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To understand the function of cells such as neurons within an organism, it can be instrumental to inhibit cellular function, or to remove the 
cell (type) from the organism, and thus to observe the consequences on organismic and/or circuit function and animal behavior. A range 
of approaches and tools were developed and used over the past few decades that act either constitutively or acutely and reversibly, in 
systemic or local fashion. These approaches make use of either drugs or genetically encoded tools. Also, there are acutely acting inhibi-
tory tools that require an exogenous trigger like light. Here, we give an overview of such methods developed and used in the nematode 
Caenorhabditis elegans.
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Introduction
Eliminating neurons, and/or inducing the inhibition of their func-
tion, is a fundamental approach in the neurosciences, in order to 
understand the role of a neuron within the circuit(s) it is embed-
ded in (Pei et al. 2008; Wiegert et al. 2017). This is a particularly 
fruitful and important approach in the nematode Caenorhabditis 
elegans, with its compact nervous system of a mere 302 neurons, 
where in many cases elimination of single neurons (or a class of 
neurons) has profound impact on circuit function and/or behavior 
(Qi et al. 2012; Lin et al. 2013b). Therefore, many approaches and 
(mostly genetically encoded) tools have been developed over the 
past 4 decades, to enable the inhibition of excitable cells. These 
range from pharmacological treatment to laser ablation, from 
expressing proteins inducing cell death, to photosensitizers allow-
ing to eliminate individual cells or cell populations, to chemically 
or light-activated proteins that either hyperpolarize excitable 
cells, signal to inhibitory G protein pathways, or inhibit the release 
of neurotransmitter by destroying proteins required for synaptic 
transmission or by blocking synaptic vesicle (SV) mobility 
(Fig. 1a). Another approach is to (optogenetically) activate neu-
rons that have inhibitory action (Liewald et al. 2008; Steuer 
Costa et al. 2019). The genetic encodability of such tools is particu-
larly attractive, because it can be specific down to individual neu-
rons, but also allows to address whole neuron classes as well as 
animal populations. The tools used for disruption or inhibition 
of (excitable) cell function can act at different spatial scales, 

affecting either the entire animal or parts of its body, down to in-
dividual cells or even synapses (the latter requires synapse- 
specific illumination and is possible, but not widely applied due 
to the technical difficulty of this approach; Fig. 1b). The tools de-
scribed in this review are further characterized by the timescales 
of how fast (and tightly controllable) their use is in the onset, 
which can be submillisecond for microbial rhodopsin tools 
(Bergs et al. 2018), but also hours when it requires the expression 
of proteins (Fig. 1c). Last, the tools are characterized by the dur-
ation of their action as well as their reversibility: Some tools 
stop their action as soon as the stimulus is off, e.g. light, or can 
be very long lasting, e.g. if proteins need to be synthesized de 
novo to revert the manipulation. Other tools’ actions are perman-
ent, e.g. if the cell is physically or genetically ablated. In the fol-
lowing sections, we briefly describe the tools and some of their 
applications. We did not attempt to be fully comprehensive, as 
these approaches cover a vast field of applications and some 
have been used for several decades.

Pharmacology
The most straightforward possibility to silence neuronal activity 
or locomotion is through the use of drugs. Often, these act in a re-
versible way, if the animal is removed from the drug source, 
though prolonged exposure to some drugs will cause cellular 
damage or even death. Sodium azide (NaN3) causes rapid 
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Fig. 1. a) Pharmacological and other silencing approaches, physical ablation, and (optogenetic) tools for inhibition of excitable cells or cell ablation, 
covered in this review. b) Spatial scales at which the inhibitory tools and approaches can be used. c) Temporal scales for on and off times/recovery rate of 
the tools and approaches. The given times are only roughly indicated for comparability. Irreversible tools are shown at the top of the chart, for simplicity.
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paralysis due to its in inhibitory effect on cellular respiration. This 
causes a quick depletion of cellular energy equivalents (mostly 
adenosine triphosphate, ATP) and thus cessation of muscular ac-
tivity, as well as synaptic transmission, that requires ATP for 
transmitter loading of SVs as well as for SV recycling. The neuro-
muscular junction can be used as a target for immobilizing drugs, 
mostly by activating nicotinic acetylcholine receptors (nAChRs) or 
inhibition of ACh degradation. These drugs, levamisole [a levami-
sole receptor agonist (Lewis et al. 1980a, 1980b)] and aldicarb [inhi-
biting ACh esterase (Miller et al. 1996)], cause or lead to excessive 
stimulation of nAChRs and thus evoke muscle hypercontraction. 
A light-activated version of ACh, AzoCholine, has also been used 
to enhance cholinergic function, though this does not lead to 
full paralysis on its own; yet, AzoCholine can enhance the effects 
of aldicarb in a light-dependent manner (Damijonaitis et al. 2015). 
Also, the inhibitory side of the neuromuscular junction (NMJ) can 
be used to induce paralysis, e.g. the GABAA receptor agonist mus-
cimol (flaccid paralysis) or the gamma-aminobutyric acid (GABA) 
antagonist pentylenetetrazole (PTZ; causing overexcitation of 
muscles; Schaeffer and Bergstrom 1988; Avery and Horvitz 1990; 
Abraham et al. 2011). A very strong form of rapid paralysis is in-
duced by ivermectin, which is agonist for glutamate-gated chlor-
ide channels (GluCls), residing on (cholinergic) motor neurons 
(Avery and Horvitz 1990; Cully et al. 1994; Arena et al. 1995; Dent 
et al. 1997; Hibbs and Gouaux 2011). Also, muscle can be inhibited 
by direct drug action, likely on the actin-myosin contractile appar-
atus, by using butanedione monoxime (BDM) (2,3-BDM; Miriam 
Goodman and Martin Chalfie, personal communication; see also 
Emtage et al. 2004 and Bounoutas et al. 2009).

Laser ablation
Cell ablation is used to understand the role of cells in a specific 
biological context. Cells can be ablated by intense light illumin-
ation, provided the light wavelength is absorbed by the tissue. 
Laser light is focused to a spot of the dimensions of a cell nucleus, 
where it causes heating and pressure increase. Light energy is typ-
ically provided in a pulsed fashion (3–70 ns duration, at <20 Hz), 
such that heating remains local and does only damage the cell 
of interest and not cells in the vicinity (Bargmann and Avery 
1995). The first approaches for cell ablation utilized visible laser 
light (ca. 440 nm, directly absorbed, but possibly also by causing 
2-photon excitation), or UV laser irradiation of the nucleus of 
the respective cell, which leads to cell death within comparably 
short time periods, and thus the loss of the function of the respect-
ive cell. This approach is quite powerful and has been widely used 
over the decades, since its first establishment in the late 1970s and 
early 1980s (White and Horvitz 1979; Sulston and White 1980). 
Considerations of how to set up a laser ablation system, and ex-
perimental parameters, are well summarized in 2 methods book 
chapters, for further reading (Bargmann and Avery 1995; 
Fang-Yen et al. 2012). Often, pulsed nitrogen-pumped tunable 
dye lasers, producing microjoule-level UV pulses with nanosec-
ond durations, are used. These rather specialized lasers may 
require specific microscope setups and are rather expensive. 
Alternatively, femtosecond laser pulses of ca. 50 nJ, in the near- 
infrared, for multiphoton absorption, can be used at 1 kHz or 
at up to 80 MHz (Chung and Mazur 2009; Fang-Yen et al. 2012). 
Laser ablation has been used on various neuron types in 
Caenorhabditis elegans to identify cells involved in neuronal regula-
tion of development (Bargmann and Horvitz 1991b) or behaviors 
such as chemotaxis (Bargmann and Horvitz 1991a; Bargmann 
et al. 1993), thermotaxis (Mori and Ohshima 1995), and locomotion 

(Gray et al. 2005). However, there are limitations to this approach: 
(1) It requires practice and experience to master, and it is of low 
throughput; (2) it does not allow to eliminate genetically 
defined cell populations, unless they are just a few; and (3) it 
does not allow to generate populations of animals lacking the 
cell of interest.

