from plan-
tar pressure data collected during the walking test.

– Frequency Domain Analysis. A fast Fourier trans-
form was performed after the output of the 14 sen-
sors was summed at each sampling point to inte-
grate the temporal information on only one time 
series. The average power spectrum between 2 and 
10 Hz, the standard deviation of power spectrum 
between 2 and 10 Hz, power density, and mean fre-
quency between 2 and 10 Hz were computed. This 
category includes four extracted features.

– Peak analysis and area under the curves. First, three 
parameters were extracted for each isolated step 

and each sensor. These parameters include 1) the 
maximum pressure and 2) the time at which this 
maximum pressure occurred relative to the total 
stance time. In addition, each isolated step was res-
ampled on a 100-point long band to obtain time-
standardized data.  3) The area under the pressure 
curve was extracted for each isolated step and for 
each sensor. Second, the four following data fea-
tures were calculated for each trial and each of the 
three parameters: 1) the average of all the left foot 
steps, 2) the standard deviation of all the left foot 
isolated steps, 3) the standard deviation of all iso-
lated steps of both feet, and 4) the left and right 
foot average difference. Thus, four features were 
computed for three parameters and seven sensors, 
resulting in 84 extracted features in this category.

– 1-foot COP trajectory analysis. The COP trajectory 
was computed for each stance phase of each iso-
lated step. First, the following 13 parameters were 
extracted: the minimum and maximum values on 
x and y, x and y coordinates at the double to single 
stance and single to double stance points, x coor-
dinates of COP at the y coordinates of the center 
midfoot and center forefoot sensors, respectively; 
the range of variations on x and y; and the center of 
pressure excursion index, calculated as the ratio of 
COP trajectory excursion on the distance between 
the lateral and medial forefoot sensors (Fig. 3B). Sec-
ond, the four following data features were calculated 

Fig. 2 Overview of the data reduction process. AUC: area under the curve. COP: center of pressure
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Fig. 3 Illustration of some selected parameters computed during the data feature extraction process. A: Data features extracted from the Standing 
COP analysis. The black line illustrates the COP excursion trajectory. The light blue area illustrates the surface covered by the COP excursion 
trajectory. B: Variables used in 1‑foot COP trajectory analysis. The black line illustrates the COP trajectory. The red line segment illustrates the 1‑foot 
COP excursion. The numbered black squares indicate the virtual locations of the 7 sensors. The green triangle marks are the starting point and the 
endpoint of the COP trajectory. C: Example of plantar pressure time series for one isolated step obtained during the walking test. Plantar pressures 
treated for each isolated step are the raw material for the extraction of all time domain features in the following categories: “peak analysis and area 
under the curves”, “1‑foot COP trajectory analysis”, “gait phase analysis” and “Wavelet analysis”. Blue: heel, orange: lateral midfoot, green: center of the 
midfoot, red: lateral forefoot, purple: center of the forefoot, brown: medial forefoot, pink: big toe. D: Variables used in the wavelet analysis (extracted 
from C). The black line corresponds to the envelope of the 7 sensors. The blue triangle illustrates the first and the second peaks typically observed 
during the stance phase. The red diamond illustrates the valley between the two peaks. The orange lines describe the peak widths, calculated at 
30% of their magnitude. The green break lines correspond to the slopes on each side of the peaks. x: medial‑lateral axis. y: anterior‑posterior axis. In 
panel A, COP excursion distances were doubled on the x and y axes to increase readability
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for each trial and each of the 13 parameters: 1) the 
average of all the left foot isolated steps, 2) the stand-
ard deviation of all the left foot isolated steps, 3) the 
standard deviation of all isolated steps of both feet, 
and 4) the left and right foot average difference. This 
category included 52 extracted features.

– Gait phase analysis. The following two parameters 
were computed for each isolated step: 1) stance phase 
duration and 2) percentage of double support dura-
tion relative to the whole stance phase. Then, the fol-
lowing four features were extracted for each trial and 
each of the two parameters: 1) average of all the steps 
from the left foot, 2) standard deviation of all the 
steps from the left foot, 3) the standard deviation of 
all isolated steps of both feet, and 4) the left and right 
foot average difference. This subcategory includes a 
total of 8 extracted features.

