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Abstract: Cell population delineation and identification is1

an essential step in single-cell and spatial-omics studies.2

Spatial-omics technologies can simultaneously measure in-3

formation from three complementary domains related to this4

task: expression levels of a panel of molecular biomarkers5

at single-cell resolution, relative positions of cells, and im-6

ages of tissue sections, but existing computational meth-7

ods for performing this task on single-cell spatial-omics8

datasets often relinquish information from one or more do-9

mains. The additional reliance on the availability of "atlas"10

training or reference datasets limits cell type discovery to11

well-defined but limited cell population labels, thus posing12

major challenges for using these methods in practice. Suc-13

cessful integration of all three domains presents an oppor-14

tunity for uncovering cell populations that are functionally15

stratified by their spatial contexts at cellular and tissue lev-16

els: the key motivation for employing spatial-omics tech-17

nologies in the first place.18

In this work, we introduce Cell Spatio- and Neighborhood-19

informed Annotation and Patterning (CellSNAP), a self-20

supervised computational method that learns a represen-21

tation vector for each cell in tissue samples measured by22

spatial-omics technologies at the single-cell or finer reso-23

lution. The learned representation vector fuses informa-24

tion about the corresponding cell across all three afore-25

mentioned domains. By applying CellSNAP to datasets26

spanning both spatial proteomic and spatial transcriptomic27

modalities, and across different tissue types and disease28

settings, we show that CellSNAP markedly enhances de29

novo discovery of biologically relevant cell populations at30

fine granularity, beyond current approaches, by fully inte-31

grating cells’ molecular profiles with cellular neighborhood32

and tissue image information.33

spatial-omics | graph neural network | multiplexed imaging | cellular neigh-34

borhoods | clustering35
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Introduction38

There has been a recent surge in the development of mul-39

tiplexed imaging technologies capable of simultaneously40

evaluating 40-100 protein targets (1–3) or several hun-41

dred to thousands of mRNA targets (4–6) at single-cell42

or sub-cellular resolution, within their native tissue con-43

text. High-plex in situ imaging has facilitated the discov-44

ery of intricate tissue structures and local neighborhoods,45

paving the way for novel approaches to disease interfer-46

ence (7–9). These high-dimensional "spatial-omics" data47

often require sophisticated approaches for data analysis48

to uncover biologically meaningful insights. In what fol-49

lows, we refer to spatial-omics data at single-cell or finer50

resolution as single-cell spatial-omics data. The majority51

of information in these data is contained in the following52

three complementary domains (10): 1) single-cell expres-53

sion levels of measured biomarkers, 2) relative locations54

of cells, and 3) image of measured tissues, providing in-55

formation related to cellular morphology and tissue archi-56

tecture, through multiple channels. For simplicity, we refer57

to them here and after as 1) expression, 2) location, and58

3) image domains, respectively.59

Analysis of single-cell spatial-omics data begins with cell60

phenotyping: Single-cell boundary masks are generated61

from raw images by cell segmentation approaches (e.g.,62

(11, 12)), which are then employed to extract the ex-63

pression level of molecular features from each cell to64
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create a cell-by-feature data matrix. The data matrix65

is often treated as from a dissociated single-cell study66

for cell population identification. In the most bare-bone67

form, the process involves applying a clustering algorithm68

(e.g., (13–16)) on the matrix, followed by cell type anno-69

tation by a human expert who compares highly-expressed70

biomarkers of each cluster to known markers of a list of71

pre-defined cell populations. Conventionally, the forego-72

ing cell population delineation (i.e., clustering cells into73

groups with distinct bio-molecular profiles and/or biolog-74

ical functionalities) and identification (i.e., cell type an-75

notation) process rely solely on feature expression lev-76

els, whilst image-level information (e.g., cell relative lo-77

cation, marker/tissue image information) is only utilized78

during downstream analyses, such as cellular neighbor-79

hood or tissue schematic identification (17–20). As high80

spatial resolution is often accompanied by a limited tar-81

geted panel size, this (molecular-)feature-only approach82

only distinguishes coarser cell populations when com-83

pared with high-throughput dissociated single-cell data,84

thus severely hindering the realization of the full potential85

of spatial-omics studies.86

Tissue image information at different scales can facilitate87

invaluable insights into cellular-level processes, including88

but not limited to cell type and activation state. This is ex-89

emplified by how pathologists are able to identify certain90

cell populations from H&E images, based on information91

contained in cell morphology, location, and surrounding92

tissue architecture (21, 22). In addition, spatial informa-93

tion in an image can further differentiate subpopulations94

of cells, which cannot be fully captured by the cell’s mea-95

sured features alone, but rather in concert with the distinct96

microenvironments that drive cell states beyond cell iden-97

tities. Furthermore, the image-level information can com-98

plement the molecular profile information confined by the99

antibody or RNA probe panel size. This is exemplified by100

the distinctive effector and suppressor activities of T cells101

in close contact with tumors, compared to those farther102

away (23–25). In parallel, B cells located in different lay-103

ers of niches within the germinal center also represent dif-104

ferent populations with distinct functionality and cell state105

changes (26, 27). Therefore, ideal cell population delin-106

eation and identification in spatial-omics data should take107

advantage of spatial and tissue image information avail-108

ability.109

When one has a set of pre-defined cell populations in110

the form of an annotated training dataset, new methods111

(28, 29) have been proposed to leverage the relative lo-112

cations of cells in a spatial-omics dataset when classify-113

ing the cells to the pre-specified populations. However,114

as classification methods, they are supervised-learning by115

nature, and hence do not directly accommodate the defi-116

nition and discovery of new cell populations unseen in the117

training data or the partitioning of a population into mul-118

tiple biologically distinct subpopulations. In addition, im-119

age domain information is ignored. For cell population120

delineation, recent methodologies have explored fusing121

single-cell morphology (i.e., individual cell shape informa-122

tion) (30) and spot spatial adjacency information (i.e., a123

form of relative location information among cells) (31) to124

the original expression profiles, for generating new numeri-125

cal representations of cells that could better represent their126

differences than the measured molecular profiles. Com-127

pared with classification, the primary advantage of apply-128

ing unsupervised clustering methods on these cell repre-129

sentation vectors is the possibility of de novo cell popu-130

lation discovery: Clustering methods make no assump-131

tion about the existing cell populations in data, making the132

identification of previously unseen biological events more133

accessible.134

In view of the gap between the available information in135

data and that leveraged by state-of-the-art computational136

methods, we postulated that integrating information con-137

tained in the location and the image domains of spatial-138

omics data with single-cell molecular profiles would no-139

tably enhance the granularity when delineating cell pop-140

ulations. We thus present CellSNAP (Cell Spatio- and141

Neighborhood-informed Annotation and Patterning), an142

unsupervised information fusion algorithm, broadly appli-143

cable to different single-cell spatial-omics data modalities,144

for learning cross-domain integrative single-cell represen-145

tation vectors. In particular, CellSNAP-learned represen-146

tation vectors incorporate information from expression, lo-147

cation, and image domains, hence exhausting major in-148

formation sources in single-cell spatial-omics data. Ex-149

isting unsupervised clustering algorithms, such as Lei-150

den clustering and its peers, can operate directly on the151

CellSNAP-learned representations rather than the con-152

ventional feature expressions, enabling spatio-informed153

fine-grained delineation and de novo discovery of cell pop-154

ulations across diverse imaging modalities and biological155

samples.156

Results157

Overview of CellSNAP. The following is a brief descrip-158

tion of the CellSNAP pipeline (Fig. 1). See Material and159

Methods for more technical details. CellSNAP is an in-160

formation fusion algorithm operating on single-cell spatial-161

omics modalities, including but not necessarily limited to162

both spatial proteomics (e.g., CODEX (3)) and spatial tran-163

scriptomics (e.g., CosMx-SMI (6)). To start with, Cell-164

SNAP curates three pieces of inputs for each cell cor-165

responding to the three information domains: 1) expres-166

sion domain: an expression profile vector, e.g., a vector of167

protein expressions from a CODEX experiment; 2) loca-168

tion domain: a cellular neighborhood context vector, i.e.,169

a vector recording composition information of neighboring170

cells around each cell; 3) image domain: an image tensor171

recording local tissue images in multiple channels i.e., a172

collection of images that capture each cell’s adjacent and173

local tissue image patterns. To access the neighborhood174

context information, we assume that each cell has been175

given a coarse initial cluster label. Hence, its neighbor-176

hood context can be represented by the proportions of its177
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Figure 1: Illustration of the CellSNAP pipeline. CellSNAP is compatible with imaging-based spatial-omics modalities with single-cell or finer resolutions (e.g., CODEX
and CosMx). Information from three domains is extracted from each individual cell and its surroundings: 1) single-cell expression profile (e.g., measured protein or mRNA
features); 2) single-cell location information (e.g., cellular neighborhood composition); 3) single-cell local tissue image information (e.g., local images from nuclear and
membrane channels). CellSNAP takes these three types of information as input. It first utilizes a CNN encoder to extract features from images of local tissues surrounding
each cell. Next, two separate GNN models are constructed in parallel: 1) a ’Spatial-GNN’, where each node represents a cell, with the initial node vector assigned as
CNN-extracted local image features, and nodes are connected according to spatial adjacency. 2) an ’Expression-GNN’, where each node represents a cell, with the initial
node vector assigned as the expression profile, and nodes are connected according to expression similarity. The two GNNs are connected by an overarching MLP head
which combines the message passing outputs of the two GNNs for predicting the target vector of each cell, that is the concatenation of the cell’s feature-based population
identity (one-hot) and its neighborhood composition (percentage) vectors. After training, the last layers of the two GNN models are extracted, combined, and reduced (via
SVD) to form the final, tri-domain integrated representation vector for each cell. This multi-domain fused representation vector is then used in downstream analysis for cell
type identification purposes, which is compatible with commonly used unsupervised clustering methods (e.g., Leiden clustering). Detailed illustration of the involved model
architectures can be found in Supp. Fig. 1.

