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Abstract. SM22a is a putative calcium-binding protein 
that is expressed in cardiac, smooth, and skeletal mus- 
cle lineages during mouse embryogenesis and in adult 
smooth muscle cells (SMC). To define the mechanisms 
that regulate smooth muscle-specific gene transcrip- 
tion, we isolated the SM22a gene and analyzed its 5'- 
flanking region for elements that direct smooth muscle 
expression in transgenic mice. Using a series of pro- 
moter deletions, a region of the SM22a promoter con- 
taining 445 base pairs of 5'-flanking sequence was 
found to be sufficient to direct the specific expression 
of a lacZ transgene in mouse embryos in the vascular 

smooth, cardiac, and skeletal muscle lineages in a tem- 
porospatial pattern similar to that of the endogenous 
SM22a gene. However, in contrast to the endogenous 
gene, transgene expression was not detected in venous, 
nor visceral SMCs. This SM22a-lacZ transgene was 
therefore able to distinguish between the transcrip- 
tional regulatory programs that control gene expression 
in vascular and visceral SMCs and revealed heretofore 
unrecognized differences between these SMC types. 
These results suggest that distinct transcriptional regu- 
latory programs control muscle gene expression in vas- 
cular and visceral SMCs. 

T 
HE three major muscle cell types, skeletal, cardiac, 
and smooth, express many of the same muscle struc- 
tural genes. However, each muscle type is unique in 

its contractile properties and morphology and each ap- 
pears to use distinct regulatory mechanisms to control 
muscle gene expression. Whereas the molecular mecha- 
nisms that control differentiation of skeletal and cardiac 
muscles have begun to be elucidated (Weintraub et al., 
1991; Buckingham, 1994; Olson and Klein, 1994; Bodmer, 
1995), little is known of the myogenic program that con- 
trois smooth muscle myogenesis and no transcription fac- 
tors that regulate smooth muscle cell (SMC)l-specific 
gene expression have yet been identified. The develop- 
mental pathways that lead to the formation of different 
SMC types are also unknown. 
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1. Abbrevia t ions  used in this paper: bHLH, basic helix-loop-helix; MHC, 
myosin heavy chain; MLC, myosin light chain; SMC, smooth muscle cell. 

Unlike skeletal and cardiac muscle cells, which differen- 
tiate irreversibly, SMCs exhibit phenotypic plasticity and 
can readily undergo transitions between the proliferative 
and differentiated states (Glukhova et al., 1991; Frid et al., 
1992; Schwartz et al., 1995). This modulation is apparent in 
progressively cultured SMCs in which expression of sev- 
eral contractile protein genes is extinguished as the cells 
acquire a synthetic, proliferative phenotype (Chambley- 
Campbell, 1981; Owens, 1986; Thyberg, 1987). Because of 
this plasticity, the properties of SMCs in tissue culture may 
not reflect those in vivo. 

To begin to investigate the molecular mechanisms that 
regulate SMC gene expression in vivo, we have analyzed 
the expression of SMC-specific genes during mouse em- 
bryogenesis (Miano et al., 1994; Li et al., 1996). We are in- 
terested in the regulation of SM22a expression because 
SM22a is highly expressed in all adult smooth muscle-con- 
taining tissues (Lees-Miller et al., 1987; Shanahan et al., 
1993; Duband et al., 1993). Previous studies indicated that 
SM22a encodes a 22-kD protein (Lees-Miller et al., 1987), 
which shares sequence homology with Drosophila mp20 
(Ayme-Southgate et al., 1989) and NP25 (Ren, 1994), as 
well as calponin, a troponin T-like protein that interacts 
with F-actin, tropomyosin, and calmodulin (Duband et al., 
1993). Recently, we reported that SM22a is expressed in 
cardiac, smooth, and skeletal muscle cells during early em- 
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bryogenesis but becomes restricted to smooth muscle lin- 
eages at late embryonic stages and throughout adulthood 
(Li et al., 1996). 

Here we isolated the mouse SM22a gene and analyzed 
the regulation of the SM22ot promoter in transgenic mice 
as well as in tissue culture cells. Our results demonstrated 
that the proximal promoter of SM22a was sufficient to di- 
rect expression of a reporter gene in cultured SMCs. In 
transgenic mice, this promoter exhibited a temporospatial 
expression pattern similar to that of endogenous SM22a 
transcripts except that transgene expression was not de- 
tected in visceral or venous SMCs during embryogenesis. 
These results reveal previously unrecognized heterogene- 
ity among arterial, venous, and visceral SMCs and suggest 
that distinct transcriptional regulatory mechanisms exist 
for the control of SM22a gene expression in different 
SMC lineages. 