Genetically encoded cell death
Because of the limitations of laser ablation studies for high 
throughput, other approaches were chosen and/or developed. 
Proteins like caspases, or constitutively active ion channels, can 
lead to cell death or necrosis and thus cell loss. Consequently, 
genetic cell ablation methods have become widely used. Cells 
can be targeted for elimination by expressing cytotoxic proteins 
using cell-specific promoters. Several such proteins were estab-
lished, including caspases, and split versions thereof, for com-
binatorial expression (CED-3 and human caspase 3; Chelur and 
Chalfie 2007; Bendesky et al. 2011; Glauser et al. 2011; Ikeda et al. 
2020; Atanas et al. 2023; Chandra et al. 2023), CSP-1 (Denning 
et al. 2013), mammalian caspase 1 (also known as interleukin 1 
beta convertase, ICE; Zheng et al. 1999; Kim et al. 2009; Bendesky 
et al. 2011; Oranth et al. 2018), or apoptosis regulators such as 
EGL-1 (Conradt and Horvitz 1998; Chang et al. 2006; Rauthan 
et al. 2007), a member of the BH3-only protein family.

Dominant alleles of mec-4 and deg-1, which encode the hyper-
active degenerin/ENaC family of epithelial sodium channels, 
lead to the necrotic death of specific sets of neurons (Chalfie and 
Wolinsky 1990; Driscoll and Chalfie 1991; Bianchi et al. 2004). 
Ectopic expression of the dominant allele mec-4(d) can disrupt 
the function of various cells (Harbinder et al. 1997; Shinkai et al. 
2011; Teo et al. 2022). The ability of these dominant alleles 
to induce cellular degeneration depends on mec-6 (Chalfie 
and Wolinsky 1990; Driscoll and Chalfie 1991; Harbinder et al. 
1997), which encodes a putative chaperone for MEC-4 (Chen 
et al. 2016a).

PEEL-1 is a native C. elegans sperm-derived toxin that is normal-
ly counteracted in the embryo by its antidote, ZEEL-1 (Seidel et al. 
2008). Ectopic expression of PEEL-1 can also be used to induce cell 
ablation (Seidel et al. 2011; Frøkjær-Jensen et al. 2012; Chen et al. 
2016b)

Acutely induced cell death
Caspases and other cell ablation proteins may act as soon as they 
become expressed, which is only ill-controllable, and the lack of 
cells during development of an animal can induce compensa-
tory/homeostatic plasticity mechanisms. Therefore, there is a 
need for tools that enable acute destruction of cells in a short per-
iod of time, yet still retain the benefit of genetic encodability to 
systemically address cell populations, as well as entire animal po-
pulations. To this end, photosensitizers based on light-absorbing 
proteins have been developed. These generate, in response to 
blue light, reactive oxygen species (ROS) that act in a destructive 
way on any oxidizable (amino acid) residues in the vicinity of 
the photosensitizer chromophore. This can occur through me-
thionine oxidation, or by inducing cross-linking, and depending 
on subcellular localization, will damage nearby protein and can 
even induce cell death (Jacobson et al. 2008). Such tools include 
the green fluorescent miniature singlet oxygen generator 
(miniSOG); the red fluorescent KillerRed, which produces super-
oxide anion radicals; and SuperNova. Here, we discuss their devel-
opment and their applications in C. elegans.
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KillerRed
KillerRed, a derivative of the hydrozoan chromoprotein anm2CP, 
which is a homolog of green fluorescent protein (GFP), was initially 
developed for light-induced cell ablation of bacteria and eukaryot-
ic cells, as well as for targeted protein inactivation (Bulina et al. 
2006b). Subsequent adaptations enabled the use of KillerRed 
for effective neuronal inactivation in C. elegans, which can be in-
duced by a 5 min illumination period, leading to morphological 
changes appearing after hours and persisting for several days 
(Kobayashi et al. 2013; Williams et al. 2013). Since its introduction, 
KillerRed-induced neural dysfunction has been employed in nu-
merous studies (Lee et al. 2014; Luo et al. 2014; Berendzen et al. 
2016; Shao et al. 2016; Young et al. 2019; Pohl et al. 2023), highlight-
ing its utility in neurobiological research. However, it is note-
worthy that certain types of neurons, including AWB, AFD, and 
PDE, exhibit resistance to KillerRed-induced cell inactivation 
(Williams et al. 2013). Additionally, when KillerRed is expressed 
in mechanosensory neurons, normal mechanosensation is dis-
rupted even without light exposure (Takemoto et al. 2013). 
Several variants of KillerRed have been developed. KillerOrange, 
which is activated by both blue and green light, has been devel-
oped and tested in vitro (Sarkisyan et al. 2015), offering greater 
flexibility when concurrent manipulation of multiple proteins or 
cell types is required, due to the broader color spectrum. Since 
KillerRed tends to form homodimers, which might interfere with 
the normal function of the fusion proteins (Bulina et al. 2006a), 
monomeric variants called SuperNova, SuperNova Green, and 
SuperNova2 have been established in bacterial and cultured cell 
systems (Takemoto et al. 2013; Riani et al. 2018; Gorbachev et al. 
2020). SuperNova exhibits proper localization with targeted pro-
teins, which increases its potential to disrupt synaptic proteins 
or specific neurotransmitter receptors for functional analysis.

