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mechanisms and clinical significance in type 2 
diabetic patients: a pilot study
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Abstract 

Background:  Chloride is a key electrolyte that regulates the body fluid distribution. Accordingly, manipulating 
chloride kinetics by selecting a suitable diuretic could be an attractive strategy for correcting body fluid dysregulation. 
Therefore, this study examined the effects and contributing factors of a sodium–glucose cotransporter-2 inhibitor 
(SGLT2i) on the serum chloride concentration in type 2 diabetic (T2DM) patients without heart failure (HF).

Methods:  This study was a retrospective single-center observational study that enrolled 10 T2DM/non-HF out-
patients for whom the SGLT2i empagliflozin (daily oral dose of 10 mg) was prescribed. Among these 10 patients, 6 
underwent detailed clinical testing that included hormonal and metabolic blood tests.

Results:  Empagliflozin treatment for 1–2 months decreased body weight (− 2.69 ± 1.9 kg; p = 0.002) and HbA1c 
(− 0.88 ± 0.55%; p = 0.0007). The hemoglobin (+ 0.27 ± 0.36 g/dL; p = 0.04) and hematocrit (+ 1.34 ± 1.38%; p = 0.014) 
values increased, but the serum creatinine concentration remained unchanged. The serum chloride concentration 
increased from 104 ± 3.23 to 106 ± 2.80 mEq/L (p = 0.004), but the sodium and potassium concentrations did not 
change. The spot urinary sodium concentration decreased from 159 ± 43 to 98 ± 35 mEq/L (p < 0.02) and the spot 
urinary chloride tended to decrease (from 162 ± 59 to 104 ± 36 mEq/L, p < 0.08). Both renin and aldosterone tended 
to be activated (5/6, 83%). The strong organic acid metabolite concentrations of serum acetoacetate (from 42 ± 25 to 
100 ± 45 μmol/L, p < 0.02) and total ketone bodies (from 112 ± 64 to 300 ± 177 μmol/L, p < 0.04) increased, but the 
actual HCO3

− concentration decreased (from 27 ± 2.5 to 24 ± 1.6 mEq/L, p < 0.008).

Conclusions:  The present study demonstrated that SGLT2i enhances the serum chloride concentration in T2DM 
patients and suggests that the effect is mediated by the possible following mechanisms: (1) enhanced reabsorption 
of urinary chloride by aldosterone activation due to blood pressure lowering and blood vessel contraction effects, (2) 
reciprocal increase in the serum chloride concentration by reducing the serum HCO3

− concentration via a buffering 
effect of strong organic acid metabolites, and (3) reduced NaHCO3 reabsorption and concurrently enhanced chloride 
reabsorption in the urinary tubules by inhibiting Na+–H+ exchanger 3 in the renal proximal tubules. Thus, the diuretic 
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Background
Diabetes mellitus is a worldwide public health and eco-
nomic problem. Glucose-regulating drug of sodium–glu-
cose cotransporter 2 inhibitor (SGLT2i) may offer unique 
benefits as glucose-lowering agent [1–3]. Importantly, 
SGLT2i appear to have pleotropic effects [1–3] that are 
also cardioprotective and renal protective in patients 
with type 2 diabetes mellitus (T2DM) [4–6], and are now 
widely approved as antihyperglycemic agents.

Recent studies demonstrated that chloride is a key 
electrolyte for regulating plasma volume during worsen-
ing heart failure (HF) [7] and its recovery [8], leading to 
the development of the “chloride theory” for HF patho-
physiology [9, 10] and a diuretic treatment strategy by 
modulating the serum chloride concentration [10, 11]. 
According to the “chloride theory” [10], dysregulated 
body fluid distribution can be adjusted by manipulat-
ing the serum chloride concentration using a suitable 
diuretic. SGLT2i is reported to exert diuresis through 
osmotic and natriuretic effects that contribute to plasma 
contraction and decrease blood pressure [1–3]. There is 
a paucity of data, however, regarding the effects of this 
agent on the serum chloride concentration, and even 
less is known about its precise diuretic mechanisms. 
Therefore, this study investigated the effects and possible 
underlying mechanisms of diuretic of an SGLT2i on the 
serum chloride concentration and its clinical significance 
according to the “chloride theory” [10] in T2DM/non-HF 
patients.