spatial nearest neighbors in different initial clusters. When178

a priori human expert annotation is not available, one can179

obtain initial cluster labels by grouping the cells accord-180

ing to their expression profile similarities. When human-181

expert cell type annotations are available, the annotated182

labels can serve as initial cluster labels. For all results re-183

ported in this paper, we used Leiden clustering (16) with184

resolution level 0.5 on a feature-expression induced near-185

est neighbor graph of each dataset for generating initial186

cluster labels, without human intervention.187

CellSNAP leverages a novel neural network architecture,188

which we term SNAP-GNN-duo (Supp. Fig. 1), for or-189

chestrated information integration across three domains.190

The architecture consists of two parallel Graph Neural Net-191

works (GNNs) (32) with identical node set but distinct net-192

work topology, connected by an overarching multi-layer193

perceptron (MLP) (33) head. In both GNNs, nodes rep-194

resent cells in the measured tissue section(s) with one-195

to-one correspondence. One GNN (the Spatial GNN in196

Fig. 1) is constructed on a spatial adjacency graph, where197

for each node its nodal feature is initialized with the local198

tissue image encoding vector of the cell (see next para-199

graph for details), and pairs of nodes are connected if their200

spatial locations in the tissue section are close. The other201

GNN (the Expression GNN in Fig. 1) is built on a feature202

similarity graph, where for each node its nodal feature is203

initialized with the cell’s expression profile, and pairs of204

cells are connected if their expression profiles are similar.205

To compute the local tissue image encoding vector for206

each cell, we train from scratch a Convolutional Neural207

Network (CNN) model (34), which we call SNAP-CNN208

(Supp. Fig. 1), as an image encoder. SNAP-CNN takes209

each cell’s local tissue image, processes it through an210

AlexNet-like architecture (34), and predicts the cell’s cel-211

lular neighborhood context vector. The resulting fitted en-212

coding vectors from training (a pre-specified hidden layer213

in the trained SNAP-CNN) are used as local tissue image214

encoding vectors for individual cells. SNAP-CNN supplies215

values for initializing SNAP-GNN-duo, and its training (de-216

tails in Material and Methods) is performed prior to that of217

SNAP-GNN-duo.218

After initialization and parallel message passing on the219

SNAP-GNN-duo, the updated nodal vectors of the two220

GNNs are concatenated and used as inputs for the final221

MLP head. The MLP head trains and predicts for each cell222

the target vector which is the concatenation of the cell’s223

cellular neighborhood context vector and a one-hot vector224

recording the cell’s initial cluster label. Finally, after train-225

ing, a designated hidden layer of the MLP head is used as226

the output representation vector of the CellSNAP pipeline227

(Supp. Fig. 1). See Material and Methods for details on228

training SNAP-GNN-duo.229

By design, the CellSNAP representation fuses single-cell230

expression, cellular neighborhood, and local tissue image231

information. In downstream analysis, an existing clus-232

tering algorithm (13–16) can be directly applied to the233

CellSNAP representation vectors for cell population delin-234

eation at fine granularity, with no further modification re-235
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quired. For benchmarking purposes, we applied Leiden236