– Wavelet analysis. For each stance phase of each iso-
lated step, the envelope of the 7-sensor of the left 
foot was computed [31]. This category of features is 
based on the characteristics of the two waves, which 
characterize the plantar pressure pattern during the 
stance phase (Fig. 3C and D). First, the following 15 
parameters were computed: 1) the distance between 
the first and second peaks, 2) height of the first peak, 
3) height of the second peak, 4) height of valley, 5) 
the difference between the heights of the peaks, 6) 
ratio of the height of the first peak to one of the val-
leys, 7) ratio of the height of the second peak to one 
of the valleys, 8) difference between these two ratios, 
9) width of the first peak, 10) width of second peaks, 
11) difference between these two widths, 12) slope 
rate from the starting point of the stance phase to the 
first peak, 13) slope rate from the first peak to val-
ley, 14) slope rate from valley to the second peak, 
15) slope rate from the second peak to the endpoint 
of stance phase. Second, the average and standard 
deviation of all the steps from the left foot were cal-
culated, resulting in the extraction of two features for 
15 parameters. This category included 30 extracted 
features.

At the end of the data reduction and feature extrac-
tion processes, each subject was associated with one data 
point of 182 dimensions.

Classification using random forests
Random forest models were used to classify the frailty 
state and fall history. The 182 features extracted from 
the plantar pressure data were used as the input. The 
machine-learning analysis was implemented using the 
Python scikit-learn and imbalanced-learn modules [32]. 
Random forests are ensemble models that rely on large 

collections of independent decision trees to increase 
predictive performance compared to standalone deci-
sion trees. All trees are trained in parallel over a random 
bagged subset of the data, that is, a set of data of the same 
size as the original set but where data points may appear 
multiple times or be absent. Bagging adds independent 
biases in individual classification trees, thus preventing 
overfitting. The overall prediction is obtained through 
the majority vote of individual decision trees. In the pre-
sent study, the number of non-frail subjects was larger 
than that of frail subjects. Similarly, the number of sub-
jects without a history of falling was larger than the num-
ber of subjects with a history of falling. To avoid issues 
related to imbalanced datasets, such as the random forest 
performing poorly on minority classes due to overtrain-
ing on the majority class, each tree of the forest was built 
with a balanced subset of samples, using the balanced 
random forest down-sampling algorithm described else-
where [33].

Models were built for the whole population or some 
selected subgroups relative to age (≥65, 60–69, 70–74, 
≥75 years old), sex (women, men), and frailty state 
(Table  1). Finally, additional analyses were conducted 
with data features extracted from the standing balance 
test only. Models showed low classification performances 
(average balanced accuracy: 0.57 ± 0.05, weighted 
F1-score: 0.556 ± 0.034) Detailed results are not shown.

The training procedure was set so that each forest 
model was composed of 200 decision trees. Each tree 
is built by successfully splitting its nodes until the Gini 
impurity score equals zero until all data points in the leaf 
nodes correspond to the same class.

Then, the models were validated using a 5-fold cross-
validation procedure. Data were split into five equal 
subsamples, with each subsample retained once as the 
validation data to test the model constructed with the 
other four subsamples. The results of the five tests were 
averaged to determine the overall performance of the 
model. The training and validation procedures were 
repeated 100 times with different random subsample 
splits. The balanced accuracy and weighted F1-score 
were calculated to assess the performance of the models. 
Detailed confusion matrices are presented for the mod-
els built on the whole population. Alternatively, random 
forest models were constructed and tested using a nested 
cross-validation procedure similar to that described else-
where [34]. The results are similar and are shown in Sup-
plementary Material 4.

Feature contributions
Additional analyses were conducted to identify the 
most informative data features in random forest models 
built to classify frail and non-frail subjects. The “feature 
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importance” tool integrated with the Python scikit-learn 
module was used to perform this operation [32]. Briefly, 
the importance of features appearing in a tree is evalu-
ated according to the subsequent decrease in sample 
impurities. The mean decrease in impurity is calculated 
across the forest, and features are ranked according to 
this score, that is, according to the capacity of features to 
make the model converge quickly toward one class. Then, 
the ranks of each feature across the 100 subsample splits 
were averaged to evaluate the overall capacity of those 
features to influence the classification of frail and non-
frail subjects across the range of subsamples and sub-
group configurations tested in the present study.