Methods
Study design
This study was a retrospective single-center obser-
vational study that enrolled outpatients with T2DM/
non-HF at Nishida Hospital (Saiki-city, Oita, Japan) pre-
scribed empagliflozin (daily oral dose of 10 mg) between 
March 2017 and April 2018. The effects of empagliflozin 
on the serum chloride concentration were evaluated 1 to 
2  months after administration was initiated. During the 
study period, empagliflozin was prescribed to 20 T2DM/
non-HF patients, but 10 patients were excluded from the 
present study due to the lack of required clinical data 
(n = 6), complications with a serious co-morbidity requir-
ing hospitalization (n = 2), or use of a diuretic (n = 2). The 
10 remaining clinically stable  T2DM/non-HF patients 
were the subjects analyzed in the present study. Among 

these 10 patients, 6 underwent detailed clinical examina-
tions, including hormonal and metabolic blood tests, to 
estimate the factors contributing to the SGLT2i-mediated 
modulation of the serum chloride concentration. None 
of the patients enrolled in the study had used diuretics 
other than SGLT2i either before the initiation of SGLT2i 
administration or throughout the study period of SGLT2i 
treatment evaluation.

The ethics committee at Nishida Hospital approved the 
study protocol. Written informed consent was obtained 
from all patients before study enrollment.

Data collection and analytic methods
Physical examination, blood tests of peripheral venous 
blood (hematologic, diabetic/metabolic, b-type natriu-
retic peptide, venous blood gas, and neurohormonal 
tests), and a spot urine test for electrolytes were per-
formed at baseline and 1 to 2  months after begin-
ning SGLT2i administration. The blood samples were 
obtained after patients rested in a supine position for 
20-min. Peripheral blood tests, analyzed by standard 
techniques, included a red blood cell count, hemoglobin, 
hematocrit, mean red blood cell volume, albumin, serum 
and urinary electrolytes (sodium, potassium, and chlo-
ride), blood urea nitrogen, and creatinine. The spot urine 
test included measurement of electrolyte concentrations. 
Hemoglobin A1c (%) was determined by high perfor-
mance liquid chromatography. Plasma b-type natriuretic 
peptide was measured by chemiluminescent immuno-
assay. Plasma renin activity was measured by enzyme 
immunoassay. Aldosterone and antidiuretic hormone 
levels were measured by radioimmunoassay. Plasma 
acetoacetate, 3-hydroxybutyrate, and total ketone body 
concentrations were measured by the enzyme cycling 
method. Total CO2, actual HCO3

−, and pO2 were ana-
lyzed using an ABL80 FLEX autoanalyzer (Radiometer 
Medical ApS, Brφnshφj, Denmark).

Statistical analysis
All statistical analyses were performed using GraphPad 
Prism 4 (San Diego, CA). All data are expressed as the 
mean ± SD for continuous data and percentage for cat-
egorical data. Paired t tests for continuous data were used 
for two-group comparisons. All tests were 2-tailed, and a 
p value < 0.05 was considered statistically significant.

SGLT2i induces excessive extravascular fluid to drain into the vascular space by the enhanced vascular “tonicity” 
caused by the elevated serum chloride concentration.

Keywords:  Sodium–glucose cotransporter-2 inhibitor, Chloride, RAAS, Ketone
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Results
The clinical characteristics of the 10 T2DM/non-HF 
patients at study entry are shown in Table  1. Mean 
patient age was 61.7 ± 14 years (range, 36–92 years), and 
40% were men. Cardiac function and renal function were 
preserved in all study patients, determined mainly on the 
basis of the b-type natriuretic level and estimated glo-
merular filtration rate. One patient had a history of myo-
cardial infarction. None of the patients were on diuretics. 
Therapy for diabetes included isolated or combined use 
of metformin, sulfonylureas, and/or dipeptidyl pepti-
dase-4 inhibitors.

SGLT2i treatment details for the six study patients 
are presented in Table 2. After 1 to 2 months (34.9 ± 7.4 
[range 28–53] days) of empagliflozin administration, body 
weight (− 2.69 ± 1.9 [range, − 6.1 to − 0.2] kg; p = 0.002) 
and hemoglobin A1c (− 0.88 ± 0.55 [range, − 1.8 to 
− 0.2]%; p = 0.0007) decreased. Serum b-type natriuretic 
peptide levels did not change. Hemoglobin (+0.27 ± 0.36 
[range, − 0.5 to +0.8]  g/dL; p = 0.04) and hemato-
crit (+ 1.34 ± 1.38 [range, − 0.7 to +4.1]%; p = 0.014) 
increased, but the serum creatinine concentration was 
unchanged. The serum chloride concentration increased 