clustering (16) on the resulting CellSNAP representation237

in this study to showcase its applications. Human experts238

and/or machine learning algorithms can then determine239

the biological states of the CellSNAP clusters and perform240

further downstream investigations.241

Application to CODEX lymphoid tissue data. We per-242

formed CellSNAP on a healthy mouse spleen CODEX243

dataset (3), which includes 30 protein markers and 53,500244

cells. To quantitatively evaluate the capacity to delineate245

cell populations of various cell representation methods,246

we implemented four metrics: Silhouette Score, Calinski-247

Harabasz Index, Davies-Bouldin Index, and Modularity248

Score (see Material and Methods for details). For These249

metrics do not require ground truth cell population infor-250

mation, and thus are suitable for objectively benchmark-251

ing the performance of different methods for de novo cell252

type identification. We computed these metrics based on253

single-cell representation vectors obtained from five differ-254

ent methods, including: 1) Feature: each cell’s feature255

expression vector; 2) Concatenation: the concatenation256

of each cell’s feature expression vector and neighborhood257

composition vector; 3) SpiceMix (31): each cell’s SpiceMix258

representation vector; 4) MUSE (30): each cell’s MUSE259

representation vector; 5) CellSNAP: each cell’s CellSNAP260

representation vector. We observed improved clustering261

performance with the CellSNAP representation, compared262

to other methods on the mouse spleen CODEX data (Fig.263

2A), as defined by the metrics above.264

We next performed a more nuanced comparison of cell265

type identifications based on clustering results (from Lei-266

den clustering with resolution = 1) on: 1) CellSNAP rep-267

resentation, or 2) feature-only expression profile (i.e., ex-268

pressions of 30 protein markers). First coarse cell type269

annotations were generated based on the protein profiles270

from either CellSNAP or feature-only clusters (Fig. 2B,271

Supp. Fig. 2). Subsequently, we focused on clusters272

annotated as B cells. B cells were chosen as they encom-273

passed the largest population in this dataset (≈ 45% of all274

cells). The CellSNAP and feature expression representa-275

tions produced 7 and 6 Leiden clusters which were anno-276

tated as B cells respectively (Fig. 2C). B cell clusters from277

the feature expression representation were more inter-278

mixed when visualized via UMAP, and less distinctive in re-279

gards to B cell-related protein marker expression (Fig. 2C,280

right); B cell clusters from the CellSNAP representation281

were more well-structured when visualized via UMAP, and282

more distinctive in terms of B cell-related protein marker283

expression (Fig. 2C, left). To further validate our find-284

ings that B cell subpopulations were better stratified us-285

ing CellSNAP, we investigated the biological relevance of286

the identified B cell clusters by observing their spatial lo-287

calization (Fig. 2D). While the conventional features-only288

approach could partially delineate B cell subpopulations,289

including the identification of germinal center (GC) B cells290

with medium or high CD21/CD35 expression, most Lei-291

den clusters from feature representation (c1, c4, c6) were292

mixtures of different B cell subgroups (Fig. 2D, bottom).293

In comparison, Leiden clusters from CellSNAP represen-294

tation spatially delineated the B cell subgroups success-295

fully, including not only the GC B cells with medium or296

high CD21/CD35 expression as identified in the feature-297

only approach, but also GC CD21/CD35 negative B cell298

(c6), spleenic zone B cell (c1), and marginal zone B cell299

subgroups (c1, c10) (Fig. 2D, top) (35–37).300

We further evaluated CellSNAP for its cell population de-301

lineation performance on a human tonsil CODEX data302

(38), consisting of 46 protein markers across 102,574303

cells. Akin to the mouse spleen data, we observed im-304

proved clustering performance based on the quantitative305

benchmarking metrics (Supp. Fig 3A). We similarly per-306

formed cell type annotation on both CellSNAP represen-307

tation and feature-only representation (Supp. Fig. 3B,308

Supp. Fig. 4), and identified non-overlapping B cell anno-309

tations between CellSNAP and feature-only results: whilst310

both methods robustly uncovered general B cells (includ-311

ing GC B cells), CellSNAP was able to identify an addi-312

tional population that was not identified with the feature-313

only representation (cells labeled as red, Supp. Fig. 3C).314

This replicating non-GC B cell population was identified315

using CellSNAP as a distinctive Leiden cluster (CellSNAP316

- c10 in Supp. Fig. 3B), but was intermixed with other317

B cells in a feature-only Leiden cluster (feature - c8 in318

Supp. Fig. 3B). The failure of the feature-only approach319

in distinguishing this B cell subpopulation is likely due to320

its similar protein expression profile to other GC B cells,321

both exhibiting high levels of the proliferation marker Ki67322

in CellSNAP clusters c8 and c10 (Supp. Fig. 3E). A close323

visual inspection of the spatial localization of CellSNAP -324

c10 cluster cells confirmed their distinctive arrangements325

bordering GCs (Supp. Fig. 3F).326

Application to cHL cancer tissue CODEX data. We327

next evaluated the performance of CellSNAP in a real-328

world disease context, specifically to studying the classic329

Hodgkin Lymphoma (cHL) tumor microenvironment (TME)330

and its milieu of immune infiltrates. We applied CellSNAP331

on 143,730 cells from an in-house 45-plex CODEX clas-332

sic Hodgkin Lymphoma (cHL) tumor dataset (39). We333

first calculated quantitative metrics on the cell population334

delineation performances of the CellSNAP representation335

and four other representation methods (Fig. 3A), and im-336

plemented the cell type annotation process on either the337

CellSNAP representation or the feature-only representa-338

tion (Fig. 3B, Supp. Fig. 5A). We previously identified339

systemic T cell dysfunction within the cHL TME using an340

iterative spatial proteomics and cell type-specific spatial341

transcriptomics approach, in which a T cell dysregulation342

state is directly related to its distance from neighboring343

cHL tumor cells (25). We postulated that CellSNAP would344

be an effective approach to facilitate the finer delineation of345

T cell subpopulations in the context of cHL. Clustering on346

the CellSNAP representation generated 6 distinct CD4 T347
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Figure 2: Refined B cell subpopulations discovered by CellSNAP in a healthy mouse spleen CODEX dataset. (A) Metric-based evaluations of cell population delineation
performances on CODEX mouse spleen tissue. Representations of cells, from 5 different methods, were used as input: CellSNP representation, feature (protein expression
table), concact (protein expression + neighborhood composition table), SpiceMix representation, and MUSE representation (detail in Material & Methods). A total of 5 batches,
each with 10,000 randomly selected cells were tested. Solid line indicates average and shade indicates 95% CI of the scores. (B) UMAP visualizations of representations and
Leiden clustering results. Cell types of the CellSNAP or feature-only clusters were annotated based on the average expression profiles of the clusters. Left panel: CellSNAP
representation; Right panel: feature expression. Dotted line indicates B cell subpopulations. (C) UMAP visualizations and B cell-related protein expression profiles of clusters
annotated as B cells. Left panel: B cell clusters from CellSNAP and their expression heatmap. Right panel: B cell clusters from feature expression and their expression
heatmap. (D) Comparison of spatial locations of different B cell clusters identified by CellSNAP representation vs. feature expression in the spleen tissue. In each plot, red
dots indicate cells from a specific cluster, and green lines indicate germinal center boundaries. Upper panel: Spatial locations of B cell subpopulations identified by CellSNAP
representation clusters. Lower panel: Spatial locations of B cell subpopulations identified by feature expression clusters.
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Figure 3: Refined T cell subpopulations in tumor microenvironments discovered by CellSNAP in a cHL tumor CODEX dataset. (A) Metric-based evaluations of cell
population delineation performances on CODEX human cHL tissue. Representations of cells, from 5 different methods, were used as input: CellSNP representation, feature
(protein expression table), concact (protein expression + neighborhood composition table), SpiceMix representation, and MUSE representation (detail in Material & Methods).
A total of 5 batches, each with 10,000 randomly selected cells were tested. Solid line indicates average and shade indicates 95% CI of the scores. (B) UMAP visualizations
of representations and Leiden clustering results. Cell types of the CellSNAP or the feature-only clusters were annotated based on the average expression profiles of the
clusters. Left panel: CellSNAP representation; Right panel: feature expression. (C) Visualization of cell type spatial locations in the cHL tissue, colored by annotations on
CellSNAP clusters. Black regions are empty spaces. White lines indicate the borders of the cHL tumor regions. (D) Visualization of the spatial locations of different CD4 T
cell subpopulations identified by CellSNAP representation clusters. Black lines indicate borders of the cHL tumor regions.

cell subpopulations, with each of them occupying distinc-348

tive spatial regions relative to the tumor within the TME349

(Fig. 3C, D). In contrast, CD4 T cells obtained from clus-350

tering on feature-only representation did not exhibit these351

diverse spatial localizations and niche profiles (Supp. Fig.352

5B). Two interesting CD4 T cell subpopulations identified353

by CellSNAP representation are (Fig. 3D): CellSNAP -354

c8 (top row, middle panel), a subpopulation that occupies355

the boundary of the cHL tumor patch, and CellSNAP - c20356

(bottom row, right panel), a subpopulation that infiltrated357

inside the cHL tumor patch. We further observed that only358

the tumor-infiltrated CD4 T cell subpopulation (CellSNAP359

- c20), but not the tumor-boundary CD4 T cell subpopula-360

tion (CellSNAP - c8), exhibited an elevated expression of361

T cell dysfunctional markers LAG3 and PD-1 (Supp. Fig.362

5C). These results further elucidate the importance of un-363

derstanding T cell dysregulation within the cHL TME (40–364

42). More importantly, the CellSNAP-enabled analysis,365

alongside other recent spatial-omics studies (25), shed366

light on the importance of spatial aspects in dysfunctional367

T cell - cHL TME interactions in the orchestrated immuno-368

logical responses to tumor in cHL and beyond.369
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Figure 4: CellSNAP-enabled delineation of biologically distinct macrophage subpopulations in a HCC tumor CosMx-SMI dataset. (A) Metric-based evaluations of
cell population delineation performances on CosMx-SMI human HCC tissue. Representations of cells, from 5 different methods, were used as input: CellSNP representation,
feature (protein expression table), concact (protein expression + neighborhood composition table), SpiceMix representation, and MUSE representation (detail in Material
& Methods). A total of 5 batches, each with 10,000 randomly selected cells were tested. Solid line indicates average and shade indicates 95% CI of the scores. (B)
Visualizations of spatial locations of different cell populations, including all cell types (the first panel; colored by cell type annotation obtained from CellSNAP clusters; black
regions indicating empty spaces) and different macrophage subpopulations identified by CellSNAP representation clusters (the second to the fourth panels). In each of the
second to the fourth panels, all tumor cells, and macrophage cells from a specific CellSNAP cluster are colored, while other cells and empty spaces are in black. (C) Volcano
plot of differentially expressed genes between CellSNAP-c6 cluster and other macrophage clusters. (D) Comparison of module score values (43) between CellSNAP-c6 and
all other macrophage cells. ’M1-like’ and ’M2-like’ scores were calculated by genes from (44). Splenic macrophage specific ’pro-inflammatory’ and ’immunoregulatory’ scores
were calculated by genes from (45). The unpaired Wilcoxon test was implemented to produce p values. (E) Visualization of the spatial distribution of all macrophages and
their respective ligand-receptor interaction detection score levels. Detection score was calculated based on significant ligand-receptor interaction pairs between macrophages
and tumor cells (46). (F) Top 10 most frequent ligand-receptor interaction pairs associated with CellSNAP-c6 macrophages. (G) GEP usage scores (47) among tumor cells,
stratified by infiltration (by macrophage) status. The unpaired Wilcoxon test was implemented to produce p values.
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Application to HCC cancer tissue CosMx-SMI data.370