Materials and Methods 

Isolation and Characterization of Mouse SM22a 
Genomic Clones 

An SM22a genomic clone was isolated by screening an SV129 mouse ge- 
nomic library (Stratagene Corp., La Jolla, CA) using the 1,078-bp mouse 
SM22c~ cDNA as a probe (Li et al., 1996). Southern blot analysis of mouse 
genomic DNA and the SM22ct genomic clone showed the same restriction 
maps, indicating that the genomic clone was not rearranged. DNA was hy- 
bridized on duplicate filter lifts overnight at 42°C in 50% formamide, 5 x 
SSC, 5x  Denhardt 's solution, 0.05 M Na2HPO 4, pH 7.0, 0.1% SDS, 100 
ixg/ml of salmon sperm DNA. After washing in l x  SSC, 0.1% SDS, posi- 
tive plaques were carried through three successive rounds of screening. 
One genomic clone with a 15-kb insert that contained the entire SM22a 
gene and 5' flanking sequences was chosen for further characterization. 

The intron/exon organization of the SM22o~ gene was determined by 
sequence comparison between genomic DNA and cDNA, and by PCR us- 
ing primers from the cDNA sequence. The intron-exon boundaries were 
consistent with the AG/GT splicing consensus sequence. 

RNase Protection Analysis 
Total RNA from adult mouse tissues and cell lines was isolated by the acid 
phenol protocol (Chomczynski and Sacchi, 1987). SM22a transcripts were 
detected by RNase protection using the Maxi-Script and RPA kits (Am- 
bion, Austin, TX). Approximately 15 ~g of total RNA was hybridized to 
an in vitro transcribed SM22~ riboprobe (~1 x 105 cpm) corresponding to 
a 275-bp PCR product described previously (Li et al., 1996). 

Generation of  SM22 a-Luciferase 
and SM22a-lacZ Reporters 

The 15-kb SM22a genomic phage clone was excised by digestion with 
NotI and subcloned into pBluescript SKII+ (Stratagene Corp.) for further 
analysis. Initially, a 3,893-bp Bali-fragment was subcloned into the pBasic- 
luc (Nordeen, 1988) and pBS-lacZ (Cheng et al., 1992) vectors, yielding 
the plasmids, pSM2735/1093-1uc and pSM2735/1093-1acZ, respectively. 
This Bali fragment contained 2,735-bp of 5' flanking region, the 64-bp 
first exon and 1,093-bp of the first intron. To eliminate the intronic se- 
quence, a 2,798-bp PCR fragment containing 2,735-bp of 5'-flanking se- 
quence and the first 62-bp of exon 1 of the SM22a gene was generated us- 
ing synthetic oligonucleotides A and B as primers (the 3' end of primer A 
was located at -2,735; primer B was reversed and complementary to se- 
quence +41 to +62 with a SalI site engineered at the 3' end). This PCR 
fragment was cloned into the TA vector (Invitrogen, San Diego, CA), 
yielding the plasmid pSM2735-TA. The insert was then excised by diges- 
tion with BamHI and SalI and the resulting BamHI/SalI fragment, corre- 
sponding to sequences from -2,735 to +62, was cloned into pBasic-luc 
and pBS-lacZ to yield the plasmids pSM2735-1uc and pSM2735-1acZ. A 
1,406-bp EcoRI/SalI fragment and a 508-bp PstI/SalI fragment were ex- 
cised from the pSM2735-TA construct and subcloned into pBasic-luc and 

pBS-lacZ, resulting in constructs pSM1343-1uc, pSM445-1uc, pSM1343- 
lacZ, and pSM445-1acZ. Finally, a fragment containing 144-bp of Y-flank- 
ing sequence and 62 bp of exon 1 was generated by PCR and subcloned 
into pBasic-luc, resulting in the construct pSM144-1uc. The orientations 
and identities of the inserted fragments in all constructs were confirmed 
by sequencing. 