from 104 ± 3.23 to 106 ± 2.80 mEq/L with a mean change 
of 2.1 ± 1.7 mEq/L (range, − 1 to + 5 mEq/L; p = 0.004), 
but the serum sodium and potassium concentrations 
did not change. The spot urine test revealed that the 
sodium concentration decreased (from 159 ± 43 to 
98 ± 35  mEq/L, p < 0.02) and the chloride concentration 
tended to decrease (from 162 ± 59 to 104 ± 36  mEq/L, 
p < 0.08). Both renin and aldosterone tended to be acti-
vated (5/6 patients, 83%). Serum levels of strong organic 
acid metabolites of acetoacetate (+ 57.8 ± 38.5  μmol/L; 
range, + 7 to + 107  μmol/L; p < 0.02) and total 
ketone bodies (+ 188 ± 167  μmol/L; range, − 17 to 
+ 470 μmol/L; p < 0.04) increased, but the serum levels of 
actual HCO3

− decreased (− 2.5 ± 1.4 mEq/L; range, − 4.2 
to − 0.8 mEq/L; p < 0.008).

Discussion
Diabetic patients frequently present with electrolyte 
abnormalities [12]. The diuretic effects of SGLT2i may 
influence the serum chloride concentration, but few 
experimental [13–15] and clinical studies [16, 17] have 
deeply evaluated the effects and mechanistic considera-
tion of SGLT2i on the serum chloride levels. The find-
ings of the present study indicate that SGLT2i preserves 
or enhances the serum chloride concentration in T2DM/
non-HF patients. Finding of regaining the serum chlo-
ride concentration under dosage of SGLT2i in the present 
study accords with the recent experimental studies [13–
15]. Other findings of physical, hematologic, diabetic/
metabolic, and neurohormonal tests were consistent with 
previous observations [1–3].

Role of chloride and contribution of SGLT2i in regulating 
body fluid distribution
After sodium, chloride is the most abundant serum elec-
trolyte [18], with a key role in the regulation of body 
fluids, electrolyte balance, preservation of electrolyte 
neutrality, and acid–base status, and is the essential com-
ponent for assessing many pathologic conditions [19]. 
Recent studies [7–11] indicate that chloride, not sodium, 
is the primary electrolyte for regulating the fluid dis-
tribution in the human body according to the possible 
biochemical nature of the solutes, as follows. Solutes in 
the human body are classified as effective or ineffective 
osmoles on the basis of their ability to generate osmotic 
water movement, and osmotic water flux requires a sol-
ute concentration gradient [18]. “Tonicity” is the effec-
tive osmolality across a barrier, and regulates body water 
distribution to each body space compartment. According 
to the “chloride theory” [10], chloride ions, not sodium 
ions, are the key electrolyte for regulating the plasma vol-
ume in the human body. Thus, compared with cationic 
sodium ions, anionic chloride ions in the human body 

Table 1  Clinical characteristics of  the  study patients 
at baseline

Data presented as number (%) of patients otherwise specified. eGFR estimated 
glomerular filtration rate, ACE angiotensin-converting enzyme, ARB angiotensin 
II receptor blocker

Characteristics n = 10

Age, years (mean ± SD) 61.7 ± 14 (36–92)

Male 4

Body mass index (kg/m2) 32.1 ± 3.7 (28.2–40)

eGFR (mL min−1·1.73 m−2) 76.3 ± 14.4 (51–90)

Cardiovascular disease

 Hypertension 7

 Hyperlipidemia 6

 Ischemic heart disease 1

Medication for cardiovascular disease

 ACE inhibitors/ARB 5

 Beta-blockers 2

 Calcium antagonists 5

 Nitrate 1

 Diuretics 0

 Lipid-lowering drugs 7

Therapy for diabetes

 Metformin 5

 Sulfonylureas 2

 Dipetidyl peptidase-4 inhibitors 7

 Thiazolidinediones 0

 Glucagon-like peptide-1 antagonist 0

 Insulin 2
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have the potential for “tonicity” in the vascular space [8, 
10]; namely, chloride ions are the key electrolytes for pri-
mary regulation of the distribution of body fluid across 

body spaces, i.e., the intracellular, intravascular, intersti-
tial compartments [18], and the pleural space [20].