miniSOG
The miniSOG is a green fluorescent flavoprotein, which was engi-
neered from the Arabidopsis phototropin 2 (Shu et al. 2011). While 
KillerRed is relatively large (237 amino acids) and requires dimer-
ization, miniSOG only consists of 106 amino acids and is acting as 
a monomer. miniSOG was originally developed for use in correla-
tive light and electron microscopy (Shu et al. 2011), by inducing 
the formation of an electron-dense polymeric precipitate from 
diaminobenzidine. As miniSOG produces a sufficient amount of 
ROS, specifically singlet oxygen, upon blue light illumination, it 
could also be used for light-induced cell ablation. By targeting 
miniSOG to the outer mitochondrial membrane, the production 
of ROS upon illumination results in cell degeneration and death 
(Qi et al. 2012). Since its development, mito-miniSOG was used in 
different ablation experiments in C. elegans, such as the study of 
a salt sensory circuit (Leinwand and Chalasani 2013) or identifica-
tion of VAV-1 acting in signaling in the sensory and interneuron 
ALA (Fry et al. 2014). To cause cell ablation, mito-miniSOG requires 
0.5–1.5 h blue light illumination, which can be limiting for its use 
in C. elegans as this organism can be killed by extended blue light 
exposure (Edwards et al. 2008). Additionally, if mito-miniSOG is 
highly overexpressed, it might have deleterious effects in absence 
of blue light, as ROS generation can be leaky under ambient light 
(Qi et al. 2012). Development of a (plasma-)membrane-targeted 
miniSOG allowed highly efficient ablation of multiple cell 
types, including neurons, muscles, and the epidermis (Xu and 
Chisholm 2016). Therefore, a mutant version of miniSOG 
(Q103L), showing enhanced ROS generation in vitro (Westberg 
et al. 2015) and enhanced cell killing efficiency in vivo, was 

targeted to cell membranes by using membrane targeting signals 
such as the pleckstrin homology (PH) domain from rat PLC-δ 
(Audhya et al. 2005) or the predicted myristoylation signal se-
quence from C. elegans NCS-2, myr (Xu and Chisholm 2016). 
miniSOG (Q103L), targeted to membranes, yielded a 10-fold in-
creased efficiency compared to mito-miniSOG for cell ablation 
(Xu and Chisholm 2016). Besides identifying a role of the epidermis 
in locomotion (Xu and Chisholm 2016), this miniSOG variant was 
used to ablate AS motor neurons, thereby disrupting locomotion 
patterns (Tolstenkov et al. 2018).

Tools for silencing of excitable cell activity 
and synaptic transmission
Neurons and muscles are excitable cells and responsible for the 
action sequences that drive behavior or other organismic activ-
ities, like gut movements or pharyngeal pumping. Therefore, in-
hibition of such cells can be used to reduce or even abolish the 
behavior driven by the respective cell. Many tools have been de-
veloped over the past decades that enable excitable cell inhibition. 
This includes tools for constitutive inhibition which allows to si-
lence cells on a permanent basis, as soon as they begin expressing 
the respective protein.

Constitutively open potassium channels
Since potassium ions have a steep downhill concentration gradi-
ent from the cytosol to the extracellular medium, expressing a 
constitutively open K+ channel will allow positive charge to con-
stantly leak from the cell and thus hyperpolarize its membrane po-
tential. In excitable cells, this typically causes inactivation. This 
class of protein tools comprises several potassium channels of 
the 2-pore domain potassium (TWK) channel family. The first mu-
tations discovered that led to a constitutively open TWK channel 
were twk-18(gf), the constitutive allele e1913, encoding the muta-
tion G165D, and the temperature-sensitive allele cn110 (M280I), 
which leads to complete paralysis above 25°C (Hosono et al. 1985; 
Reiner et al. 1995; Kunkel et al. 2000). The mutant protein was 
used as a selection marker for single-copy transgene insertions 
using MosSCI (Frokjaer-Jensen et al. 2008) but has also been used 
to study neuronal/circuit function in the locomotion nervous sys-
tem in order to silence premotor interneurons (Kawano et al. 2011) 
and to study the sleep neuron RIS (Koutsoumparis et al. 2022). The 
latter work also used a second TWK channel g.o.f. mutation, i.e. 
egl-23(gf), and both proteins were further used in Busack and 
Bringmann (2023) for the same purpose. Recently, the TWK chan-
nel g.o.f. mutant, twk40(gf), was used to study the premotor inter-
neuron AVA (Meng et al. 2024).

Tetanus toxin/botulinum neurotoxin
A conventional method for inducing long-term disruption of syn-
aptic transmission involves genetic expression or direct applica-
tion of Clostridium botulinum or tetanus neurotoxins (Brooks et al. 
1957; Molgo et al. 1990; Sweeney et al. 1995). These potent inhibi-
tors of synaptic transmission are metalloproteases that target 
SNAREs, i.e. proteins required for SV fusion. Tetanus toxins 
(TeTx), which are zinc-dependent endoproteases, and several 
clostridial toxins cleave synaptobrevin at unique sites, via their 
catalytic light chains (Schiavo et al. 1992; Blasi et al. 1993; Arata 
et al. 1997). While TeTx may lack the temporal precision of chemo-
genetic or optogenetic approaches, it can effectively silence neu-
rons over extended periods, especially those projecting primarily 
to a single downstream target (with collateral effects on other 
neurons). However, these toxins also target other cellular 
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counterparts of synaptobrevin, such as cellubrevin, which are 
ubiquitously expressed (McMahon et al. 1993). Notably, TeTx has 
been observed to impede cell membrane repair in fibroblasts 
and Xenopus oocytes, implying that molecules akin to synaptobre-
vin play roles in regulating additional fusion events (Steinhardt 
et al. 1994). Thus, the action of TeTx implicates that the protease 
cleavage of other targets contributes to the transmission abnor-
malities observed in toxin-treated cells.

In C. elegans, TeTx from the tdc-1 promoter was used to inhibit 
RIM and RIC neurons, resulting in defects similar to those observed 
in tdc-1 mutants (Sordillo and Bargmann 2021). In another study, 
TeTx was used to block DCV release in AVK neurons, partially miti-
gating increases in speed and body bending upon AVK photoactiva-
tion in flp-1 mutants (Aoki et al. 2023). Additionally, TeTx was used 
to analyze the synaptic output of RMG, by utilizing the Cre/Lox sys-
tem to express the light chain (LC) of TeTx, which revealed distrib-
uted synaptic outputs for aggregation with contributions from both 
RMG and ASK/ASJ neurons (Macosko et al. 2009).

Botulinum neurotoxin (BoNT) is a lethal toxin responsible for 
causing botulism, a condition characterized by paralysis resulting 
from food-borne contamination (Davletov et al. 2005). BoNTs con-
sist of a ∼50 kDa LC and a ∼100 kDa heavy chain (HC), linked by a 
disulfide bridge (Montecucco and Schiavo 1994). The LC serves 
as the catalytic domain, while the HC facilitates the delivery of 
BoNT into neurons. BoNTs are primarily known for their ability 
to block synaptic transmission at the NMJ (Montecucco and 
Schiavo 1994). Specifically, BoNT/A targets the C-terminal 9 ami-
no acids of synaptosome-associated protein of 25 kDa (SNAP-25). 
The resulting truncated SNAP-25 may persist to interact with 
plasma membrane syntaxin, thereby disrupting the normal pro-
cess of vesicle fusion and leading to potent toxicity.

While regulated promoters or recombinase systems enable 
some level of temporal control over toxin expression (Yamamoto 
et al. 2003; Nakashiba et al. 2008; Airan et al. 2009), achieving rapid 
and localized control remains challenging at present. However, a 
photoactivated version of BoNT (PA-BoNT) has been generated 
and used to silence motor neurons (see PA-BoNT).