Classification using logistic regressions
Finally, multi variable logistic regressions models were 
also used to classify the frailty state and fall history. The 
variables used in the models corresponded to the 182 
features extracted from the plantar pressure data. Simi-
lar to what was done for the random forest classifiers, 
logistic regression models were validated using a 5-fold 
cross-validation procedure and the training and valida-
tion procedures were repeated 100 times with different 
random subsample splits. The feature importance was 
evaluated by comparing the regression coefficients for 
each variable. The analysis was implemented using the 
Python scikit-learn library. The logistic regression mod-
els showed lower classification performances compared 
to random forest classifiers, which is consistent with pre-
vious observations related to the use of random forest 
classifiers vs. logistic regression methods in clinical sci-
ences [35]. Results of the logistic models and their inter-
pretation are shown in Supplementary Material 5.

Results
Classifying frailty
As shown in Table 2, the random forest classifiers showed 
an average balanced accuracy of 0.75 ± 0.04 and an aver-
age weighted F1-score of 0.77 ± 0.03 for the recognition 
of frail vs. non-frail subjects. More specifically, as shown 
in Fig. 4A, 72% of subjects evaluated as frail by the Kihon 
Checklists were also classified by the plantar pressure 
data-fed random forest models. Seventy-seven percent of 
subjects who had been evaluated as non-frail by the same 
checklist were also classified as non-frail by the models.

Regarding the age-group analyses, the results were 
slightly better when considering only people over 65 years 
of age (accuracy: 0.76 ± 0.04; F1-score: 0.77 ± 0.04). 
On the other hand, models built for the 65–69 and 
70–74 years old subgroups showed lower performance 
(accuracies: ≃ 0.68). Regarding sex groups, accuracies 
and F1-scores were higher when considering men only 
(0.78 ± 0.07 and 0.79 ± 0.05, respectively).

The detailed outcomes of random forest models for 
classifying frail versus non-frail subjects in each sub-
group are shown in the confusion matrices in Fig. 5.

Classifying fallers
The random forest classifiers showed an average balanced 
accuracy of 0.57 ± 0.05 and an average weighted F1-score 
of 0.62 ± 0.04 for classifying fallers vs. non-fallers. As 
shown in Fig. 4B, 55% of subjects with a history of fall-
ing in the year preceding the test were classified by the 
random forest models trained on plantar pressure data. 
Fifty-seven percent of subjects who did not present any 
history of falling in the previous year were correctly 
classified. Regarding the age-group analyses, the best 

Table 1 Number of subjects for each class (frail vs. non‑frail and falling event vs. no falling event) in each subgroup

Frail Non-frail Total Falling event No falling event Total

Whole population 203 509 712 142 570 712

Age‑group:

≥65 years 193 392 585 126 459 585

65–69 years 22 176 198 35 163 198

70–74 years 42 111 153 35 118 153

≥ 75 years 129 105 234 56 178 234

Total 193 392 585 126 459 585

Sex:

Male (≥ 65) 50 126 176 88 88 176

Female (≥ 65) 143 266 409 38 371 409

Total 193 392 585 126 459 585

Frailty state:

Frail – – – 52 151 203

Non‑frail – – – 90 419 509

Total – – – 142 570 712
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performances were obtained for the 65–69 years old 
subgroup (accuracies: 0.60 ± 0.10; F1-score: 0.67 ± 0.06). 
As shown in Table  2, lower performance was observed 
in the women- or men-only subgroups. Accuracies of 
0.49 ± 0.08 and 0.58 ± 0.06 were found for the frail and 
non-frail population models, respectively (F1-score: 
0.53 ± 0.07 and 0.64 ± 0.04).