Transfection and Luciferase Assays 
The primary rat aortic SMC cells (gift from Dr. M. Majesky, Baylor Col- 
lege of Medicine, Houston, TX), 10T1/2 and F9 cells were split and seeded 
in 6 cm dishes. After 24 h, cells were ~70% confluent before transfection. 
F9 cells were transfected at ~50% confluence. 5 l~g of each luciferase re- 
porter was transfected. Transient transfections were performed by cal- 
cium phosphate precipitation as described previously (Li et al., 1992). 48 h 
later, cells were harvested in 300 ~l 0.1 M Tris-HCl (pH 7.8) containing 
1 mM DTT. After three cycles of freeze/thaw, cells were spun for 5 min at 
4°C. Aliquots (~20 ixl) of supernatant containing equal quantities of pro- 
tein were mixed with 330 ~l of reaction buffer (0.1 M Tris-HC1, pH 7.8, 
5 mM ATP, 15 mM MgSO4, and 1 mM DTT) and 100 ~l 1 mM luciferin 
(Analytic Luminescence Laboratories, San Diego, CA). Transfection effi- 
ciency of different cell lines was determined by comparing the expression 
of pSV2-1uc, which contains the SV-40 enhancer and promoter. All trans- 
fections were repeated two to six times. 

Transgenic Mice 

Plasmids pSM-2735/1093-1acZ, pSM-2735-1acZ, pSM-1343-1acZ and pSM445- 
lacZ were tested for SM22a promoter activity in transgenic mice. Methods 
for production and analysis of transgenic mice were described previously 
(Cheng et al., 1992). The same temporospatial expression pattern was ob- 
served in multiple independent transgenic lines. For histological analysis, 
samples were fixed in 2% paraformaldehyde/0.2% glutaraldehyde in PBS 
at 4°C for 30 rain to 2 h (depending on sample size). After rinsing in PBS 
and staining with X-gal, samples were dehydrated with ethanol and 
cleared in xylene, and embedded in paraffin. For larger samples, 0.1% so- 
dium deoxycholate and 0.2% NP-40 were added to PBS for rinsing and 
staining. Embryos were sectioned on a microtome at a thickness of 5-10 
p~m, and counterstained with hematoxylin and eosin. 

To better visualize the vasculature of the embryo, stained embryos 
were dehydrated in 100% methanol for 2 d and cleared in a solution of 
2 vol of benzyl benzoate per volume of benzyl alcohol for 1-3 h before 
photography. 

Results 

Characterization of  the SM22a Gene 

To begin to study the regulatory mechanisms that control 
SM22a expression, we isolated the mouse SM22a gene 
and characterized its structure. As reported previously, 
the gene spans 5.9 kb and contains 5 exons (Solway et al., 
1995). The transcriptional initiation site for SM22a was 
determined by primer extension and RNase protection 
and agreed with the results reported by Solway et al. 
(1995). 

The sequence, extending from -2,735 through the first 
exon to + 1,093 bp in the first intron was determined (Gen- 
Bank EMBL/DDBJ accession number U36589). An A/T- 
rich sequence, TTTAAA, which could serve as a TATA 
box, was located at - 2 8  bp. Sequence analysis revealed a 
number of sequence motifs in the 5'-flanking region of the 
gene that have been implicated in transcriptional regula- 
tion of smooth, skeletal, and cardiac muscle genes (Solway 
et al., 1995; and data not shown). In particular, two CArG 
boxes, CC(A/T)6GG, (Gustafson et al., 1988), are present 
150- and 274-bp upstream of the transcription initiation 
site. 
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Identification of  the SM22a 5 '  Flanking Region That 
Confers the Transcriptional Activity In Vitro 

To choose a cell line suitable for analysis of the SM22a 
promoter activity, the SM22a expression profile in differ- 
ent cell lines was determined by RNase protection assays. 
Although SM22~ expression was restricted to SMCs in 
adult mouse tissues (Li et al., 1996), SM22a transcripts 
were detected in cell lines derived from different origins, 
including the 10T1/2 and 3T3 fibroblast cell lines, the 
BC3H1 muscle cell line, which has properties of smooth 
and skeletal muscle (Schubert et al., 1974; Edmondson and 
Olson, 1989), the C2 skeletal muscle cell line, and the P19 
embryonal carcinoma cell line (Fig. 1). Expression of 
SM22~ transcripts was also detected in primary rat aortic 
SMCs (not shown). However, no expression was detected 
in the F9 teratocarcinoma cell line. In the BC3H1, C2, and 
P19 cell lines, we observed no difference in SM22a expres- 
sion in differentiated or undifferentiated cells. 