InSynC/chromophore-assisted light inactivation
The ability to generate ROS via miniSOG has further been taken 
advantage of for developing an optogenetic tool for neuronal si-
lencing. The chromophore-assisted light inactivation (CALI) of 
synaptic proteins was developed by using miniSOG and targeting 
it to the presynaptic terminal using proteins such as synaptobre-
vin (VAMP2) or synaptophysin (SYP1). This allows inactivating the 
SNARE complex following blue light illumination (Ache and 
Young 2005). This approach was also used in C. elegans to target 
neurons via synaptobrevin or synaptotagmin (Lin et al. 2013b; 
Hermann et al. 2015). Using CALI as a neuronal silencer, however, 
comes with the same disadvantages as miniSOG used for cell ab-
lation: The generation of damaging radicals may have off-target 
effects, and it is not known whether CALI has long-lasting effects 
on synaptic strength. As SNARE proteins are damaged by ROS gen-
eration, recovery from the inhibiting effect requires de novo syn-
thesis of targeted proteins.

Photosensitive degron
To overcome the disadvantages of miniSOG-enabled synaptic si-
lencing, a photosensitive degron (psd) was developed (Hermann 
et al. 2015). The psd comprises 2 domains: a photo-switchable 
LOV2 domain, which can undergo light-dependent conformation-
al changes (Kennis et al. 2004), and a C-terminal degradation se-
quence derived from mouse ornithine decarboxylase (cODC). 

This sequence contains a Cys-Ala motif which is recognized by 
the proteasome (Takeuchi et al. 2008). Fused to a protein of inter-
est (POI), such as synaptotagmin (SNT-1) for neuronal targeting, 
allows the degradation of the POI upon blue light illumination 
and thereby inhibition of synaptic transmission. The resulting si-
lencing effect of psd is comparable to inactivation via miniSOG 
but enables more accurate targeting without off-target effects. 
However, expression of the degron-tagged POI in the presence of 
the endogenous protein is not sufficient to eliminate POI function, 
which is why one needs to work with a rescuing transgene in a mu-
tant background lacking the endogenous protein. Alternatively, 
the psd must be introduced into the endogenous locus 
(Hermann et al. 2015; Jánosi et al. 2024).

PA-BoNT
To achieve the rapid and localized control of C. botulinum neurotoxin 
(BoNT), a photoactivatable form of BoNT serotype B (BoNT/B) LC 
protease was engineered (Liu et al. 2019). To this end, the Avena sa-
tiva AsLOV2-derived improved light-inducible dimerization system 
iLID (Guntas et al. 2015) was used for generation of a light-dependent 
reconstitution of BoNT/B, which was split into N- and C-terminal 
fragments. This resulting PA-BoNT could cleave significant frac-
tions of VAMP2, yet some remaining uncleaved VAMP2 still enabled 
fusion of SVs. Thus, a variant of PA-BoNT was engineered that was 
directly targeted to SVs, vPA-BoNT. This was achieved by fusion of 
the C-terminal BoNT fragment to the C-terminus of synaptogyrin 
(SNG-1) and coexpressing it with the N-terminal BoNT fragment 
fused to iLID (Liu et al. 2019). Photoactivation of vPA-BoNT resulted 
in specific cleavage of VAMP2, at a spatial and temporal resolution 
comparable to the psd. Although PA-BoNT does not require con-
stant illumination for long-term silencing, its recovery requires 
the de novo synthesis of SNAREs.

OptoSynC
To supplement the optogenetic toolbox with a light-activated 
neuronal silencing tool that allows for temporally and spatially 
precise silencing with a fast recovery time, optoSynC (optogenetic 
synaptic vesicle clustering) was developed. OptoSynC comprises 
2 primary constituents: the C. elegans SV protein synaptogyrin 
SNG-1 and the Arabidopsis thaliana cryptochrome 2 (CRY2). While 
CRY2 serves as the photoactivatable element that enhances its 
capacity to form homo-oligomers after photoactivation, SNG-1 di-
rects the tool to the SV membrane. Due to the abundant presence 
of SNG-1 in the SV membrane, fusing CRY2 to it enhances the 
likelihood of efficient SV clustering, due to increased avidity. 
Moreover, SNG-1 is dispensable for neuronal activity or synapto-
genesis (Abraham et al. 2006). Since SNG-1 is not involved in the 
fusion process, optoSynC operates mechanistically differently 
from other optogenetic silencers, i.e. by achieving clustering of 
SVs in the reserve and recycling pools. Light-induced silencing 
of synaptic transmission using optoSynC was shown in different 
neuron classes and down to single neurons (Vettkotter et al. 
2022). Formation of CRY2 homo-oligomers was facilitated by 
using CRY2olig(535) (Taslimi et al. 2016), a truncated variant 
with reduced dark activity [this term refers to background activity 
of some optogenetic tools that can occur already without illumin-
ation, e.g. for light-activated enzymes like bPAC; see Indirectly 
gating potassium channels with light (2-component optoge-
netics)]. Additionally, the E490G mutation enhances oligomeriza-
tion (Taslimi et al. 2014). OptoSynC is highly light sensitive, has 
fast onset (only few seconds), and recovers within minutes.
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Indirectly gating potassium channels with light 
(2-component optogenetics)
The use of constitutively active K+ channels for silencing 
prompted the idea that this approach could also be used to gener-
ate regulatable tools, i.e. if K+ channels could be acutely gated by 
the experimenter. One approach that was explored is the use of 
cyclic nucleotide–gated K+ channels, e.g. the cAMP-gated K+ chan-
nel SthK from Spirochaeta thermophila, or the cGMP-gated K+ chan-
nel BeCNG1 from Blastocladiella emersonii. These channels could be 
combined with light-activated adenylyl and guanylyl cyclases, 
respectively. Such proteins, like Euglena or Beggiatoa photoacti-
vated adenylyl cyclase (EuPAC or bPAC, respectively) or the engi-
neered IlaC, as well as Blastocladiella or Catenaria nucleotidyl 
cyclase opsins (CyclOps) have been well established in C. elegans 
(Weissenberger et al. 2011; Ryu et al. 2014; Gao et al. 2015; Steuer 
Costa et al. 2017; Henss et al. 2022). The combination with SthK 
or BeCNG1 demonstrated light-activated K+-mediated inhibition; 
however, these tools so far were either not very powerful: 
BeCNG1, its activation by BeCyclOp, both expressed in body wall 
muscle (BWM), caused a moderate body length increase of ca. 
2% due to reduction of the muscle tone (note, the strongest effects 
evoked by Cl− or K+ conducting (channel)rhodopsins are ca. 8% 
body length increase; Zhang et al. 2007; Bergs et al. 2018). Or, the 
effects were too strong, since SthK, expressed in cholinergic motor 
neurons or in muscles, already responded to endogenous levels of 
cAMP, or background cAMP generated by bPAC in the dark; none-
theless, photoactivation of bPAC could evoke additional effects 
(Henss et al. 2022).