As such, the present study demonstrated that SGLT2i 
could be classified as a “chloride-regaining” diuretic [10], 

Table 2  Changes in  physical and  blood test after  sodium-glucose transporter-2 inhibitor treatment in  type 2 diabetic 
patients without heart failure

*Statistically significant difference between before and after treatments (p < 0.05, paired t test)

Normal range Before After After vs. before (increase/
unchanged/decrease)

p value

Physical examination (n = 10)

 Body weight (kg) 80.4 ± 17.5 77.8 ± 17.3 0/0/10 0.002*

 Blood pressure (mmHg)

  Systolic pressure 128 ± 9.83 121 ± 13.5 2/0/8 0.11

  Diastolic pressure 75.8 ± 9.0 75.6 ± 9.4 4/0/6 0.96

 Heart rate (bpm) 68.8 ± 11.4 70.3 ± 13.5 6/0/4 0.59

Diabetes-related blood test (n = 10)

 HbA1C (%) 4.6–6.2 8.55 ± 0.94 7.67 ± 0.86 0/0/10 0.0007*

 Fasting blood glucose (mg/dL) 73–109 179 ± 40.5 138 ± 18.4 1/0/9 0.006*

 LDL cholesterol (mg/dL) 63–163 106 ± 18.5 97.6 ± 22.4 3/0/7 0.07

 HDL cholesterol mg/dL) 48–103 47.7 ± 8.7 47.3 ± 9.7 8/0/2 0.86

B-type natriuretic peptide (pg/mL) (n = 6) < 18.4 8.8 ± 3.75 12.0 ± 9.35 2/2/2′ 0.47

Peripheral blood test (n = 10)

 Hemoglobin (g/dL) 11.6–14.8 13.9 ± 1.29 14.1 ± 1.19 8/1/1′ 0.04*

 Hematocrit (%) 35.1–44.4 41.0 ± 3.51 42.4 ± 3.58 8/1/1′ 0.014*

 Mean red blood cell volume (fL) 83.6–98.2 90.1 ± 3.48 91.6 ± 3.20 7/3/0′ 0.048*

 Serum electrolytes

  Sodium (mEq/L) 138–145 140 ± 2.32 140 ± 1.89 5/2/3′ 0.27

  Potassium (mEq/L) 3.6–4.8 4.0 ± 0.25 3.95 ± 0.23 4/1/5′ 0.56

  Chloride (mEq/L) 101–108 104 ± 3.23 106 ± 2.80 9/0/1 0.004*

 Blood urea nitrogen (mg/dL) 8.0–20.0 14.2 ± 5.76 13.8 ± 2.84 4/1/5′ 0.81

 Serum creatinine (mg/dL) 0.46–0.79 0.73 ± 0.19 0.75 ± 0.20 7/0/3 0.46

 Uric acid (mg/dL) 3.7–7 5.46 ± 1.25 4.50 ± 0.93 2/0/8 0.014*

Urinary examination (n = 6)

 Urinary electrolytes

  Sodium (mEq/L) 159 ± 42.6 98.0 ± 35.1 0/0/6 0.02*

  Potassium (mEq/L) 57.8 ± 24.4 57.8 ± 24.4 1/0/5 0.32

  Chloride (mEq/L) 162 ± ± 59.3 104 ± 35.9 0/0/6 0.08

Neurohormonal test (n = 6)

 Adrenaline (pg/mL) < 0.1 0.026 ± 0.024 0.029 ± 0.022 4/0/2 0.34

 Noradrenaline (pg/mL) 0.1–0.5 0.27 ± 0.078 0.27 ± 0.09 3/0/3 0.95

 Renin activity (ng/mL/h) 0.2–2.3 3.13 ± 3.13 5.67 ± 4.79 5/0/1 0.19

Aldosterone (pg/mL) 36–240 77.7 ± 12.7 94.7 ± 30.7 5/0/1 0.15

 Anti-diuretic hormone (pg/mL) < 2.8 1.33 ± 0.46 1.55 ± 0.89 3/0/3 0.66

Venous blood gas and metabolites (n = 6)