As a first step in identifying c/s-regulatory elements that 
may be responsible for the transcriptional regulation of 
SM22a, we created a series of SM22a-luciferase reporter 
genes using DNA fragments that extended varying dis- 
tances upstream from the first exon. These reporters were 
tested for expression by transient transfection in primary 
rat aortic SMCs. The reporter pSM2735-1uc, which ex- 
tends from the first exon to -2,735 bp, was expressed at a 
level similar to pSM445-1uc, indicating that sequences be- 
tween the first exon and -445 bp are sufficient to confer 
transcriptional activity in cultured SMCs (Fig. 2 A). The 
reporter pSM1343-1uc was expressed at a slightly higher 
level than pSM2735-1uc, suggesting the possible existence 
of a negative element between -2,735 and -1,343 bp. De- 
letion from -445 to -144 resulted in a dramatic decrease 
in promoter activity, indicating that sequences in this re- 
gion are important for SM22a transcription. 

To determine whether the isolated promoter was active 
in other cell types, pSM2735-1uc was also tested in 10T1/2 
fibroblasts and F9 teratocarcinoma cells (Fig. 2 B). This 
reporter was expressed at a threefold higher level in SMCs 
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Figure 2. Expression of SM22c~-luciferase constructs in cultured 
cells. (A) DNA fragments extending from nucleotide +62 to the 
indicated distances upstream of SM22a were tested for transcrip- 
tional activity in the luciferase vector. The promoter activity of 
each construct was tested by transfecting into passage 25 primary 
rat aortic SMCs. Activities are expressed relative to that of 
pSM2735-1uc. (B) Specificity of isolated SM22c~ promoter in dif- 
ferent cell lines. The construct pSM2735-1uc, or pSM445-1uc or 
pBasic-luc was transfected into F9 cells, 10T1/2 cells, and rat aor- 
tic SMCs. Activities were determined using equal amounts of 
protein and were normalized for transfection efficiency in differ- 
ent cell lines by comparing the activities of pSV2-1uc in different 
cell lines. The results represent the averages of two to six trans- 
fection experiments. 

Figure 1. SM22a mRNA expression in a variety of cell lines de- 
tected by RNase protection. Approximately 15 Ixg of total cellu- 
lar RNA from the indicated cell lines and adult mouse tissues was 
analyzed for the expression of SM22~ mRNA by RNase protec- 
tion. The protected fragment for SM22a is 275-bp in length. 
RNA from stomach was included for positive control. U and D 
indicate undifferentiated and differentiated cells, respectively. 
The conditions for differentiation of each cell line were described 
previously (Miano et al., 1994). 

than in 10T1/2 cells and was inactive in F9 cells, in agree- 
ment with the expression of SM22a transcripts in these 
cell types (Fig. 2 B). The construct pSM445-1uc was ex- 
pressed similarly to pSM2735-1uc in the different cell types 
(not shown). Both of the above SM22a-luciferase were 
also active in COS cells (not shown). These results suggest 
that sequences in the 445-bp proximal promoter of SM22~ 
are sufficient to provide transcriptional activity in tissue 
culture cells. In a previous study, SM22a was reported to 
be active only in SMCs in vitro and not in 3T3, COS, or 
HepG2 (Solway et al., 1995). 

Generation of  Transgenic Mice Harboring 
SM22 a-lacZ Transgenes 

To determine whether the SM22~ regulatiory sequences 
tested in tissue culture cells were sufficient to direct appro- 
priate expression in vivo, we generated two lacZ reporter 
genes: one that extended from -2,735 to +62 bp 
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(pSM2735-1acZ), the other from -2,735 to 1,093 bp in the 
first intron (pSM2735/1093-1acZ). These reporter genes 
were used to generate transgenic mice that were examined 
for lacZ expression as founders and stable transgenic lines. 
Both constructs showed comparable expression patterns. 