Histamine-gated chloride channel
Histamine is used as a neurotransmitter in many animal species; 
however, it is not found in C. elegans (Chase and Koelle 2007; 
Hobert 2013). Histamine receptors in insects, such as the 
Drosophila histamine-gated chloride channel HisCl1/2, function 
as ligand-gated chloride channels (Gisselmann et al. 2002; Liu 
and Wilson 2013). Because histamine evokes no endogenous ef-
fects in C. elegans, these characteristics render HisCl1/2 an exem-
plary tool for orthogonal neural inhibition, allowing for the 
selective silencing of neurons by hyperpolarization, without dis-
rupting overall neural function. Pokala et al. (2014) demonstrated 
that these channels could be expressed in C. elegans neurons and 
that administration of exogenous histamine effectively inhibited 
activity of neurons expressing HisCl1/2. Various applications of 
the histamine-HisCl1 system facilitated studies on synaptic trans-
mission through silencing neurons (Nelson et al. 2014; Hoerndli 
et al. 2015; Ghosh et al. 2016; Michelassi et al. 2017; Lopez-Cruz 
et al. 2019; Choi et al. 2021; Setty et al. 2022; Huang et al. 2023) or 
muscle cells (Ravi et al. 2018; Molina-García et al. 2020; Zhan 
et al. 2023). Compared to optogenetic silencers such as NpHR 
(Zhang et al. 2007; Bergs et al. 2018), this system provides signifi-
cant convenience for prolonged neural inhibition, because it re-
quires the presence of a chemical, not light. Yet, compared to 
optogenetic approaches, the HisCl1 system has limitations in as-
says requiring precise temporal control of neural (in)activity. 
Recently, HisCl1 has also been applied as a negative selection 
marker to facilitate generation of single-copy transgene insertions 
(Abiusi et al. 2017; El Mouridi et al. 2021; Mueller et al. 2023).

Targeted protein degradation via the 
auxin-inducible degron
Genetically encoded tools for targeted protein degradation (TPD) 
exploit endogenous protein degradation machineries, such as 

the ubiquitin–proteasome system, or the lysosome pathway, al-
lowing researchers to exogenously induce protein degradation in 
a spatiotemporal manner. If this is applied to proteins of the syn-
aptic transmission machinery, or ion channels required for neur-
onal depolarization, it may allow to silence neuronal function. 
This has been shown in some cases, targeting the UNC-31 protein, 
required for dense core vesicle fusion, or the UNC-7 gap junction 
subunit (Liu et al. 2017; Cornell et al. 2022). In this section, we discuss 
the development of auxin-inducible degron (AID), and its applica-
tions in exploring the function of synaptic proteins in C. elegans. 
For more comprehensive discussions on other TPD tools, readers 
are referred to previous reviews (Nance and Frøkjær-Jensen 2019; 
Zhang et al. 2022).

Auxins, a class of plant growth factors, are used in plants to regu-
late gene expression posttranslationally, by inducing the interaction 
of a degradation substrate, exposing the “auxin inducible degron” se-
quence, and the F-Box protein TIR1, eventually leading to protein 
degradation (Teale et al. 2006). In 2 pioneer studies (Nishimura 
et al. 2009; Kanke et al. 2011), the AID system was successfully trans-
planted from plants into cultured vertebrate cell lines and yeast. To 
this end, TIR1 needs to be expressed in the system of choice, and the 
AID target sequence needs to be introduced into the target as well. 
Zhang et al. (2015) employed the AID system in C. elegans, demon-
strating rapid and reversible depletion of AID-targeted proteins. 
Limitations of the AID system, sometimes observed across various 
organisms, are leaky degradation, independent of the presence of 
auxin, and inefficient depletion (Natsume et al. 2016; Kerk et al. 
2017; Daniel et al. 2018; Schiksnis et al. 2020). Additionally, auxins 
have been reported to induce undesired effects in worms, such as 
enhanced resistance to endoplasmic reticulum (ER) stress and in-
creased lifespan (Bhoi et al. 2021; Loose and Ghazi 2021). Some ap-
proaches for refinement have been reported in mammalian cells, 
aiming to reduce basal degradation and to accelerate depletion (Li 
et al. 2019; Sathyan et al. 2019). Further improvements in C. elegans, 
as in the AID2 system, employed AtTIR1(F79G), the mini IAA7 de-
gron, and 5-phenyl-indole-3-acetic acid (5-Ph-IAA) to reduce 
auxin-independent degradation and to enhance the loss-of-function 
phenotype of AID-targeted proteins (Uchida et al. 2018; Yesbolatova 
et al. 2020; Hills-Muckey et al. 2021; Negishi et al. 2022; Sepers et al. 
2022). Xiao et al. (2023) established an expandable FLP-ON::TIR1 
system, addressing the challenge that cell type–specific expression 
of TIR1 often results in less efficient protein degradation. The AID 
system was used to investigate loss-of-function phenotypes of vari-
ous C. elegans proteins, including neuronal ones (Kerk et al. 2017; Liu 
et al. 2017; Yu et al. 2017; Shen et al. 2018; Zhang et al. 2018; Cornell 
et al. 2022; Stojanovski et al. 2023; Turner et al. 2023; Stefanakis 
et al. 2024).

Rhodopsin-based, light-controlled silencing
Microbial opsins are integral membrane proteins with 7 
transmembrane helices found in a subset of archaea, bacteria, 
and even lower eukaryotes like algae. Acting as light-driven ion 
channels and pumps, these proteins either provide perception of 
electromagnetic radiation, which allows the organisms to 
adapt to their environment through phototaxis, or build up ion 
gradients to convert light energy into a chemical equivalent 
(Oesterhelt and Tittor 1989; Béjà et al. 2000). Absorption of 
photons triggers isomerization of the cofactor retinal and a con-
formational change of the protein, leading to either channel 
opening and passive ion transport or induction of pumping 
activity—a mechanism common to all microbial rhodopsins 
(Nagel et al. 2002).
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Halorhodopsin
In optogenetics, the most used rhodopsin-based tool, 
channelrhodopsin-2 (ChR2), a depolarizing nonselective cation 
channel, is complemented by a growing repertoire of optogenetic 
silencers. Here, halorhodopsin (NpHR) from the archaeon 
Natronomonas pharaonis is one of the most frequently used light- 
driven ion pumps for hyperpolarization, which—when stimulated 
by yellow light—pumps chloride ions into the cell cytoplasm 
(Fig. 2a) (Han and Boyden 2007; Zhang et al. 2007). Just as ChR2 en-
ables activation, halorhodopsins provide silencing of excitable 
cells, like neurons, following brief light stimuli with high spatio-
temporal precision. Being spectrally distinct to ChR2 (absorption 
maximum at 470 nm as opposed to 590 nm for NpHR), multiplex-
ing with NpHR is possible, providing independent access to both 
de- and hyperpolarization in the same cell. In contrast to chan-
nelrhodopsins, where absorption of 1 single photon allows the 
passage of many ions, for NpHR, only 1 ion is moved per photon 
(and photocycle), as is generally the case for light-driven ion 
pumps. Hence, plasma membrane localization is crucial to 
achieve robust light-induced effects. The initial accumulation 
tendency of NpHR in the ER was overcome for mammalian cells 
by adding ER export motifs resulting in the improved version 
eNpHR2.0, while limitations in membrane localization were coun-
tered by addition of Golgi export and membrane trafficking sig-
nals, then termed eNpHR3.0 (Gradinaru et al. 2008, 2010). 
C. elegans was the first model organism in which NpHR was estab-
lished in vivo and in which triggered behavioral outcomes were 
characterized (Zhang et al. 2007). Here, muscle activity was probed 
in swimming and body length analysis assays, when NpHR was 
expressed from the myo-3 promoter (BWMs), or indirectly, when 