Feature contributions
Considering models built for the whole population, the 
ten most informative features were: 1) the average of 
the ratios of the height of the second peak to the height 
of the valley point [Wavelet analysis], 2) the standard 
deviation of the ratios of the height of the first peak to 

the height of the valley point [Wavelet analysis], 3) the 
average of the ratios of the height of the first peak to the 
height of the valley point [Wavelet analysis], 4) the aver-
age of stance phase durations [Gait phase analysis], 5) the 
standard deviation of the ratio of the height of the second 
peak to the height of the valley point [Wavelet analysis], 
6) the average of the slope rate from the starting point 
of the stance phase to the first peak [Wavelet analysis], 
7) the average of maximum pressure of sensor 1 [Peak 
analysis and area under the curves], 8) the average of the 
area under the curve of sensor 3 [Peak analysis and area 
under the curves], 9) the average of the height of the sec-
ond peak [Wavelet analysis], and 10) the average of the 
time when the maximum pressure occurred relative to 

Table 2 Summary of balanced accuracies and weighted F1‑scores of random forest models

Results are presented as mean ± standard deviation

Frailty predictions Fall predictions

Accuracy F1-score Accuracy F1-score

Whole population
(N = 712)

0.75 ± 0.04 0.77 ± 0.03 0.57 ± 0.05 0.62 ± 0.04

Age‑group:

≥65 years (N = 585) 0.76 ± 0.04 0.77 ± 0.04 0.55 ± 0.05 0.59 ± 0.04

65–69 years (N = 198) 0.68 ± 0.11 0.78 ± 0.05 0.60 ± 0.10 0.67 ± 0.06

70–74 years (N = 153) 0.68 ± 0.09 0.70 ± 0.07 0.49 ± 0.10 0.53 ± 0.08

≥ 75 years (N = 234) 0.71 ± 0.06 0.71 ± 0.06 0.54 ± 0.08 0.58 ± 0.07

Sex:

Women (≥ 65 years, N = 409) 0.72 ± 0.04 0.74 ± 0.04 0.56 ± 0.05 0.61 ± 0.04

Men (≥ 65 years, N = 176) 0.78 ± 0.07 0.79 ± 0.05 0.49 ± 0.09 0.56 ± 0.07

Frail state:

Frail (N = 203) 0.49 ± 0.08 0.53 ± 0.07

Non‑frail (N = 509) 0.58 ± 0.06 0.64 ± 0.04

Fig. 4 Performance of the frailty state and falling history classifiers for the whole population presented as confusion matrices. A: frailty state. B: 
falling history
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Fig. 5 Performance of the frailty state classifiers presented as confusion matrices for all the subgroups. A: aged ≥65 years old. B: aged between 60 
and 69 years old. C: aged between 70 and 74 years old. D: aged ≥75 years old. E: women only (≥ 65 years). F: men only (≥ 65 years)
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the total stance time for sensor 1 [Peak analysis and area 
under the curves].

Considering all the subgroups, 17 additional features 
were ranked among the ten most informative features 
(Table  3). Three variables were ranked among the 10 
most important features in all analyses (i.e., whole pop-
ulation analysis and all subgroup analyses). In addition, 
12 variables were ranked among the 10 most important 
features in more than one analysis. Features extracted 
from the wavelet analysis accounted for 10 of the 27 iden-
tified important features and 6 of the top-10 important 
features. Three features from the category “peak analy-
sis and area under the curves” ranked among the top-10 
important features. The remaining results regarding the 
contributions of the most essential features are described 
in Table 3.

Discussion
This study investigated the feasibility of using plan-
tar pressure data to identify frail people and predict 
fall events in the elderly. Over 700 senior people per-
formed a balance standing test and a 20 m walking trial 
while wearing a 7-sensor plantar pressure measurement 
insole. One-hundred-eighty-two features were extracted 
from the collected plantar pressure data. Random forest 
models were built to identify subjects with a frail state 
or a recent history of falling. The overall balanced accu-
racy for the recognition of frail subjects was 0.75 ± 0.04 
(F1-score: 0.77 ± 0.03). The overall balanced accuracy for 
classifying subjects with a recent history of falling was 
0.57 ± 0.05 (F1-score: 0.77 ± 0.03). The classification of 
subjects relative to their frailty state primarily relied on 
features extracted from the plantar pressure series col-
lected during the walking test. In particular, the classi-
fiers frequently used features related to plantar pressure 
peaks, i.e., the “Wavelet analysis” and “Peak analysis and 
AUC” categories. In the future, plantar pressure data 
processed with random forest algorithms might be of 
interest to support the detection of gait-related frailty 
patterns. Further research works are necessary to under-
stand how the tools used in the present study could com-
plement the existing evaluation methods. In the present 
study, these tools were ineffective in classifying  subjects 
according to their history of falling.