Given the compelling evaluation of CellSNAP on spa-371

tial proteomics data, we further extended its applicability372

on cell population delineation with spatial transcriptomics373

data. We first deployed CellSNAP and other methods374

on a Hepatocellular carcinoma (HCC) tumor CosMx-SMI375

dataset (48). This dataset consists of 54,867 cells, with an376

RNA panel of 997 genes. We first evaluated the cell clus-377

tering performance using the previously described quan-378

titative metrics, and continued to observe superior per-379

formance from CellSNAP (Fig. 4A). We then performed380

cell type annotation based on Leiden clustering results,381

either from CellSNAP representation or feature-only rep-382

resentation (Supp. Fig. 6A, B). Between the two meth-383

ods, CellSNAP allowed finer delineation of cell subpop-384

ulations. For instance, 2 clusters of macrophages were385

identified using feature-only representation (Supp. Fig.386

6A,B). In contrast, an increased number of macrophage387

clusters, each with a distinctive niche occupation, were388

obtained from CellSNAP representation (Fig. 4B). We389

observed that the macrophage subpopulation CellSNAP390

- c6 exhibited a unique spatial occupation of the Tumor-391

Immune interface, which was missing in the feature-only392

results (Fig. 4B, Supp. Fig. 6C). Further investiga-393

tion consolidated the functional differences of subpop-394

ulation CellSNAP - c6 from other macrophages in this395

dataset. Differential expression (DE) analysis between c6396

macrophages and other macrophages revealed upregu-397

lated genes unique for CellSNAP - c6, including the C1Q398

family (C1QA, C1QB, C1QC), LYZ, and the HLA family399

(HLA.DQA1, HLA.DPA1) (Fig. 4C).400

To gain a deeper understanding of the differences401

between CellSNAP - c6 and other macrophages at402

a pathway/gene program level, we performed module403

scoring (43) on pan-macrophage (44) or liver-specific-404

macrophage public gene lists (45) (Fig. 4D). We found405

that CellSNAP - c6 macrophages skewed towards a more406

‘M1-like’ and pro-inflammatory phenotype, while the other407

macrophages displayed a more immuno-regulatory phe-408

notype. Given the close spatial proximity of CellSNAP409

- c6 macrophages to specific tumor regions, and their410

pro-inflammatory characteristics, we hypothesized an ac-411

tive interaction between these macrophages and their412

adjacent tumor cells. To test this hypothesis, we per-413

formed spatial ligand-receptor (LR) analysis using spa-414

tialDM (46) on all macrophages and tumor cells in this415

tissue (Fig. 4E), and detected a high number of signifi-416

cant LR interaction events specifically enriched at the Cell-417

SNAP - c6 macrophage-infiltrated tumor boundary. We418

further performed DE analysis on LR pairs between Cell-419

SNAP - c6 and other macrophages, to further support a420

model in which the CellSNAP - c6 macrophages had in-421

creased LR interaction profiles (p.adj < 0.05, BH correc-422

tion), including integrin receptors and their respective lig-423

ands compared to other macrophages (Fig. 4F). Our re-424

sults with CellSNAP thus far identified CellSNAP - c6 as425

tumor-boundary infiltrating macrophages exhibiting alter-426

native functional states and LR interaction profiles, along427

with the ability to more granularly distinguish HCC tumor428

cell populations (Supp. Fig. 7). We next postulated429

that the HCC tumor subpopulations infiltrated by these430

CellSNAP - c6 macrophages (CellSNAP - c7, c8, c17)431

would also possess different gene programs and path-432

way usages compared to other tumor populations even433

in the same tissue. To test this, we performed unsuper-434

vised Gene Expression Program (GEP) identification us-435

ing cNMF (47) (Supp. Fig. 8A, B), and selected the436

most significantly upregulated or downregulated GEPs for437

comparison between tumor clusters with macrophage in-438

filtrates (CellSNAP - c7, c8, c17), compared to other tu-439

mor cells in the same tissue. We then annotated the440

GEPs by their top 20 contributing genes, using Gene On-441

tology (GO) analysis (Fig. 4G), and observed elevated442

gene program activation and usages related to immune443

cell chemotaxis, cytokine signaling, and ECM disassem-444

bly in macrophage-infiltrated tumor cells. In contrast, other445

tumor cells showed enhanced gene program usages re-446

lated to NOS synthesis, IL-10 regulation, and proliferation.447

In summary, we demonstrated that CellSNAP representa-448

tion facilitated the delineation and identification of a Tumor-449

Associated-Macrophage (TAM) subpopulation with infiltra-450

tion tendencies and pro-inflammatory functionalities. This451

TAM subpopulation is potentially altering tumor programs452

via spatial interactions, consistent with findings from previ-453

ous studies in HCC tissues (49–51). Remarkably, the dis-454

covery of this TAM subpopulation is entirely unsupervised,455

and no training or reference dataset has been involved.456

Additional benchmarking. To evaluate the robustness457

of CellSNAP with respect to different tuning parameter458

choices, we tested ranges of values for four different tuning459

parameters on the mouse spleen CODEX dataset (Supp.460

Fig. 9): 1) resolution used in Leiden clustering for acquir-461

ing the cell identity cluster numbers and cell neighborhood462

composition. 2) K used in searching the nearest neighbor-463

hood for cell neighborhood composition calculation. 3) Im-464

age size (pixel numbers) for acquiring SNAP-CNN encod-465

ing. 4) Binarization threshold value for acquiring SNAP-466

CNN encoding. In addition, to evaluate the advantage467

of the SNAP-GNN-duo architecture, we benchmarked the468

model training performance, using loss values calculated469

on randomly selected test datasets as a proxy, of the full470

SNAP-GNN-duo pipeline against the single-GNN alterna-471

tives (i.e., using only the expression GNN or the spatial472

GNN with an MLP head) (Supp. Fig. 10). Altogether473

these results highlight the robustness of CellSNAP and its474

generalizable performance across multiple metrics. For475

details see Material & Methods.476

Discussion477

Spatial-omics approaches at single-cell or even sub-478

cellular resolution are often limited in the number of tar-479

geted features they measure, for example ∼ 30 − 60 in480

spatial proteomic studies, and hundreds to thousands481
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in spatial transcriptomics studies. Current computation482