expressed in cholinergic motor neurons, from the unc-17 pro-
moter. When stimulated by light, activation of NpHR immediately 
arrested swimming behavior and resulted in relaxation of mus-
cles leading to increased body length of the animals by up to 
7.5%. Patch-clamp recordings in BWMs of dissected animals re-
vealed light-evoked outward currents of 265 pA. As mentioned 
above, combined expression of NpHR and ChR2 enabled to coun-
teract ChR2-driven body contraction by activation of NpHR with 
yellow light. Further studies using NpHR in C. elegans demon-
strated, among other effects, a significant decrease in the release 
of SVs upon light-induced hyperpolarization of cholinergic motor 
neurons (Liu et al. 2009). Furthermore, using NpHR allowed to 
remote-control temperature-seeking behavior in a bidirectional 
manner together with ChR2 (Kuhara et al. 2011) and helped to in-
vestigate the gentle touch circuit (Husson et al. 2012).

However, as the trafficking motifs mentioned above are not con-
served, usage of improved NpHR versions did not overcome aggre-
gation issues in the worm (Husson et al. 2012), which narrows the 
applicability of NpHR to cells with strong promoters. Thus, subse-
quent C. elegans studies established the light-activatable proton 
pumps Mac from Leptosphaeria maculans and archaerhodopsin 
(Arch) from Halorubrum sodomense as alternatives for optical silen-
cing, where hyperpolarization is achieved via an extrusion of pro-
tons (Chow et al. 2010). The 2 inhibitory tools, maximally 
absorbing at 550 nm (Mac) and 566 nm (Arch), respectively, show 
improved plasma membrane expression and slightly higher photo-
currents compared to NpHR (Husson et al. 2012). This way, it was 
possible to investigate the nociceptive ASH circuit, where Mac 
and Arch were used to interfere with downstream signaling while 
upstream neurons were stimulated by ChR2. An improved variant 

a

b d

c

Fig. 2. Classes of rhodopsin-based optogenetic silencers. a) Light-driven ion pumps. b) eACRs and step function opsins for long-lasting photoinhibition. 
c) Natural anion channelrhodopsins. d) KCRs. Tools are color-coded according to their absorption maximum. Ions conducted or pumped, and direction 
based on electrochemical gradient, or pump vectoriality, are indicated.
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of Arch, ArchT, was also implemented in C. elegans (Okazaki and 
Takagi 2013; Busack et al. 2020; Maluck et al. 2020).

Engineered anion channelrhodopsins
Since active transport restricts the utility of rhodopsin-based hy-
perpolarizing ion pumps, for which continuous and intense illu-
mination is required, a lot of effort was devoted to invert the ion 
selectivity of ChR2 and turn it into a hyperpolarizing channel (en-
gineered anion channelrhodopsins, eACRs; Fig. 2b). Substitution 
of Glu-90 in the central selectivity filter and near the retinal 
Schiff base led to a hyperpolarizing Cl−-conducting variant 
(ChloC) (Wietek et al. 2014). Additional point mutations within 
the proton pathway resulted in the variants iChloC (improved 
ChloC) and iC++ and eliminated the residual proton conductance 
of ChloC (Wietek et al. 2015; Berndt et al. 2016). Further introduc-
tion of point mutations within the so-called DC-gate improved 
conductivity and operational light sensitivity, as the closing ki-
netics of the channel were significantly decelerated (step function 
opsins). These attempts resulted in the slow-cycling variants 
SwiChR++ (Berndt et al. 2016), the color-tuned eACRs Aurora and 
Phobos based on red light–activatable ReaChR (Lin et al. 2013a) 
and the aforementioned iC++, respectively (Wietek et al. 2017). 
Most recently Aion with a closing time constant of around 15 
min was engineered, based on Phobos (Rodriguez-Rozada et al. 
2022). All these tools enable silencing without the need for con-
tinuous illumination and, moreover, allow to trigger channel clos-
ure by way of a second illumination pulse of longer wavelength.

Natural anion channelrhodopsins
Inspired by the determinants of Cl− conductance as found during 
molecular engineering of existing ChRs, researchers performed 
BLAST searches of known genomes. This revealed naturally oc-
curring light-activatable Cl−-conducting ChRs in the cryptophyte 
Guillardia theta that were then termed anion channelrhodopsins 
(ACRs, Fig. 2c). Optimized by evolution, the first 2 described 
tools—GtACR1 and GtACR2—proved to be superior to both 
eACRs and depolarizing ChR2 in terms of steady state current am-
plitudes (Mahn et al. 2018). While ACR1 exhibits larger plateau 
currents at an absorption maximum of 515 nm, ACR2 demon-
strated faster kinetics, maximally absorbing at 470 nm. Due to 
their exceptional high light sensitivity and superior conductance, 
ACRs finally constitute equal rank to the most powerful depolar-
izing tools in the inhibitory range for optogenetic applications. 
Further screening studies identified 2 additional ACRs with fast ki-
netics, namely, ZipACR (from Proteomonas sulcata) and RapACR 
(from Rhodomonas salina), that showed even higher photocurrents, 
enabling up to 100 Hz spike suppression (Govorunova et al. 2017, 
2018). Furthermore, RubyACRs (from Labyrinthulea) were identi-
fied: These are spectrally red-shifted with absorption maxima at 
590–610 nm (Govorunova et al. 2020). ACRs have been proven to 
function as potent neural inhibitors in various model animals 
(Mauss et al. 2017; Mohamed et al. 2017; Mohammad et al. 2017; 
Mahn et al. 2018).

In C. elegans, ACR1, ACR2, and ZipACR, as well as the slow-closing 
(step function) variant ACR1(C102A), were first introduced into 
BWMs and characterized in a comparative study using behavioral 
readout (Bergs et al. 2018). In body length analyses, upon light stimu-
lation, ACR-expressing animals demonstrated exceptional effects 
at low light intensities that could be repetitively induced with 
high stability. Patch-clamp recordings revealed large peak photo-
currents of up to 1530 pA (ACR2)—5–10 times larger compared to 
NpHR. Further C. elegans studies applied ACRs to neurons of locomo-
tory and behavioral regulatory circuits (Tolstenkov et al. 2018; Xu 

et al. 2018; Aoki et al. 2023) or tested their applicability for long-term 
inhibition (Yamanashi et al. 2019). In addition to that, ACR2 was 
used in a tandem configuration together with the red light–activata-
ble depolarizer Chrimson (termed BiPOLES) and combined with the 
genetically encoded voltage indicator QuasAr2 to generate an opto-
genetic voltage clamp in live worms (Bergs et al. 2023).