The expression pattern of lacZ in one of the representa- 
tive transgenic lines harboring pSM2735/1093-1acZ is 
shown in Fig. 3. Whole mount-staining for lacZ expression 
revealed that transgene expression was first detected in 
the primitive heart tube at E8.75 (Fig. 3 A), consistent with 
the initial expression of SM22~ transcripts detected by in 
situ hybridization (Li et al., 1996). At E9.0, the expression 
of lacZ in the bulbus cordis and outflow tract increased 
and expression began to be detected in the dorsal aorta 
(Fig. 3 B). At El0.0 and 11.5, lacZ expression increased in 
the dorsal aorta, aortic arches and structures of the heart 
including the bulbus cordis and the truncus arteriosus (Fig. 
3, C and D). Expression in the rostral somites was detect- 
able at E9.5 at a low level (not shown), but became appar- 

ent at El0.0 to 12.5 in a rostral-to-caudal fashion (Fig. 3, C 
and D). However, expression in the somites was transient 
and only lasted for 2-3 d in each somite. Beginning at 
E13.5, expression in the heart and somites diminished 
(Fig. 3 E). LacZ staining marked all major vessels in the 
head and trunk region at this stage (Fig. 3 E). Transgene 
expression in the vasculature increased continuously 
through E14.5 (Fig. 3 F) and E15.5 (not shown). During 
these stages, expression in intercostal vessels could be seen 
clearly. At all stages examined, the expression of the 
SM22a-lacZ transgene overlapped with the expression of 
SM22a transcripts in the vascular smooth, cardiac, and 
skeletal muscle lineages, with no apparent delay between 
expression of SM22a transcripts and the transgene. 

The primitive heart tube was the earliest site of trans- 
gene expression (Fig. 3 A). However, in contrast to the en- 
dogenous SM22a gene which was expressed at compara- 
ble levels in the bulbus cordis (future right ventricle) and 
the ventricle of the primitive heart tube (Li et al., 1996), 

Figure 3. Expression of the SM22c~ promoter in transgenic mice. Transgenic mice harboring pSM2735/1093-1acZ were generated and 
the resulting embryos were stained for lacZ activity. (A) LacZ activity was detected in the bulbus cordis (bc) and outflow tract (ot) of 
the primitive heart at E8.75. (B) Beginning at E9.0, lacZ activity was detected in the dorsal aorta (da). (C) Expression of lacZ in the 
somites (so) became apparent at El0.0. To better visualize the vasculature, embryos from Ell.5 (D), 13.5 (E), and 14.5 (F) were cleared 
as described in Materials and Methods. aa, aortic arches; ba, basilar artery; bc, bulbus cordis; ca, carotid artery; da, dorsal aorta; ia, iliac 
artery; iv, intercostal vessel; ot, outflow tract; so, somite; ta, truncus arteriosus; u, umbilical vessel; v, ventricle; va, vertebral artery. 
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the transgene was expressed only in the bulbus cordis (Fig. 
3, A-D) .  No lacZ expression was detected in the left ven- 
tricle in more than five independent transgenic mice ana- 
lyzed, suggesting that different c/s-regulatory elements are 
required to control gene expression in different regions of 
the developing heart. 

While expression of the transgene was restricted to the 
bulbus cordis, we observed sporadic expression in cells of 
the ventricle and atria (not shown). Whether this repre- 
sents migrating cells or a heterogenous population of mus- 
cle cells in the heart region remains to be determined. 

Histological analysis of transverse and frontal sections 
of El l .5  embryos revealed the expression of the transgene 
in the myocardium, myotomes, and aorta (Fig. 4, A-C).  At 
El l .5 ,  lacZ was clearly expressed in the trabeculated 'wall 
of the bulbus cordis and in the outflow tract (Fig. 4, A and 
B). However, the bulbar ridges within the outflow tract of 
the heart, which form the aortico-pulmonary spiral sep- 
tum, did not show lacZ expression (Fig. 4 B). At this stage, 
lacZ expression was also detected in the common carotid 
arteries and dorsal aorta, demarcating the muscle layer of 
the vessels (Fig. 4, A and C). LacZ expression in the 
somites was restricted to the myotomal region (Fig. 4 C), 
where the endogenous gene was expressed (Li et al., 
1996). 

Specific Expression o f  the SM22a-lacZ Transgene 
in Arterial SMCs during Embryogenesis 

By E13.5, lacZ activity became restricted to the major ves- 
sels throughout the embryo (Fig. 5 A). LacZ expression 
also demarcated the newly formed pulmonary trunk, 
which becomes the outlet of the right ventricle. The junc- 

tion where the ascending aorta and the left ventricle meet 
was also marked by transgene expression (Fig. 5, B and C). 
No expression was detected in the bulbar ridges of the out- 
flow tract in the heart or in the trabeculated myocardium 
of the right ventricle (Fig. 5 B). A high level of transgene 
expression was observed in the branches of the pulmonary 
arteries and-the descending aorta (Fig. 5, B and C). Under 
high magnification, transgene expression was seen to spe- 
cifically demarcate the medial layer of the vessel wall; the 
transgene was not expressed in endothelial cells which 
form the single cell layer lining the lumen of the vessel 
(Fig. 5, D and E). We conclude, therefore, that the SM22a 
promoter is transcriptionally active in SMCs, but not in en- 
dothelial cells of the vessel wall. 