methods for grouping biologically distinct cells in spatial-483

omics data are often built upon those originally designed484

for dissociated single-cell analysis, and thus miss the op-485

portunity to leverage the available image information and486

the in situ nature of the data for better delineation and rep-487

resentation of individual cells’ states.488

In this study, we developed a new geometric deep learn-489

ing pipeline, CellSNAP, that integrates complementary in-490

formation from feature expressions (including proteins or491

RNAs), neighborhood context, and local tissue image, to492

produce for each cell a comprehensive representation vec-493

tor suitable for a wide range of downstream analyses, in-494

cluding but not limited to clustering analysis for spatial-495

and-tissue-context-aware cell population delineation and496

identification, and analysis of their functional differences.497

The CellSNAP pipeline employs a novel architecture that498

consists of two GNNs for coding expression similarity and499

spatial proximity among cells in parallel, thus allowing500

smooth information diffusion of biomarker expressions and501

local tissue images within their respective natural domains502

for better information fusion. CellSNAP exhibits robust-503

ness in enhancing cell population delineation across di-504

verse spatial-omics datasets collected from different tis-505

sues and disease settings using diverse technologies. No-506

tably, CellSNAP’s compatibility with the current de novo507

cell type identification processes allows for straightforward508

applications of existing clustering algorithms to the learned509

representation. Thus, we anticipate the adoption of Cell-510

SNAP within the spatial-omics community.511

We showcased the application of CellSNAP on imaging-512

based spatial modalities (CODEX and CosMx-SMI).513

However, the pipeline would be also compatible with514

sequencing-based spatial modalities (e.g., Slide-seq,515

Stereo-seq, HDST (52–54)), as such datasets are usu-516

ally accompanied by H&E or fluorescent images of the517

same or an adjacent tissue section, on top of the spatially-518

resolved genomic readouts, and hence inputs to the Cell-519

SNAP pipeline can be curated.520

While the current study has focused on showcasing Cell-521

SNAP’s efficacy in cell population delineation, the utility522

of the learned representation vectors can be generalized523

to other biological tasks. For instance, they can serve as524

engineered features in diagonal integration tasks, comple-525

menting other recently developed methodologies (26, 27).526

In addition, they can serve as inputs to spatial neigh-527

borhood analysis pipelines (55, 56) for identifying differ-528

ent tumor-immune micro-environments and other neigh-529

borhoods of biological interests. Furthermore, the repre-530

sentation vectors can serve as inputs to machine learn-531

ing models that aim at predicting disease outcomes di-532

rectly from single-cell information. Overall, the learned533

all-encompassing cell representation that integrates ex-534

pression, location, and image domains, summarizes key535

information provided by spatial-omics datasets and holds536

great promise for improved and better-informed down-537

stream analyses with diverse biological objectives.538

Materials & Methods539

CellSNAP input preparation. CellSNAP integrates540

single-cell feature expressions (e.g., protein or mRNA),541

cell neighborhood context, and local tissue image infor-542

mation for cell population differentiation and discovery.543

We first describe how to curate inputs to the Cell-544

SNAP pipeline from a typical spatial omics dataset with545

single-cell or sub-cellular resolution.546

Assume there are n cells in the dataset and we have the547

following information. First, we have a cell-by-feature ma-548

trix X ∈ Rn×d recording d biomarkers (e.g., protein, gene549

expression, etc.) for each cell. The ith row of X, xi ∈ Rd,550

records these biomarkers for the ith cell. In addition, we551

have spatial locations of the cells. When all cells are within552

the same field of view (FOV), the spatial locations can be553

represented as a n × 2 matrix storing the x-y coordinates554

of cell centroids within the FOV. When the dataset encom-555

passes multiple FOVs, a FOV identifier is also recorded556

for each cell. Furthermore, we assume the availability557

of FOV(s) as digital image(s) with C channels, which in-558

clude at least a nucleus channel and a membrane chan-559

nel, similar to the set up for most imaging-based spatial-560

omic datasets (12).561

Spatial proximity graph and feature similarity graph We562

construct two graphs that share the same set of nodes,563

and each node corresponds to a cell in the dataset.564

The first graph is a spatial proximity graph among cells.565

In this graph, each cell is connected to ks spatial-nearest-566

neighbors within the same FOV, based on spatial coordi-567

nates of cells. We denote this graph by Gs and its adja-568

cency matrix As.569

The second graph is a feature similarity graph among570

cells. For its construction, we first perform principal com-571

ponent analysis (PCA) on the feature matrix X to obtain a572

reduced-dimension representation XPC ∈Rn×d0 . Denote573

its ith row by xPC
i for i = 1, . . . ,n. Then we calculate pair-574

wise similarity of cells by Pearson correlations (or some575

other similarity measure that the user chooses) between576

row pairs of XPC and form a kf -nearest-neighbor graph577

(57) by connecting each cell to kf cells whose expression578

profiles are most similar. Denote this graph by Gf and its579

adjacency matrix by Af .580

Cellular neighborhood composition We partition all cells581

into disjoint clusters by applying some graph clustering582

method on the feature similarity graph Gf . If human-expert583

cell type annotations are available, we can regard them584

as cluster labels and skip the clustering step. For all re-585

sults reported in this study, we used Leiden clustering (16)586

with resolution level 0.5 on Gf without human intervention587

for initial cell cluster label generation. These initial labels588

were in turn used for cellular neighborhood composition589

calculations.590

Suppose there are in total p different initial cell cluster la-591

bels. Fix a positive neighborhood size k1. For the ith cell,592

its cellular neighborhood composition vector is yi ∈ Rp
593

which records the proportions of its k1 spatial-nearest-594
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neighbors belonging to each of the p clusters (19, 58). The595

spatial-nearest-neighbors of each cell are determined by596

the spatial coordinates of cells within the same FOV. By597

definition, the elements of yi are non-negative and sum to598

one. We stack the yi’s as row vectors to form Y ∈ Rn×p.599

The generated fixed-dimensional cellular neighborhood600

composition vector for each cell will then be concatenated601

with each cell’s one-hot cluster label vector. The stacked602

2p-dimensional vectors {ytg
i : i = 1, . . . ,n} will be used as603

the self-supervising target of prediction in the later SNAP-604

GNN-duo model.605

Local tissue image tensor For the ith cell, we crop its cor-
responding FOV at each channel c of interest, centered at
the centroid of the cell and with window size L × L, re-
sulting in a matrix T

(c)
0,i ∈ RL×L. We then dichotomize the

cropped image at each channel c at the αth quantile sc of
all values in T

(c)
0,i to obtain an L × L matrix whose (a,b)th

entry is

(T (c)
i )ab =

{
1, if (T (c)

0,i )ab ≥ sc,

0, otherwise.

We concatenate the cropped and dichotomized images for606

all selected channels centered at each cell to generate the607

final output of this step: a 0-1-valued local tissue image608

tensor Ti ∈ RC×L×L for each cell i ∈ {1,2 . . . ,n}, where609

C is the total number of image channels used.610

Default tuning parameter choices for input curation By611

default, we set d0 = 25 and kf = 15 for constructing the612

feature similarity graph, and ks = 15 for the spatial proxim-613

ity graph. For initial cell clustering, we apply Leiden clus-614

tering with resolution 0.5. In addition, we set k1 = 20 when615

computing cellular neighborhood composition vectors. For616

image processing, the default choices are α = 0.9, L = 512617

(corresponding to 50 ∼ 100µm), and C = 2 (correspond-618

ing to nucleus and membrane channels only to achieve619

robustness with respect to spatial omics technology).620

SNAP-CNN for encoding local tissue image. The first621

step of the CellSNAP pipeline trains a Convolutional Neu-622

ral Network (CNN) (33), called SNAP-CNN, that predicts623

each cell’s neighborhood composition vector yi, with its624

local tissue image tensor Ti. After SNAP-CNN is trained,625

we take the fitted hidden state of each cell as an encoding626

vector of the cell’s local tissue image information.627

SNAP-CNN encoder architecture The SNAP-CNN en-628

coder enc(·) maps each local tissue image tensor Ti to629

a code zi ∈ Rq, i.e.630

zi = enc(Ti) ∈ Rq. (1)

We adapt the architecture of AlexNet (59) to form a six-631

layer CNN as the encoder. The kernel sizes of the con-632

volutional layers are 2, 3, 4, 2, 2, and 2, respectively, with633

corresponding feature map dimensions 512, 128, 63, 45,634

7, 3, and 2, and channel dimensions 2, 16, 32, 64, 128,635

256, and 512. The architecture also includes a 2 × 2 max-636

pooling function (33) after each of the first five convolution637

layers. Following the convolution layers, we flatten the fea-638

ture map and add three fully connected layers with output639

dimensions 1024,512, and 128, respectively. The final out-640

put dimension of the SNAP-CNN encoder is thus q = 128.641

To map zi to a predicted neighborhood composition vector642

ỹi ∈ Rp, we add a fully connected layer and a non-linear643

activation function on top. In particular, we set644

ỹi = W̃ ⊤ϕ(zi)+ b̃, (2)

where W̃ ∈ Rq×p and b̃ ∈ Rp are learnable parameters645

and ϕ is the rectified linear unit (ReLU) function:646

ϕ(x) = max(x,0). (3)

See Supp. Fig. 1 for a schematic plot of the SNAP-CNN647

architecture.648

After training, this step outputs fitted coding vectors {zi ∈649

Rq : i = 1, . . . ,n} for use in subsequent steps of CellSNAP.650

SNAP-CNN training The learnable parameters in enc(·)
and in Eq. (2) are trained jointly by minimizing the mean
squared error (MSE) between the true and predicted
neighborhood composition vectors. In other words, the
loss function for training SNAP-CNN is

L2(Y, Ỹ ) = 1
n

n∑
i=1

∥ỹi −yi∥2
2.

In our implementation, SNAP-CNN is trained by the Adam651

optimizer (60) with learning rate 10−4, weight decay 0,652

and batch size 64 for 500 epochs. To reduce overfitting653

and improve generalization, we apply random rotation and654

random horizontal and/or vertical flips on the local tissue655

image tensors as data augmentation during training.656

SNAP-GNN-duo for learning cell population represen-657

tation. In the second step of CellSNAP, which we call658

SNAP-GNN-duo, we train a pair of graph neural net-659

works (GNNs) (61) with an overarching multi-layer percep-660

tron (MLP) head (33) to predict each cell’s neighborhood-661

composition-plus-cell-cluster vectors, using both its fea-662

ture expressions and its local tissue image encoding. The663

nodes of the graphs underlying the two GNNs are shared664

and correspond to the individual cells in the dataset. The665

underlying edge structures among the nodes are different666

and are given by the feature similarity graph Gf and the667

spatial proximity graph Gs, respectively. For the ith node668

(i.e., cell), its nodal covariates in Gf include feature ex-669

pressions xi ∈ Rd, its nodal covariates in Gs include local670

tissue image encoding zi ∈ Rq. By training this the learn-671

able parameters in the SNAP-GNN-duo architecture, we672

aim to smooth feature expression and local tissue image673

information based on message passing on Gf and Gs, re-674

spectively, and to integrate them via the overarching MLP675

to predict the target vector for each cell. The cell state676

representation will be the concatenation of the outcomes677

of message passing on the pair of graphs after the model678

is properly trained.679
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SNAP-GNN-duo architecture For message passing on680

the feature similarity graph Gf , we first curate initial nodal681

covariate at node i as682

h
(1),f
i = ϕ([W (0),f ]⊤xi + b(0),f). (4)

Here, W (0),f ∈ Rd×r1 and b(0),f ∈ Rr1 are learnable pa-683

rameters, and the ReLU activation function ϕ (defined in684

Eq. (3)) is applied elementwisely on the entries of the vec-685

tor in parentheses.686

The collection of initial nodal covariate vectors {h
(1),f
i :687

i = 1, . . . ,n} is used as the input to a GNN with network688

structure Gf (i.e., expression GNN in Fig. 1). To enable689

message passing across neighboring cells, we adopt the690

notion of graph convolution layer from (32), which can be691

viewed as a localized first-order approximation to spec-692

tral graph convolution (62). Stack {h
(1),f
i : i = 1, . . . ,n}693

as row vectors of H(1),f ∈ Rn×r1 . Define Ãf = Af + In694

where Af is the adjacency matrix of Gf and In is the n-695

by-n identity matrix. The matrix Ãf is the adjacency matrix696

of the graph G̃f obtained from adding a self-loop to each697

node in Gf . Further define D̃f as the diagonal matrix with698

(D̃f)ii =
∑n

j=1(Ãf)ij , for i = 1, . . . ,n, which records the699

degree of each node in G̃f . With the foregoing definitions,700

the message passing convolution on Gf can be written as701

follows:702

H(2),f = D̃
− 1

2
f ÃfD̃

− 1
2

f H(1),fW (1),f ,

H(3),f = D̃
− 1

2
f ÃfD̃

− 1
2

f ϕ(H(2),f)W (2),f .
(5)

Here, W (1),f ∈ Rr1×r2 and W (2),f ∈ Rr2×r3 are learn-703

able parameters. The ReLU activation function ϕ is ap-704

plied elementwisely on H(2),f . The row vectors of H(2),f
705

and H(3),f are denoted by {h
(2),f
i : i = 1, . . . ,n} ⊂ Rr2 and706

{h
(3),f
i : i = 1, . . . ,n} ⊂ Rr3 , respectively.707

In an analogous way, we define G̃s, Ãs, and D̃s based on708

the spatial proximity graph Gs. Stack the output of SNAP-709

CNN for each cell into Z ∈ Rn×q. The initial nodal co-710

variate and message passing on the graph neural network711

with network structure Gs (i.e., spatial GNN in Fig. 1) is712

defined as713

H(1),s = ϕ(ZW (0),s +1n(b(0),s)⊤),

H(2),s = D̃
− 1

2s ÃsD̃
− 1

2s H(1),sW (1),s,

H(3),s = D̃
− 1

2s ÃsD̃
− 1

2s ϕ(H(2),s)W (2),s.