 pO2 (mmHg) – 39.2 ± 13.6 52.3 ± 14.9 6/0/0 0.03*

 Total CO2 (mEq/L) – 28.3 ± 2.66 25.7 ± 1.71 0/0/6 0.01*

 Actual HCO3
− (mEq/L) – 26.9 ± 2.48 24.4 ± 1.62 0/0/6 0.008*

 Acetoacetate (μmol/L) 13–69 41.8 ± 25.0 99.7 ± 45.4 6/0/0 0.02*

 3-Hydroxybutyrate (μmol/L) 0–76 70.2 ± 38.8 200 ± 135 5/0/1 0.06

 Total ketone bodies (μmol/L) 26–122 112 ± 63.5 300 ± 177 5/0/1 0.04*
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such as acetazolamide [11, 21, 22] or vasopressin antago-
nists [23, 24]. “Chloride-regaining” diuretics, defined by 
the “chloride theory” [10], could have peculiar properties 
of preserving plasma volume and renal function [22, 25, 
26], and the capability of draining interstitial body fluid 
by the serum chloride-associated enhancement of vas-
cular “tonicity” [8, 10], as mentioned above. This con-
cept is consistent with the recent clinical observations 
that SGLT2i reduces interstitial congestion without del-
eterious effects of arterial underfilling or predominantly 
decreased extracellular volume [27, 28].

Underlying mechanisms of SGLT2i for regaining the serum 
chloride concentration
It is reasonable to consider that the increase in serum 
chloride concentration by the administration of SGLT2i 
is caused by its osmotic diuretic action with subsequent 
water excretion (aquaresis) and mild hemoconcentration, 
mechanisms similar to those of vasopressin antagonists 
[23, 24]. In addition, the findings of the present study 
suggest the following underlying mechanisms for regain-
ing or enhancing the serum chloride concentration. First, 
reabsorption of urinary chloride is enhanced by activa-
tion of the renin-angiotensin-aldosterone system (RAAS) 
induced by SGLT2i due to blood pressure-lowering and 
blood vessel-contracting effects. Activation of the RAAS 
might be also induced by the reduced chloride supply 
to the macula densa by SGLT2 inhibition, similar to the 
actions of loop diuretics [29]. Controversies exist, how-
ever, about the effects of the SGLT2i on RAAS activity 
[30]. Indeed, a previous report pointed out that SGLT2i 
therapy inhibits RAAS activity [31]. It is likely that vari-
ous levels of RAAS activity are observed in different 
phases (e.g., acute, sub-acute, or chronic) of SGLT2i 
treatment among heterogeneous T2DM patients [32]. 
The “chloride theory” [10] predicts that SGLT2i likely 
inhibits RAAS activity by its chloride-regaining effects 
[33]. In the present study, the RAAS activity at baseline 
was already slightly activated similar to a previous report 
[34], but RAAS activation was not markedly activated 
after SGLT2i treatment.

Second, it could be expected that a reciprocal increase 
in the serum chloride concentration might be caused 
by reducing the serum HCO3

− concentration [35] by 
buffering [36, 37] strong organic acid metabolites (e.g., 
ketone bodies of acetoacetic acid and 3-hydroxybutyric 
acid in the present study) under SGLT2i treatment [38, 
39]. Lastly, inhibitory effects of SGLT2i on Na+–H+ 
exchanger 3 in the renal proximal tubules might reduce 
NaHCO3 reabsorption and concurrently enhance chlo-
ride reabsorption in the urinary tubules [40, 41]. Accord-
ing to these possible mechanisms, SGLT2i has a potential 
to preserve or enhance the serum chloride concentration. 

The precise mechanisms of SGLT2i for preserving the 
serum chloride concentration, however, require further 
exploration.

Limitations
This study included a small number of patients at a sin-
gle center, and there are important limitations to con-
sider, including (1) a selection bias due to data availability 
and (2) low statistical power with wide variabilities in the 
data. Thus, the data must be cautiously interpreted. To 
my knowledge, however, it is the first study examined the 
effects and contributing factors of SGLT2i on the serum 
chloride concentration in T2DM/non-HF patients. Addi-
tional studies with more T2DM patients with or without 
HF, and an extended observational period are needed to 
better clarify the diuretic effects of SGLT2i on the chlo-
ride kinetics.

Conclusions
An SGLT2i administration in T2DM/non-HF patients 
preserve or enhance the serum chloride concentration. 
Such a diuretic effect would preserve vascular volume 
and promote drainage of excessive extravascular fluid 
into the vascular space [27, 28] by enhancing vascular 
“tonicity” [8]. Caution is advised when using an SGLT2i 
in patients with hypernatremia/chloremia because these 
diuretics might lead to an increase in serum chloride and 
sodium levels [42].
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