In contrast to endogenous SM22t~, which is expressed at 
high levels in visceral SMCs beginning at E13.5, no trans- 
gene expression was detected in these cells at this stage of 
development. Sagittal sections of the abdominal region at 
13.5 dpc revealed transgene expression in the umbilical ar- 
teries (Fig. 5 A). However, no expression was detected in 
the hindgut or stomach (Fig. 5 A). At the thoracic level, no 
expression was observed in the large bronchi or branches 
of the bronchi in the lung (Fig. 5, B and C; Fig. 6 C). 

The absence of transgene expression in visceral SMCs 
was apparent in transverse sections of embryos at E14.5 
(Fig. 6). At this stage, the lumen of the stomach is large, 
and the structures of the hindgut, bladder, kidney, and 
liver are easily recognized in the peritoneal cavity (Fig. 6 
A). However, lacZ expression was observed only in the 
descending aorta, umbilical arteries, and femoral arteries, 
and no expression was detected in the well-defined muscle 
layers of the stomach, gut or bladder (Fig. 6, A and B). To- 
gether, these results show that the regions of the SM22a 

Figure 4. Expression of SM22a-lacZ transgene in the bulbus cordis, outflow tract, aorta, and somites of 11.5 d embryos. Transgenic mice 
harboring pSM2735/1093-1acZ were generated and the resulting embryos were stained for lacZ activity. (A) Frontal section through the 
ventricle of the heart of an 11.5 d transgenic embryo shows transgene expression in bulbus cordis (bc), outflow tract (ot), and the carotid 
arteries (ca). (B) Transverse section through the heart region of an 11.5 d embryo revealed lacZ expression in the trabeculated wall of 
the bulbus cordis (bc), not in the left or right atria (la and ra), ventricle (v), or bulbar ridges (brd) of the heart. (C) Frontal section 
through the caudal somites of an 11.5 d embryo shows transgene expression in myotome (m) and dorsal aorta (a). Bar, 100 ixm. 
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Figure 5. Expression of SM22a-lacZ transgene in the arterial SMCs of a 13.5 d embryo. Transgenic mice harboring pSM2735/1093-1acZ 
were generated and the resulting embryos were stained for lacZ activity. (A) A 13.5 d transgenic embryo was stained for LacZ and sag- 
ittal sections were stained with hematoxylin and eosin. Transgene expression is seen in major vessels in the head and trunk region. (B) 
High magnification of A showing the right ventricle of the heart. Transgene expression can be seen in the outflow tract in the heart (or), 
branches of the pulmonary arteries (pa), and descending aorta (da). However, no expression was observed in the myocardium of the 
right ventricle (rv), the bronchus (br), or the vena cava (v). (C) A higher magnification of B shows that the bulbar ridge (brd) in the out- 
flow tract of the heart does not express the transgene. (D and E) High magnification of A in the region of the descending aorta (da) and 
branches of the pulmonary artery (pa) shows the specific expression of the transgene in the muscle layer (m) around the arteries, not in 
the endothelial cells (en) lining the lumen. Bars: (A) 500 ixm; (B-E) 100 ~m. 
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Figure 6. Absence of expression of the SM22a-lacZ transgene in visceral SMCs of a 14.5 d embryo. Transgenic mice harboring 
pSM2735/1093-1acZ were generated and the resulting embryos were stained for lacZ activity. A 14.5 d transgenic embryo was stained for 
lacZ and transverse sections were cut and stained with hematoxylin and eosin. (A) Transverse section at the abdominal level reveals 
specific expression in abdominal aorta (a) and umbilical arteries (u), and the absence of expression in myometrial layers of the gut (g), 
stomach (st), and bladder (bl). Specific expression of the transgene in femoral artery (fa) but not the femoral vein (fv) is also observed. 
(B) Higher magnification of the transverse section at a similar level as A in the 14.5 d embryo. (C) Transverse section at the thoracic 
level of the same 14.5 d transgenic embryo as in A shows the expression in descending aorta (da) and branches of pulmonary arteries 
(pa), but not in bronchus (br) or branches of the bronchus in the lung. k, kidney; la, left atrium; lv, liver; ra, right atrium; v, ventricle. 
Bar, 100 ~xm. 



promoter we tested were active in vascular, but not vis- 
ceral SMCs, suggesting that SM22a expression in visceral 
SMCs is controlled by regulatory elements separable from 
those for vascular SMC expression. 