Plantar pressure measurement for classifying frail 
individuals and fallers
Studies proposing new assessment methods for frailty 
in senior people are regularly published [7]. The use of 
technology allows for more objective evaluations and is 
therefore attractive to clinicians. To date, several stud-
ies have successfully combined the use of inertial sensors 
with statistical classification techniques [11, 12, 15]. Only 

one study has tried to use plantar pressure to distinguish 
frail people from healthy individuals [12]. In a group of 
186 senior people, Chkeir et al. extracted four parameters 
from the vertical ground reaction force analysis and COP 
position when stepping on a bathroom scale composed 
of a 4-sensor force platform. Unlike the present study, 
measurements were completed in static conditions only. 
The authors found statistical differences between healthy, 
pre-frail, and frail individuals but did not use machine 
learning techniques to develop classifying models.

The present study is the first to combine plantar pres-
sure measurements with machine learning techniques to 
classify frail and healthy senior people. Among studies 
aiming to introduce new technology for assessing frailty, 
this is also the second study to test a large sample of over 
700 senior people [13]. The accuracy score of 0.75 ± 0.04 
may not be as high as some previous studies that used 
accelerometer sensors and functional tests [15, 36]. In 
one study aiming at classifying pre-frail and healthy sub-
jects in a group of 124 elderly people, Greene et al.  [15] 
reported accuracy scores of 0.84 (F1-score: 0.83) and 0.94 
(F1-score: 0.94) in women and men, respectively. They 
collected kinematic data using a network of inertial sen-
sors attached to different parts of the body during the 
completion of established clinical instruments, such as 
TUG, sit-to-stand, and standing balance tests. In another 
study consisting in classifying frail and robust subjects in 
a group of 309 elderly people (training sample:160, test 
sample: 149), Chang et  al. (2013) reported an accuracy 
score of 0.83 (F1-scores: 0.81) [36]. They used a complex 
experimental set-up combining sensor units attached to 
several selected pieces of home furniture, again in con-
junction with functional tests. They also input the data 
obtained from digital questionnaires surveying subjects 
abilities to perform activities of daily living. In contrast, 
the plantar pressure data used in the present study were 
obtained during a simple 45 s standing test and two 10 m 
walking trial segments; these data were obtained using a 
single easy-to-use instrument, i.e., the plantar pressure 
measurement insole, not complex multi-sensing systems 
used in conjunction with clinical instruments or func-
tional tests, as the ones proposed in the above-mentioned 
studies [15, 36]. Perhaps, plantar pressure data obtained 
in the course of a TUG, sit-to-stand test, or any other 
challenging situation (e.g., dual tasks, etc.) would also 
result in higher accuracy scores. Future studies are neces-
sary to verify this hypothesis and to understand whether 
the combination of features extracted from inertial sen-
sors and in-shoe plantar pressure measurements would 
yield better results for identifying frail people.

Interestingly, higher performances have been noted 
for men than women (0.78 ± 0.07 vs. 0.72 ± 0.04). These 
observations are similar to those of studies that used 
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Table 3 Important features for classifying frailty in the whole population and relative to each subgroup

For the whole population models, features are listed from top to bottom in the same order as they ranked (see the top 10 rows). Then, new important features found 
in the 1) subjects aged ≥65 years old, 2) subjects aged between 60 and 69 years old, 3) subjects aged between 70 and 74 years old, 4) subjects aged ≥75 years old, 5) 
women aged≥65 years, and 6) men aged ≥65 years analyses appear in the 17 remaining rows

Whole 
population 
models

≥ 65 years 
old models

65–69 years 
old models

70–74 years 
old models

≥ 75 years 
old models

≥ 65 
women 
models

≥ 65 
men 
models

[Wavelet analysis] Ratio of height of peak 2 to height of 
valley (average of left foot)

O O O O O O O

[Wavelet analysis] Ratio of height of peak 1 to height of 
valley (SD of left foot)