(6)

Here, 1n is the all-one vector in Rn, b(0),s ∈ Rt1 , W (1),s ∈714

Rq×t1 , W (2),s ∈Rt1×t2 , and W (3),s ∈Rt2×t3 are all learn-715

able parameters, and the ReLU function ϕ is applied ele-716

mentwisely in both instances. The row vectors of H(2),s
717

and H(3),s are denoted by {h
(2),s
i : i = 1, . . . ,n} ⊂ Rt2 and718

{h
(3),s
i : i = 1, . . . ,n} ⊂ Rt3 , respectively.719

Given the outcomes of message passing on both graphs,720

we define for i = 1, . . . ,n,721

h
(0)
i = [(h(3),f

i )⊤,(h(3),s
i )⊤]⊤ ∈ Rp0 , (7)

as the input to the MLP head for predicting the722

neighborhood-composition-plus-cell-cluster-annotation723

vector. Here p0 = r3 + t3. Stack {h
(0)
i : i = 1, . . . ,n} as724

rows of H(0) ∈ Rn×p0 . The next layers of the MLP are725

defined as726

H(1) = ϕ(H(0))W (0) +1n(b(0))⊤,

H(2) = ϕ(H(1))W (1) +1n(b(1))⊤.
(8)

Here W (0) ∈ Rp0×p1 , W (1) ∈ Rp1×2p, b(0) ∈ Rp1 , and727

b(1) ∈ R2p are all learnable parameters, and ReLU acti-728

vation ϕ is applied elementwisely.729

Finally, we define730

ŷtg
i = h

(2)
i (9)

as the predicted neighborhood-composition-plus-cell-731

cluster-annotation vector for the ith cell, where h
(2)
i is the732

ith row vector of H(2), and733

ui = h
(0)
i (10)

as its representation. The representation vectors {ui : i =734

1, . . . ,n} are used in downstream analysis.735

SNAP-GNN-duo training Given the predicted and the
ground-truth target vectors, i.e., {ŷtg

i : i = 1, . . . ,n} and
{ytg

i : i = 1, . . . ,n}, we define the loss function of SNAP-
GNN-duo as

L2(Y tg, Ŷ tg) = 1
n

n∑
i=1

∥ŷtg
i −ytg

i ∥2
2, (11)

where Y tg ∈ Rn×2p is the matrix of concatenated neigh-736

borhood composition and cell cluster vectors, and Ŷ tg ∈737

Rn×2p is a matrix with the ith row being the predicted vec-738

tor ŷtg
i .739

By default, the hidden dimensions of SNAP-GNN-duo are740

set at r1 = r2 = t1 = t2 = 32, r3 = 33, t3 = 11, p1 = 33.741

By definition p0 = r3 + t3 = 44. SNAP-GNN-duo is trained742

by the Adam optimizer, with a learning rate of 10−3 and743

weight decay 0, and with a single batch for 3000 epochs.744

To improve the stability of the learned embedding vectors
{ui : i = 1, . . . ,n}, we propose to train SNAP-GNN-duo for
m rounds. In the lth round, we stack the learned embed-
dings as row vectors of U[l] ∈ Rn×p0 . After obtaining U[l],
l = 1, . . . ,m, we construct

U = [U[1] . . . U[m]] ∈ Rn×(mp0).

Then, we compute the p0 leading left singular vectors of745

U , collected as the columns of L ∈ Rn×p0 , and the corre-746

spond singular values, collected as the diagonal entries747

of the diagonal matrix D ∈ Rp0×p0 . Our final learned748

embedding vectors are taken to be the row vectors of749

LD ∈ Rn×p0 , i.e.,750 u⊤
1
...

u⊤
n

= LD. (12)

See Supp. Fig. 1 for a schematic plot of the SNAP-GNN-751

duo architecture and the representation generation.752
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Clustering CellSNAP representation vectors and cell753

population identification. The CellSNAP representation754

vector of the ith cell is ui ∈ Rp0 that combines com-755

plementary information from multiple domains in spatial756

omics data. The additional information provided by cellular757

neighborhood and local tissue images enables improved758

cell population differentiation and discovery at a finer gran-759

ularity than that enabled by feature expression alone.760

To this end, we construct a new graph Ge with cells761

as nodes. Each cell i is connected to its ke-nearest-762

neighbors measured by Euclidean distance in the repre-763

sentation vector space. In other words, cell j is connected764

to i in Ge, if uj is among the ke closest points to ui in765

Rp0 , or vice versa. Then, we perform Leiden clustering766

(16) on Ge to find cell clusters, followed by cell-type an-767

notation processes, similar to the procedure performed in768

conventional single-cell studies. For benchmarking pur-769

poses, all final clusters presented in this study used the770

same set of parameters for Leiden clustering (resolution =771

1). Recall that each cell has a coarse initial cell population772

label. In the last step, we refine the clustering result on773

CellSNAP representation by singling out within each clus-774

ter any initial cell population that is primarily contained in775

the current cluster, provided that the current cluster also776

includes a substantial fraction of cells from other initial cell777

populations (by default, when the composition of initial cell778

populations within the current cluster, when viewed as a779

discrete probability distribution, leads to a Shannon en-780

tropy > 0.75). Further detail is documented in function781

cluster_refine in the GitHub repository.782

Evaluation and benchmarking. In this section, we de-783

fine evaluation metrics for clustering, which are used in784

benchmarking. The objective of clustering is to minimize785

within-cluster variation while maintaining well-separated,786

distinct clusters. Consequently, compactness and separa-787

tion (63, 64) serve as two key criteria for clustering evalu-788

ation.789

Let
k⋃

l=1
Cl = {1, . . . ,n}

be a clustering, i.e., a disjoint partitioning, of n cells. Sup-790

pose we are given a feature vector x̃i for each cell, which791

can be the feature expression vector xi or the CellSNAP792

learned representation ui. For any vectors x and x′ of the793

same dimension, let794

d(x,x′) = ∥x−x′∥2 (13)

be the Euclidean distance between them.795

Silhouette score The Silhouette score (65) evaluates
clustering performance based on the pairwise difference
between within-cluster and between-cluster distances. Fix

a cluster Cl. For cell i ∈ Cl, we first calculate

ai = 1
|Cl|−1

∑
j∈Cl,j ̸=i

d(x̃i, x̃j),

bi = min
l′ ̸=l

1
|Cl′ |

∑
j∈Cl′

d(x̃i, x̃j)
(14)

as the average within-cluster distance and the smallest796

average between-cluster distance for cell i, respectively.797

Here, |Cl′ | denotes the size of the l′th cluster for l′ =798

1, . . . ,k. The Silhouette score for cell i ∈ Cl is then de-799

fined as800

si = bi −ai

max(ai, bi)
∈ [−1,1], (15)

if |Cl| > 1, and si = 0 otherwise. We define the Silhou-801

ette score for the clustering as s = 1
n

∑n
i=1 si. By defini-802

tion, a higher Silhouette score indicates better clustering.803

In our benchmarking study, the Silhouette score was cal-804

culated when K numbers of clusters were generated by805

running Leiden clustering on the benchmarking represen-806

tation vector, where K spanned from 5 − 30. A total of 5807

batches, with each batch containing 10,000 randomly se-808

lected cells, were used for score calculation.809

Davies–Bouldin index The Davies-Bouldin (DB) index
(66) is calculated by first computing the similarities be-
tween each cluster Cl and all other clusters. The high-
est similarity is designated as the inter-cluster separation
for Cl. The DB index is then obtained by averaging the
inter-cluster separations for all clusters. Specifically, the
Davies-Bouldin index for k clusters is defined as

DBk = 1
k

k∑
l=1

max
l′:l′ ̸=l

(
1

|Cl|
∑
i∈Cl

d(x̃i, cl)+

1
|Cl′ |

∑
j∈Cl′

d(x̃j , cl′)
)

.