Specific Expression of  the SM22a Promoter in 
Conductive Arterial, But Not Venous SMCs 

It is well established that SMCs are heterogenous with re- 
spect to embryonic origin. Even within the vasculature, 
SMCs are further specified into conductive arterial, non- 
conductive, and venous SMCs. When examining transgene 
expression in the venous system, we observed that the 
transgene was not expressed in the inferior vena cava at 
13.5 dpc (Fig. 5 B). Similarly, no transgene expression was 
seen in the cardinal vein, nor the femoral vein at E14.5 
(Fig. 6). This contrasts with the expression of the endoge- 
nous SM22a gene, which is expressed in SMCs in all of 
these structures. Although the femoral vein is very small in 
size, SM22a transcripts are dearly detectable (Li et at., 
1996). The absence of transgene expression in venous 
SMCs was apparent at adult stages. Analysis of adult heart 
from SM22a-lacZ transgenics revealed lacZ expression in 
the descending aorta, but not in the inferior vena cava or 
esophagus (Fig. 7 A). This observation was confirmed by 
histological analysis of transverse sections of the same 
heart (Fig. 7 B). 

In a frontal view of the heart, transgene expression was 
clearly present in the ascending aorta, aortic arch, left and 
right common carotid arteries, and right subclavian artery 
(Fig. 7 C). No expression was detected in the veins pene- 
trating the lung. We also did not detect expression in the 
coronary arteries passing through the heart. The failure to 
detect LacZ expression in coronary arteries, veins and vis- 
ceral organs suggests that distinct regulatory mechanisms 
direct SM22~ gene expression in different smooth muscle 
lineages. 

The 445 bp of 5 '-Flanking Sequence Is Sufficient 
to Provide Temporospatial Expression Specificity 
of  the SM22a Promoter 

To begin to define the minimal sequences required for ex- 
pression of SM22a in vivo, we also examined the expres- 
sion of lacZ reporter constracts containing 1,343 and 445 
bp of 5' flanking sequence. Both constructs showed the 
same temporospatial expression pattern as the constructs 
that extended to -2,735 bp (not shown). These results 
suggest that the expression patterns described above are 
dependent on proximal promoter sequences and that se- 
quences between -2,735 and -445 bp do not contain es- 
sential muscle regulatory elements. 

Discussion 

To begin to define the molecular mechanisms that control 
smooth muscle gene expression, we examined the regula- 
tion of the SM22a promoter in transgenic mice. Our re- 
sults demonstrate that the 445-bp sequence preceding the 
transcription initiation site of SM22a is sufficient to direct 
the expression of a lacZ transgene in cardiac, smooth and 
skeletal muscle lineages. However, in contrast to the en- 
dogenous SM22a gene, which is expressed in all SMC 

types throughout embryogenesis and adulthood, this pro- 
moter was selectively activated in conductive arterial SMCs, 
but was inactive in venous and visceral SMCs. These re- 
suits suggest that distinct regulatory mechanisms control 
SM22a expression in different smooth muscle lineages 
during embryogenesis. 

Distinct Mechanisms for Regulation of  Smooth Muscle 
Gene Expression in Different Smooth Muscle Lineages 

It is well established that SMCs have at least two distinct 
embryonic origins, the mesoderm and the neural crest 
(Schwartz et al., 1990). Embryological studies have dem- 
onstrated that SMCs within the dorsal aorta are derived 
from local mesenchymal cells and that SMC determination 
occurs before cell condensation around the endothelial 
channel (Manasek, 1971; Nakamura, 1988), which may sig- 
nal the differentiation of SMCs. Chick-quail chimera tech- 
niques for cell lineage mapping have shown that the re- 
gions of the large arteries derived from the branchial arches 
(systemic aorta, pulmonary arteries, and common carotid 
arteries) arise from neural crest-ectomesenchymal cells, 
while the more distal segments of these large arteries may 
contain a mixture of both ectomesenchymal and meso- 
derm-derived SMCs (Le Leivre et al., 1975). 