O O O O O O O

[Wavelet analysis] Ratio of height of peak 1 to height of 
valley (average of left foot)

O O O O O O O

[Gait phase analysis] Stance phase duration (average of 
left foot)

O O O O O O

[Wavelet analysis] Ratio of height of peak 2 to height of 
valley (SD of left foot)

O O O O O O

[Wavelet analysis] Slope rate from the starting point to 
peak 1 (average of left foot)

O O O

[Peak analysis and AUC] Maximum pressure of heel sen‑
sor (average of left foot)

O O O

[Peak analysis and AUC] AUC of center midfoot sensor 
(average of left foot)

O O O O O

[Wavelet analysis] Height of peak 2 (average of left foot) O O O

[Peak analysis and AUC] Time when maximum pressure 
of heel sensor occurred (average of left foot)

O O O

[Gait phase analysis] Percentage of double support phase 
duration (average of left foot)

O O O

[1‑foot COP trajectory analysis] Y coordinate of double‑
to‑single support phase transition (average of left foot)

O

[Wavelet analysis] Height of peak 1 (SD of left foot) O

[1‑foot COP trajectory analysis] Minimal value on y axis 
(SD of left foot)

O

[Peak analysis and AUC] Maximum pressure of center 
midfoot sensor (average of left foot)

O

[Peak analysis and AUC] Maximum pressure of center 
midfoot sensor (SD of both feet)

O

[Peak analysis and AUC] Maximum pressure of center 
midfoot sensor (Difference of two feet)

O

[Peak analysis and AUC] AUC of center midfoot sensor 
(SD of both feet)

O

[Peak analysis and AUC] AUC of center midfoot sensor 
(average of left foot)

O

[1‑foot COP trajectory analysis] CPEI (SD of left foot) O

[1‑foot COP trajectory analysis] X at y coordinate of center 
midfoot sensor (SD of left foot)

O

[Peak analysis and AUC] Maximum pressure of center 
forefoot sensor (SD of both feet)

O

[Peak analysis and AUC] Time when maximum pressure 
of center midfoot sensor occurred (average of left foot)

O O

[Wavelet analysis] Slope rate of peak 2 to the endpoint 
(average of left foot)

O

[Wavelet analysis] Slope rate from valley to peak 2 (aver‑
age of left foot)

O

[Frequency domain analysis] SD of power spectrum O

[Wavelet analysis] Distance between peak 1 and peak 2 
(average of left foot)

O
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inertial sensors and may be explained by some women-
specific gait characteristics [15, 37]. Walking speed, step 
length, and step width were found to be lower in aging 
women than in their male counterparts, which points 
to the necessity of developing specific models for each 
population.

In the present study, models developed for identify-
ing people with a recent history of falling did not show 
satisfactory results. The best performance was as low as 
0.60 ± 0.10, only for the 65–69 age group. Further studies 
are needed to clarify whether models using plantar pres-
sure data obtained in functional tests, rather than sim-
ple standing balance tests and 20 m walking trials, could 
yield better predictions. Plantar pressure data could also 
be collected in free-living conditions to try detecting 
near-fall events (i.e., slips, trips, missteps), the frequency 
of which has been shown to be associated with the risk 
of future actual falls [38]. The question of the adequacy 
of the extracted features may also be considered. While 
COP-related features have already shown statistical rela-
tionships with falling events in at least on previous study 
[22], features describing one-dimensional ground reac-
tion forces had never been suggested in the literature and 
may not have the same prediction capabilities as for the 
frailty state prediction models. Finally, the fall history 
recall questionnaire used in the present study did not 
allow distinguishing events caused by intrinsic physical 
factors from the ones caused by extrinsic/environmen-
tal factors. Factors falling into the second category may 
not involve any physical change that could be captured by 
the 7-sensor plantar pressure measurement insole device 
used in the present study.