(16)

Here, for each l, cl = 1
|Cl|

∑
i∈Cl

x̃i is the cluster centroid.810

By definition, a lower DB index value indicates better clus-811

tering performance. In our benchmarking study, the DB812

index was calculated when K numbers of clusters were813

generated by running Leiden clustering on the benchmark-814

ing representation vector, where K spanned from 5 − 30.815

A total of 5 batches, with each batch containing 10,000816

randomly selected cells, were used for score calculation.817

Calinski-Harabasz index The Calinski-Harabasz index818

(CH) (67) assesses cluster compactness and separation819

by calculating between- and within-cluster distances. Let820

c = 1
n

∑n
i=1 x̃i be the global data centroid. Then d(cl, c) =821

∥c − cl∥2 is the distance between the lth cluster centroid822

and the data centroid, for l = 1, . . . ,k. The CH index for k823

clusters is then defined as824

CHk =
∑k

l=1 |Cl|d2(cl, c)/(k −1)∑k
l=1
∑

i∈Cl
d2(x̃i, cl)/(n−k)

. (17)
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By definition, a higher CH index value indicates better clus-825

tering performance. In our benchmarking study, the CH826

index was calculated when K numbers of clusters were827

generated by running Leiden clustering on the benchmark-828

ing representation vector, where K spanned from 5 − 30.829

A total of 5 batches, with each batch containing 10,000830

randomly selected cells, were used for score calculation.831

Modularity score When there is a graph structure among832

the cells, we can employ modularity (68) as a clustering833

validation metric. Denote by eCl
the number of edges834

within cluster Cl on the graph and dCl
is the sum of node835

degrees of nodes in Cl. Modularity score is then defined836

as837

Q(γ) = 1
2e

k∑
l=1

(
eCl

−γ
d2

Cl

2e

)
, (18)

where e is the total number of edges. Here γ is a reso-838

lution parameter. In our benchmarking study, the Modu-839

larity score was calculated when different γ values were840

used. The γ values ranged from 0.5 − 2.6. A total of 5841

batches, with each batch containing 10,000 randomly se-842

lected cells, were used for score calculation.843

Information retrieval efficacy evaluation of the SNAP-GNN–844

duo module CellSNAP integrates information in feature845

expressions, neighborhood composition, and local tissue846

image for finer cell state differentiation. To quantitatively847

evaluate the additional information provided by utlizting848

a SNAP-GNN-duo structure in contrast to using a sin-849

gle GNN on either the feature or the spatial graph, we850

compare prediction accuracy on neighborhood composi-851

tion through the following controlled experiments.852

We first randomly partition all cells into a training set and853

a test set, with the training set containing 80% of the cells854

and the test set containing the remaining 20%. The overall855

CellSNAP pipeline was performed as described in the pre-856

vious sections, with the exception: 1) when local tissue im-857

age information is excluded (feature-similarity-only-GNN),858

we employ the foregoing training process while omitting859

the SNAP-CNN step by setting t1 = t2 = t3 = 0 in the860

SNAP-GNN-duo architecture; 2) when feature expression861

profile is excluded (spatial-proximity-only-GNN), we em-862

ploy the foregoing training process while omitting the fea-863

ture similarity graph step by setting r1 = r2 = r3 = 0 in the864

SNAP-GNN-duo architecture. All other tuning parameters,865

the training method, and the test loss calculation remain866

the same.867

After training, we calculate the respective loss types (L1,868

and L2) on the test data among the different model se-869

tups. The evaluation process was repeated 5 times, and870

the mean values and standard deviations were plotted.871

Other related analysis All detailed information related to872

the analysis presented in this study can be retrieved from873

the deposited code on GitHub, and we briefly describe874

them here. For all other methods benchmarked: 1) for875

‘feature’, the single-cell expression profile first underwent876

PCA dimension reduction, and the first 25 components877

were used as input; 2) for ‘concat’, the 25-component fea-878

ture PCA was directly concatenated with the neighborhood879

composition vector and used as input; 3) for ‘SpiceMix’,880

single-cell expression profiles along with cell spatial adja-881

cency information were used as input for SpiceMix (31),882

and default parameters were implemented and trained for883

200 epochs; 4) for ‘MUSE’, we first extracted images from884

each individual cell, using the same nuclear and mem-885

brane channels as implemented in CellSNAP. The single-886

cell level whole-cell segmentation masks were retrieved di-887

rectly from the original data source. These images, along-888

side the single-cell expression profile, were used as input889

for MUSE (30), and the subsequent steps used default pa-890

rameters. Finally, to calculate the quantitative metrics for891

clustering performance evaluation in each dataset across892

methods, a total of 5 batches, each with 10,000 randomly893

selected cells from the data, were used.894

For the HCC CosMx-SMI data analysis, DE was per-895

formed using the R package limma. Module scores896

were calculated with the R package Seurat function897

AddModuleScore, with gene lists retrieved from Cheng898

et al. (44) or MacParland et al. (45). Spatial899

ligand-receptor analysis was performed with SpatialDM900

(46), with parameters: l=2, n_neighbors = 30,901

single_cell=True, n_perm=200. The LR detec-902

tion score was calculated as the summation of significant903

(p < 0.05) LR pairs within each cell. To identify the dif-904

ferential LR pairs between groups, the LR detection fre-905

quency was calculated by measuring the percentage of906

cells with significant (p.adj < 0.05) detection of a spe-907

cific LR pair, among 200 randomly selected cells, and908

repeated in a total of 20 batches. A Wilcoxon test (two-909

tailed) with Benjamini-Hochberg correction was then used910

to generate p-values. To define gene programs among911

tumor cells, cNMF, as previously described by Kotliar et912

al. (47), was used. The rank in cNMF (number of913

gene programs) was set to 25 (determined via function914

k_selection_plot). To annotate gene programs, we915

first selected the top 20 genes for each gene program,916

based on ranking from gep_scores, then we utilized the917

function enrichr in the R package enrichR, with the918

database GO_Biological_Process_2015, on these919

selected genes and annotated the gene programs.920

All calculations and visualizations of UMAP embeddings in921

this study were generated using the R package Seurat922

functions FindNeighbors and RunUMAP with 30 di-923

mensions.924

DATA AVAILABILITY925

This study did not generate any new experimental data:926

CODEX spleen dataset was generated from (3);927

CODEX tonsil dataset was generated from (38);928

CODEX cHL dataset was generated from (39);929

CosMx liver dataset was generated from (48);930

We have summarized all the files used in this study from the above-mentioned931

datasets in this link.932

CODE AVAILABILITY933

CellSNAP python package, along with code used in this study, can be found in the934

GitHub repository: https://github.com/sggao/CellSNAP.935
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28. Maria Brbić, Kaidi Cao, John W Hickey, Yuqi Tan, Michael P Snyder, Garry P Nolan, and1065

Jure Leskovec. Annotation of spatially resolved single-cell data with stellar. Nature Methods,1066

pages 1–8, 2022.1067

29. Yael Amitay, Yuval Bussi, Ben Feinstein, Shai Bagon, Idan Milo, and Leeat Keren.1068

Cellsighter-a neural network to classify cells in highly multiplexed images. bioRxiv, pages1069

2022–11, 2022.1070

30. Feng Bao, Yue Deng, Sen Wan, Susan Q Shen, Bo Wang, Qionghai Dai, Steven J1071

Altschuler, and Lani F Wu. Integrative spatial analysis of cell morphologies and transcrip-1072

tional states with muse. Nature biotechnology, 40(8):1200–1209, 2022.1073

31. Benjamin Chidester, Tianming Zhou, Shahul Alam, and Jian Ma. Spicemix enables integra-1074

tive single-cell spatial modeling of cell identity. Nature genetics, 55(1):78–88, 2023.1075

32. Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional1076

networks. arXiv preprint arXiv:1609.02907, 2016.1077

33. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.1078

34. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep1079

convolutional neural networks. Advances in neural information processing systems, 25,1080

2012.1081

35. Arun Cumpelik, David Heja, Yuan Hu, Gabriele Varano, Farideh Ordikhani, Mark P Roberto,1082

Zhengxiang He, Dirk Homann, Sergio A Lira, David Dominguez-Sola, et al. Dynamic reg-1083

ulation of b cell complement signaling is integral to germinal center responses. Nature1084

immunology, 22(6):757–768, 2021.1085

36. Birte S Steiniger. Human spleen microanatomy: why mice do not suffice. Immunology, 1451086

(3):334–346, 2015.1087

37. Olivier Garraud, Gwenoline Borhis, Gamal Badr, Séverine Degrelle, Bruno Pozzetto, Fab-1088

rice Cognasse, and Yolande Richard. Revisiting the b-cell compartment in mouse and1089

humans: more than one b-cell subset exists in the marginal zone and beyond. BMC im-1090

munology, 13:1–17, 2012.1091

38. Julia Kennedy-Darling, Salil S Bhate, John W Hickey, Sarah Black, Graham L Barlow,1092

Gustavo Vazquez, Vishal G Venkataraaman, Nikolay Samusik, Yury Goltsev, Christian M1093