Potassium channelrhodopsins
Although ACRs are highly effective and reversible silencers of 
excitable cells (Govorunova et al. 2015; Mohammad et al. 2017), 
they have certain limitations, especially in cells (e.g. cardiomyo-
cytes) or subcellular compartments (e.g. axons) with high 
intracellular chloride concentrations, where they may cause 
depolarization (Mahn et al. 2016; Malyshev et al. 2017; Ott et al. 
2024). Moreover, upon prolonged gating of their artificial chlor-
ide conductance, they trigger unwanted and long-lasting down-
stream effects, putatively due to the exhaustion of the 
endogenous Cl− gradients and the time it takes the cell to re-
cover them (Bergs et al. 2018).

Since repolarization of membrane potentials generally hap-
pens through efflux of K+ via voltage-gated potassium channels 
(Hodgkin and Huxley 1952; Johnstone et al. 1997; Jan and Jan 
2012), inhibition of depolarization may occur by artificial ma-
nipulation of K+ currents. To achieve this, major efforts have at-
tempted to generate K+-selective light-gated channels for 
example by fusion of light-reactive elements such as the LOV2 
domain or coexpression of K+ channels with light-absorbing acti-
vators (Alberio et al. 2018; Bernal Sierra et al. 2018) [see Indirectly 
gating potassium channels with light (2-component optoge-
netics) for a discussion of the use of the SthK channel in C. ele-
gans]. Engineered K+-selective light-gated channels have major 
drawbacks, namely, poor surface expression (Cosentino et al. 
2015), slow kinetics, or unwanted activation of cellular signaling 
pathways (Beck et al. 2018; Henss et al. 2022). Therefore, the re-
cent discovery of natural light-gated channels with a high select-
ivity of K+ over Na+ proved a significant improvement for precise 
inhibition of excitable cells (Govorunova et al. 2022) (Fig. 2d). 
These K+-selective channelrhodopsins [potassium channelrho-
dopsins (KCRs)] have been shown to efficiently inhibit action po-
tentials upon illumination in cultured mammalian neurons and 
cardiomyocytes.

Structural analysis of the novel K+ channel signature motif in 
pore-lining amino acid residues of the Hyphochytrium catenoides 
KCRs (HcKCR1/2) led to the discovery of improved variants with 
even higher K+-selectivity by either phylogenetic analysis 
(WiChR; Vierock et al. 2022) or point mutation (Tajima et al. 
2023). A recent study has also shown the capabilities of KCRs in 
small model organisms in which they enabled silencing of cells 
with high intracellular chloride in which ACRs were ineffective 
(Ott et al. 2024). Yet the study only briefly assessed their use in 
C. elegans. Here, KCRs were expressed pan-neuronally and not se-
lectively in stimulatory cholinergic or inhibitory GABAergic neu-
rons in which measurement of body length could indicate de- or 
hyperpolarization (Liewald et al. 2008). The observed impact on 
crawling speed may also arise from depolarization and thus hy-
percontraction of muscle cells (Tolstenkov et al. 2018). 
Nevertheless, the results obtained from Drosophila melanogaster 
promise rapid and reversible inhibition of excitable cells in inver-
tebrates (Ott et al. 2024). While KCRs seem to be auspicious tools 
for many applications, the residual Na+ conductivity is substan-
tial. The KCR with the currently highest relative permeability ra-
tio of K+ over Na+ of 80 (WiChR; for stationary photocurrents) still 
conducts significantly more Na+ than mammalian voltage–gated 
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potassium channels (PK/PNa ∼100–1000; LeMasurier et al. 2001; 
Mironenko et al. 2021). This may pose a problem in some cases 
and must be remembered when using these tools, especially 
when applying continuous stimulation, working with a highly 
negative membrane potential or in conditions with high external 
Na+ (Govorunova et al. 2022; Vierock et al. 2022).

Inhibition via light-activated G protein-coupled 
receptors (animal rhodopsins) with Gi/o coupling 
specificity
Reversible regulation of cellular activity can also be achieved 
through G protein–coupled receptors (GPCRs). Different light- 
reactive, inhibitory GPCRs have been previously expressed and 
characterized in neurons of C. elegans. One of the most commonly 
used inhibitory GPCRs is bovine rhodopsin (bRho), which endogen-
ously couples to transducin, a Gαi/o-type protein, although previ-
ous studies have shown that bRho is also able to activate other 
G proteins of the same family (Kanaho et al. 1984). Cao et al. 
(2012) demonstrated that pan-neuronal expression and illumin-
ation of bRho in C. elegans efficiently inhibits locomotion, the ef-
fect of which is relatively long-lasting compared to the duration 
of the stimulus, as 1 s high-intensity light stimulation was suffi-
cient to fully inhibit movement of the animals for ca. 20 min. 
Normal crawling behavior resumed after ca. 80 min. Analysis of 
various mutant strains provided evidence that the signaling oc-
curs selectively through GOA-1, the C. elegans Gαi/o ortholog, and 
is dependent on cAMP-specific phosphodiesterases (Cao et al. 
2012).

Expression and activation of a different GPCR, mosquito Opn3 
(MosOpn3), in ASH neurons elicited light-dependent avoidance 
behavior (see Fig. 3a for quantification of light-evoked reversals 
of animals expressing MosOpn3 in ASH), which is in agreement 
with activation of ODR-3-dependent signaling, a C. elegans G 
protein which shows similarity to members of the Gi/o family. 
MosOpn3 is bleach-resistant, which could enable repeated stimu-
lation with less reduction in the intensity of the response 
(Koyanagi et al. 2022). Similar effects were shown by these authors 
when bRho was expressed in ASH, arguing that it is a Gi/o-coupled 
GPCR. ASH neurons can also be photoactivated by channelrho-
dopsin (Schmitt et al. 2012), a depolarizing light-gated channel, 

indicating that there must be a “sign inversion” of GPCR-induced 
signals downstream of ODR-3, leading to depolarization of the 
neuron. Hilliard et al. (2005) also showed that repellent-induced 
Ca2+ signals in ASH were diminished in odr-3(n2150) mutants. 
Earlier work has shown that the TRP channels OSM-9 and OCR-2 
are required for Ca2+ transients and depolarization of ASH 
(Colbert et al. 1997; Tobin et al. 2002). How exactly ODR-3 signal-
ing, supposedly via lipid mobilization of polyunsaturated fatty 
acids (PUFAs), activates OSM-9/OCR-2 (Kahn-Kirby et al. 2004) 
is not well understood, and whether ODR-3 is a genuine Gi/o 

protein, i.e. inactivating adenylate cyclase, has not been shown 
in vitro. bRho requires supplementation of 11-cis-retinal, or as 
a substitute, 9-cis-retinal, for its activity in C. elegans neurons. 
In contrast, MosOpn3 is functional both in its 11-cis-retinal- 
and its 13-cis-retinal-bound form. Thus, it is also active when 
all-trans-retinal (ATR) is fed to the worms as it is in equilibrium 
with the 13-cis isomer (Cao et al. 2012; Koyanagi et al. 2022).