Plantar pressure measurements and feature extraction
Investigating the features that contribute the most in ran-
dom forest classifier models may provide early insight 
into the physical changes that could be important for the 
early detection of frailty patterns. Considering previous 
observations on the age-related changes in walking COP 
trajectories and the call for using walking COP measure-
ments for the evaluation of gait stability and postural 
control abilities, features extracted from COP excursion 
and trajectories during standing and walking trials were 
expected to rank among the most important features for 
the detection of frail individuals in the present study [23]. 
Instead, features providing the most valuable informa-
tion to the random forest models were those related to 
the ground reaction force (Fig. 3C and D). Ratios of the 
height of peaks to the height of the valley, alongside sev-
eral other parameters from the wavelet analysis, were 
among the most contributive features. Such param-
eters are associated with moving the center of gravity 
efficiently during the gait stance phase [39]. While the 

sharpness of the ground reaction force wave is closely 
related to walking speed in healthy subjects, alterations 
of this wave during walking trials have also been linked 
with pathologies of the lower limbs. For instance, Kotti 
et  al. successfully used similar parameters to identify 
knee osteoarthritis patients [31]. Moreover, other param-
eters from the sensor-specific peak and AUC analysis 
have also been identified among the most contributive 
ones. Features related to the heel and center midfoot sen-
sors are especially well represented, indicating that fea-
tures reflecting the ability to sustain landing load at the 
beginning of the stance phase may also be considered 
early frailty indicators.

Interestingly, all the  27 important features identi-
fied in the present study emanate from plantar pressure 
data collected during the walking trial, pointing to the 
limit of the force plate for the evaluation of frailty and 
the necessity to develop systems capable of performing 
measurements during ambulatory trials. Moreover, ran-
dom forest classifiers built with data features extracted 
from the standing balance test only showed a lower accu-
racy (balanced accuracy: 0.57 ± 0.05, weighted F1-score: 
0.56 ± 0.04, detailed data not shown).

Smart insole for the early detection of frailty patterns
The objective evaluation of frailty state and falling risk in 
senior people remains a critical contemporary challenge 
in the health science field. The assessment of plantar pres-
sures could provide crucial pieces of information, more 
specifically for the evaluation of the physical dimension 
of frailty. Indeed, aging-related gait alteration is associ-
ated with some loss of strength or with the development 
of sarcopenia [40]. The early evaluation of parameters 
that inform on the physical dimension of frailty would 
enable tailoring appropriate interventions early in the 
aging process. Plantar pressure measurements have been 
linked with promising preliminary observations in the 
past. Cheap and wireless smart-insoles similar to the one 
used in the present study could overcome some of the 
practical issues related to the use of force plates, espe-
cially when measurements are carried out during walking 
trials [20–23].

In addition, at the dawn of the IoT era, it is certainly 
possible to design smart shoe devices that can systemati-
cally collect plantar pressure data during daily life walk-
ing segments and monitor changes in COP trajectories 
and ground force reaction waves over several years. Con-
sidering the relatively good frailty classification accura-
cies produced in the present study with data extracted 
from a minimal number of steps, it is possible to expect 
higher scores with longitudinal approaches. Moreover, 
longitudinal monitoring of plantar pressure data in free-
living conditions through smart shoe devices should not 
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be restricted to walking segments only. Physical behavior 
recognition using 7-sensor plantar pressure measure-
ment insole devices is feasible [29]. Therefore, it would 
be possible to isolate sit-to-stand events that naturally 
occur during the daily life of older adults and analyze 
the plantar pressure data to detect deviations in frailty 
patterns. Piau et al. tested the feasibility of using smart 
shoes to collect behavioral information in free-living 
conditions and for long periods of time. They observed 
a high level of acceptance in senior people [41]. Their 
smart insole device could track the number of steps, 
walking distance, gait speed, and active walking dura-
tion, but no functional evaluation of the participants 
was performed. Therefore, longitudinal and prospective 
studies are needed before stating on the relevance of the 
smart shoe approach for the individualized surveillance 
of gait and balance function alteration and the early 
detection of frailty patterns. These studies should con-
sider how to use this new approach concomitantly to the 
existing methods in order to properly evaluate how they 
can complement them by bringing new or earlier infor-
mation to the clinicians.