Schürch, et al. Highly multiplexed tissue imaging using repeated oligonucleotide exchange1094

reaction. European Journal of Immunology, 51(5):1262–1277, 2021.1095

39. Muhammad Shaban, Yunhao Bai, Huaying Qiu, Shulin Mao, Jason Yeung, Yao Yu Yeo, Vig-1096

nesh Shanmugam, Han Chen, Bokai Zhu, Jason L Weirather, et al. Maps: Pathologist-level1097

cell type annotation from tissue images through machine learning. Nature Communications,1098

15(1):28, 2024.1099

40. Johanna Veldman, Jessica Rodrigues Plaça, Lauren Chong, Miente Martijn Terpstra, Mir-1100

jam Mastik, Léon C van Kempen, Klaas Kok, Tomohiro Aoki, Christian Steidl, Anke van den1101

Berg, et al. Cd4+ t cells in classical hodgkin lymphoma express exhaustion associated1102

transcription factors tox and tox2: Characterizing cd4+ t cells in hodgkin lymphoma. On-1103

coimmunology, 11(1):2033433, 2022.1104

14 | bioRχiv Zhu, Gao, Chen et al. | CellSNAP

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2024. ; https://doi.org/10.1101/2024.05.12.593710doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.12.593710
http://creativecommons.org/licenses/by-nc-nd/4.0/


41. Joji Nagasaki, Yosuke Togashi, Takeaki Sugawara, Makiko Itami, Nobuhiko Yamauchi, Ju-1105

nichiro Yuda, Masato Sugano, Yuuki Ohara, Yosuke Minami, Hirohisa Nakamae, et al. The1106

critical role of cd4+ t cells in pd-1 blockade against mhc-ii–expressing tumors such as clas-1107

sic hodgkin lymphoma. Blood advances, 4(17):4069–4082, 2020.1108

42. Layal El Halabi, Julien Adam, Pauline Gravelle, Virginie Marty, Alina Danu, Julien1109

Lazarovici, Vincent Ribrag, Jacques Bosq, Valérie Camara-Clayette, Camille Laurent, et al.1110

Expression of the immune checkpoint regulators lag-3 and tim-3 in classical hodgkin lym-1111

phoma. Clinical Lymphoma Myeloma and Leukemia, 21(4):257–266, 2021.1112

43. Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, William M Mauck, Shiwei Zheng, An-1113

drew Butler, Maddie J Lee, Aaron J Wilk, Charlotte Darby, Michael Zager, et al. Integrated1114

analysis of multimodal single-cell data. Cell, 184(13):3573–3587, 2021.1115

44. Sijin Cheng, Ziyi Li, Ranran Gao, Baocai Xing, Yunong Gao, Yu Yang, Shishang Qin, Lei1116

Zhang, Hanqiang Ouyang, Peng Du, et al. A pan-cancer single-cell transcriptional atlas of1117

tumor infiltrating myeloid cells. Cell, 184(3):792–809, 2021.1118

45. Sonya A MacParland, Jeff C Liu, Xue-Zhong Ma, Brendan T Innes, Agata M Bartczak,1119

Blair K Gage, Justin Manuel, Nicholas Khuu, Juan Echeverri, Ivan Linares, et al. Single1120

cell rna sequencing of human liver reveals distinct intrahepatic macrophage populations.1121

Nature communications, 9(1):4383, 2018.1122

46. Zhuoxuan Li, Tianjie Wang, Pentao Liu, and Yuanhua Huang. Spatialdm for rapid iden-1123

tification of spatially co-expressed ligand–receptor and revealing cell–cell communication1124

patterns. Nature communications, 14(1):3995, 2023.1125

47. Dylan Kotliar, Adrian Veres, M Aurel Nagy, Shervin Tabrizi, Eran Hodis, Douglas A Melton,1126

and Pardis C Sabeti. Identifying gene expression programs of cell-type identity and cellular1127

activity with single-cell rna-seq. Elife, 8:e43803, 2019.1128

48. Cosmx smi human liver ffpe dataset. https://nanostring.com/1129

products/cosmx-spatial-molecular-imager/ffpe-dataset/1130

human-liver-rna-ffpe-dataset/. Accessed: 2024-03-14.1131

49. Yi Yuan, Dailin Wu, Jing Li, Dan Huang, Yan Zhao, Tianqi Gao, Zhenjie Zhuang, Ying Cui,1132

Da-Yong Zheng, and Ying Tang. Mechanisms of tumor-associated macrophages affect-1133

ing the progression of hepatocellular carcinoma. Frontiers in Pharmacology, 14:1217400,1134

2023.1135

50. Zhiqiang Tian, Xiaojuan Hou, Wenting Liu, Zhipeng Han, and Lixin Wei. Macrophages and1136

hepatocellular carcinoma. Cell & bioscience, 9:1–10, 2019.1137

51. Benjamin Ruf, Matthias Bruhns, Sepideh Babaei, Noemi Kedei, Lichun Ma, Mahler Revsine,1138

Mohamed-Reda Benmebarek, Chi Ma, Bernd Heinrich, Varun Subramanyam, et al. Tumor-1139

associated macrophages trigger mait cell dysfunction at the hcc invasive margin. Cell, 1861140

(17):3686–3705, 2023.1141

52. Samuel G Rodriques, Robert R Stickels, Aleksandrina Goeva, Carly A Martin, Evan Murray,1142

Charles R Vanderburg, Joshua Welch, Linlin M Chen, Fei Chen, and Evan Z Macosko.1143

Slide-seq: A scalable technology for measuring genome-wide expression at high spatial1144

resolution. Science, 363(6434):1463–1467, 2019.1145

53. Ao Chen, Sha Liao, Mengnan Cheng, Kailong Ma, Liang Wu, Yiwei Lai, Xiaojie Qiu, Jin1146

Yang, Jiangshan Xu, Shijie Hao, et al. Spatiotemporal transcriptomic atlas of mouse organo-1147

genesis using dna nanoball-patterned arrays. Cell, 185(10):1777–1792, 2022.1148

54. Sanja Vickovic, Gökcen Eraslan, Fredrik Salmén, Johanna Klughammer, Linnea Stenbeck,1149

Denis Schapiro, Tarmo Äijö, Richard Bonneau, Ludvig Bergenstråhle, José Fernandéz1150

Navarro, et al. High-definition spatial transcriptomics for in situ tissue profiling. Nature1151

methods, 16(10):987–990, 2019.1152

55. Junbum Kim, Samir Rustam, Juan Miguel Mosquera, Scott H Randell, Renat Shaykhiev,1153

André F Rendeiro, and Olivier Elemento. Unsupervised discovery of tissue architecture in1154

multiplexed imaging. Nature methods, 19(12):1653–1661, 2022.1155

56. Yuxuan Hu, Jiazhen Rong, Yafei Xu, Runzhi Xie, Jacqueline Peng, Lin Gao, and Kai Tan.1156

Unsupervised and supervised discovery of tissue cellular neighborhoods from cell pheno-1157

types. Nature Methods, pages 1–12, 2024.1158

57. Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation1159

and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.1160

58. Andrew L Ji, Adam J Rubin, Kim Thrane, Sizun Jiang, David L Reynolds, Robin M Meyers,1161

Margaret G Guo, Benson M George, Annelie Mollbrink, Joseph Bergenstråhle, et al. Multi-1162

modal analysis of composition and spatial architecture in human squamous cell carcinoma.1163

Cell, 182(2):497–514, 2020.1164

59. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep1165

convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.1166

60. Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv1167

preprint arXiv:1412.6980, 2014.1168

61. Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip.1169

A comprehensive survey on graph neural networks. IEEE transactions on neural networks1170

and learning systems, 32(1):4–24, 2020.1171

62. Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and1172

locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.1173

63. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining. Pearson1174

Education India, 2016.1175

64. Ying Zhao and George Karypis. Evaluation of hierarchical clustering algorithms for docu-1176

ment datasets. In Proceedings of the eleventh international conference on Information and1177

knowledge management, pages 515–524, 2002.1178

65. Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of1179

cluster analysis. Journal of computational and applied mathematics, 20:53–65, 1987.1180

66. David L Davies and Donald W Bouldin. A cluster separation measure. IEEE transactions1181

on pattern analysis and machine intelligence, (2):224–227, 1979.1182
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