The same study also investigated the UV-sensitive bistable 
lamprey parapinopsin (LamPP) in C. elegans. The peculiarity of 
LamPP is that it exhibits large spectral differences between the in-
active and active state, allowing sustained Gi/o-pathway activa-
tion and controlled deactivation (Koyanagi et al. 2004; Eickelbeck 
et al. 2020). Thus, expression of LamPP in C. elegans cholinergic mo-
tor neurons allowed color-dependent control of behavior 
(Koyanagi et al. 2022). We could show that activation of LamPP 
also induces color-dependent changes of body length (Fig. 3b). 
Red light illumination of the LamPP active state led to photoregen-
eration and a state with an absorption maximum almost identical 
to the dark state (Koyanagi et al. 2004). Hence, worms were fed 
under red light, which resulted in relaxation, and body length in-
crease upon subsequent violet light exposure (Fig. 3b). Green light, 
right before the measurement, which should convert LamPP back 
to its active state, resulted in reduction of crawling upon illumin-
ation with violet light and a significant increase in body length, 
which returned to baseline levels. However, most animals showed 
reduced locomotion during the entire duration of observation, in-
dicating continued activity and Gi/o signaling in cholinergic motor 
neurons.

Another rhodopsin mediating inhibition in C. elegans was re-
cently described, the Platynereis dumerilii opsin (PdCO), which is a 

a b

Fig. 3. Examples of light-sensitive GPCRs (rhodopsins), used for inhibition: a) light-evoked reversals of animals expressing MosOpn3 in ASH neurons. The 
multiworm tracker (Swierczek et al. 2011) was used to observe the crawling behavior of worms expressing MosOpn3 in ASH neurons. Upon blue light 
illumination (30 s, 100 µW/mm2, 470 nm, shaded area, 300–330 s), worms treated with ATR (100 µM) showed an increase in reversals, indicating an 
avoidance response upon MosOpn3 activation. b) LamPP activation in cholinergic neurons induces a wavelength-dependent increase of body length, due 
to muscle relaxation. Body length of animals either without ATR (−), or treated with ATR (+), were compared. Additionally, animals treated with ATR were 
either kept in the dark until the measurement, or preilluminated with red light (620–660 nm; overnight), or illuminated with green light (520–535 nm) for 
30 s prior to the start of the experiment. Violet light illumination (5 s, 100 µW/mm2, 373–387 nm, shaded area, 5–10 s) of animals without ATR evoked no 
change in body length, while ATR-treated worms exhibited a slight increase. To convert the active ATR-bound state back to its inactive state, worms were 
illuminated with green light before the start of the measurements, resulting in a body length increase upon subsequent violet light illumination. To test 
whether red light illumination of the LamPP active state causes photoregeneration, worms were fed ATR under red light illumination overnight. These 
animals showed an increase in body length upon violet light illumination.

Approaches for inhibition in C. elegans | 9



bistable opsin that can be turned on and off with 405 and 525 nm 
light, respectively (Wietek et al. 2024). PdCO was expressed pan- 
neuronally, and as it couples to Gαo, and through Gβ/γ may acti-
vate GIRK (G-protein activated, inward rectifier potassium) chan-
nels, caused rapid and reversible reduction of locomotion speed 
by ca. 75%, in an ATR-dependent manner.

An approach related to activation of inhibitory GPCRs has been 
recently introduced by Lockyer et al. (2023). The authors could in-
hibit Gαq signaling in C. elegans neurons as well as in other organ-
isms by using an engineered version of a mammalian Gαq-specific 
regulator of G protein signaling (RGS2), modified with a crypto-
chrome CRY2 domain, that could be recruited to plasma 
membrane-bound CIBN protein in a light-induced manner. 
Using this so-called CRY2-CIB1 system (Kennedy et al. 2010), the 
authors were able to reduce motility of the worms in a light- 
dependent way (Lockyer et al. 2023).

Activation of Gi/o protein signaling for cellular inhibition is use-
ful especially when intending to target specific intracellular path-
ways, inhibiting activity without directly affecting membrane 
potential, or to mimic endogenous GPCR-induced inhibitory pro-
cesses. GOA-1 was found to be expressed in all or nearly all neu-
rons in C. elegans (Mendel et al. 1995); thus, the potential 
application of GOA-1 addressing tools is not limited to only 
some cells. However, due to the potentially different intracellular 
pathways in different cell types, being mediated and amplified by 
various intracellular effectors, the effects as well as the mechan-
ism of inhibition might differ slightly when a light-reactive GPCR 
is utilized in different cells. Hence, results obtained with such 
tools, as well as their G protein coupling preference, need to be 
evaluated carefully for the cell type under study.

Silencing by optogenetic activation 
of inhibitory neurons
Another intriguing possibility to inhibit neuronal or muscle func-
tion is through activation of upstream inhibitory neurons, for ex-
ample, by expression of cation ChRs (CCRs) in GABAergic motor 
neurons (Liewald et al. 2008; Bergs et al. 2018). GABA release 
upon CCR gating will lead to an inhibition of BWMs and thus relax-
ation in animals treated with ATR (Schultheis et al. 2011; Lu et al. 
2022). Next to directly targeting synaptic transmission by optoge-
netics, release of inhibitory neuromodulators from interneurons 
may be triggered to achieve a widespread and long-term inhib-
ition of excitable cells. Examples include the photo-evoked release 
of FLP-11 neuropeptides from the RIS neuron to inhibit motor neu-
rons or the release of serotonin from sensory neurons to inhibit in-
terneurons (Flavell et al. 2013; Steuer Costa et al. 2019). The major 
advantage of this approach is the use of endogenous transmission 
to study the effect of inhibition in a more physiological paradigm. 
However, in order to draw causal conclusions, one must keep in 
mind the complexity, interconnectivity, and feedback mechan-
isms of most neuronal signaling pathways, which requires com-
bining optogenetic experiments with a range of other assays and 
(genetic) manipulations, as exemplified in this work by Sordillo 
and Bargmann (2021) and further summarized in a review by 
Fang-Yen et al. (2015).

Conclusions
The range of methods and approaches to inhibit or eliminate (ex-
citable) cells in C. elegans, or individual proteins within these cells, 
is very broad, and it may thus be challenging to choose the right 
method. However, this should be decided based upon the 

respective process or cell type that is targeted and whether the 
manipulation needs to be fast, i.e. to observe acute effects, or to 
avoid compensatory changes to occur. Also, it may be important 
to consider whether the manipulation needs to take place during 
or following the end of development, e.g. depending on whether 
the cell or protein targeted is essential for the same. While some 
of these methods can be applied to single or few cells at a time, 
other methods, which include a genetically encoded tool, allow 
to eliminate entire cell types and can be applied in populations 
of animals. For some methods, temporal control of the moment 
of inhibition or ablation is poor, i.e. defined by the time of expres-
sion, while others can be precisely timed by administration of a 
chemical compound, or with light. Some methods are permanent, 
others are immediately reversible, and even others require long 
recovery times, e.g. when de novo protein synthesis is needed. It 
may be advisable to test more than one approach to achieve the 
desired outcome. We hope this review provides readers with a 
good basis for their decision.
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