Limitations and strengths
One limitation of the current study is related to the 
imbalanced nature of the dataset. Twenty-nine percent 
of the subjects were defined as frail using the Kihon 
checklist, and only 20% of the subjects declared having 
experienced at least one fall event in the year preceding 
the measurements, resulting in a limited amount of data 
to train the algorithm with regard to the characteris-
tics of these two groups. Consequently, one cannot rule 
out that the lower performance observed with the faller 
classification algorithms could be a consequence of the 
limited available data rather than irrefutable evidence 
that the 7-sensor plantar pressure measurement system 
proposed in the present study is unsuitable for the iden-
tification of fallers. In some subgroups, the ratio of frail 
subjects to non-frail subjects was extremely low. For 
example, no more than 11% of people aged between 65 
and 69 years old were categorized as frail by the Kihon 
checklist, resulting in classifiers having lower perfor-
mance in this age group (accuracy: 0.68 ± 0.11, F1-score 
0.78 ± 0.05). Steps were taken to address this limitation. 
First, a large number of people (774) were recruited. 
The minority class could include enough samples and 
a variety of postural and gait patterns representative 
of the senior Japanese population. The study included 
712 participants, which means that data from over 110 
and 160 participants, for the faller and frailty analyses, 
respectively, were available for training the whole popu-
lation models. To date, only one other study has tested 

the effect of wearable technology for assessing frailty or 
the risk of falling on such a high number of subjects [7, 
12]. The 30–70 ratio between frail and non-frail peo-
ple found in the present study is 7.4%. This is higher 
than the reported estimated prevalence of frailty in 
senior Japanese people [42]. This higher figure may be 
explained by the fact that healthier individuals are less 
present in the spaces through which the subjects were 
recruited (i.e., health and welfare administration and 
healthcare provider company) or less interested in hav-
ing this type of postural and gait assessment. Second, 
the majority class has been under-sampled according to 
the method described elsewhere [33], in order to avoid 
1) classifiers performing poorly on minority classes due 
to overtraining in the majority class and 2) overfitted 
outcomes that come from the paucity of information in 
the minority class.

Another major limitation relates to the standards 
adopted in this study to identify frailty. In the absence of 
the gold standard method, the Kihon Checklist was used 
to determine frailty status. The method is widely used in 
Japan and has been described as a valid frailty prediction 
tool in several reports [43, 44]. However, many tests are 
available to predict frailty. Some authors have suggested 
that results could vary widely, especially between self-
administrated methods such as the Kihon checklist and 
tests administered by nurses or physicians [45]. There-
fore, it is possible that the accuracy score of the present 
study could have been different, either increased or 
decreased, if another frailty assessment tool had been 
used as a reference instead of the Kihon checklist. In 
the future, new objective assessment methods, such as 
the one proposed in the present study, should be tested 
against a broader panel of frailty assessment methods to 
strengthen the interpretability of the results.

Another limitation of the present study is the non-
inclusion of variables related to the medical history of 
participants in the predicting models. Indeed, a combi-
nation of plantar pressure data and medical information 
could strengthen accuracy scores for either falling history 
or frailty state predictions. However, building such kind 
of models would not only have required a systematic col-
lection of medical history, but also an even larger group 
of participants to have enough individuals per medical 
condition so that the learning algorithms can identify 
patterns.

Finally, the present protocol does not allow excluding 
the presence of inaccuracies for the falling history param-
eter, which may have negatively impacted the accuracy 
scores. Future studies should include a more robust pro-
tocol for the collection of information related to falling 
events, be they recalled data or prospective protocols.
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Conclusion
Plantar pressure data collected with a simple 7-sen-
sor insole during a 45 s standing balance test and a 20 m 
walking trial have been successfully used to identify frail 
people. Signal features extracted from the wavelet analy-
sis, reflecting body swing during the stance phase, were 
identified as the most important contributors to the 
classifier models considered in the present study. In the 
absence of a gold standard for evaluating frailty, this new 
objective method could be used to help detect frailty in 
older adults. At the dawn of the IoT era, plantar pressures 
could be collected continuously using a 7-sensor insole 
similar to that used in the present study but with 5G 
capabilities. This would allow the identification of early 
markers of frailty able to complement the information 
already available to the health professionals through the 
existing methods.

In the present work, attempts to classify people with a 
history of falling were unsuccessful. However, prospec-
tive studies need to be conducted. This would also allow 
further exploration of the feasibility of using plantar pres-
sures to detect potential fallers.
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