Coronary arteries are mesodermal in origin (Le Lievre 
et al., 1975). However, disruption of the neural crest in 
birds results in abnormal development of the coronary ar- 
teries (Hood and Rosenquist, 1992), suggesting that the 
neural crest plays a role in normal coronary artery devel- 
opment. The origins of venous SMCs are not well charac- 
terized, but these SMCs are likely to be derived from me- 
sodermal mesenchymal cells. In contrast, visceral SMCs, 
which are distinct from vascular SMCs in contractile prop- 
erties and pharmacologic responses (Akerlund, 1994; Zingg 
et al., 1995), arise from mesoderm-derived local mesenchy- 
mal cells, whose proper differentiation appears to depend 
on epithelial cell-mediated signals (Cunha et al., 1989). 

The observation that SMCs are derived from distinct 
embryonic origins raises several interesting questions re- 
garding the mechanisms that control SMC lineage specifi- 
cation and the molecular basis for the heterogeneity and 
functional diversity of SMCs. As an initial step towards ad- 
dressing these issues, we have analyzed SMC gene expres- 
sion in different muscle types. We observed that the onset 
of expression of SM22a (Li et al., 1996), SM myosin heavy 
chain (MHC) (Miano et al., 1994) and calponin (Miano 
and Olson, 1996) in vascular SMCs preceded that in vis- 
ceral SMCs. Similarly, SM tx-actin is expressed signifi- 
cantly earlier in SMCs at the origin of the coronary arter- 
ies than in SMCs of the cardiac outflow arteries (Hood 
and Rosenquist, 1992). In SMCs derived from different 
physiological or pathological conditions, gene expression 
was observed to be regulated differentially (Cremona et 
al., 1995; Schwartz et al., 1995). The expression of calpo- 
nin, SM22a, and SM a-actin, for example, appears not to 
be coordinately regulated in human atherosclerotic plaques 
(Shanahan et al., 1994). These results reveal a previously 
unrecognized molecular heterogeneity of gene expression 
in different SMC types and may account for distinct func- 
tions of SMCs. The SM22a promoter provides the first 
molecular marker for dissecting the regulatory mecha- 
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Figure 7. Expression of the SM22a-lacZ transgene in the descending aorta of an adult transgenic mouse. Transgenic mice harboring 
pSM2735/1093-1acZ were generated and the resulting embryos were stained for lacZ activity. (A) Gross anatomy of the heart region 
shown in a dorsal view reveals transgene expression in the descending aorta (da), but not in the vein (v), the esophagus (es) or the lung 
(lu). (B) Transverse section of the heart in A shows transgene expression in the muscle wall of the descending aorta (da), but not in the 
vein (v), nor in the esophagus (es). (C) A frontal view of the heart demonstrates transgene expression in ascending aorta, aortic arch, 
and left common carotid artery (lcc), right common carotid artery (rcc), and the right subclavian artery (rsa). No transgene expression 
was detected in veins entering the lung or in the coronary arteries (c). Bar, 200 ixm. 

nisms that control SMC-specific transcription in these dif- 
ferent SMC types in vivo. 

The SM22a-LacZ Transgene Serves as an Early Marker 
for the Right Ventricle during Heart Morphogenesis 

Endogenous SM22a is expressed in the left and right ven- 
tricles of the heart prior to E10.5 and thereafter its expres- 
sion becomes restricted to the right ventricle at E12.5 and 
disappears from the heart by E13.5 (Li et al., 1996). Our 
SM22a-lacZ transgenes were also expressed in the bulbus 
cordis (the future right ventricle) and in the outflow tract, 
but expression was never observed in the left ventricle. 
This spatial restriction in expression of these transgenes 
occurred by the onset of cardiac looping, suggesting that 
the left and right polarity of the ventricles is established at 

the early stages of heart development. The differential ex- 
pression of the SM22a-lacZ transgenes in the left and right 
ventricles also suggests that cis-acting elements that direct 
transcription in the left ventricle are missing from the 5'- 
flanking regions we tested and demonstrates that a single 
gene can be subject to different regulatory mechanisms in 
different regions of the heart. 

The simplest explanation for the more restricted expres- 
sion of SM22a-lacZ transgenes than of the endogenous 
SM22t~ gene is that the 5'-flanking sequence we tested 
contains only a subset of the regulatory elements for the 
gene. Although seemingly unlikely, we cannot formally 
exclude the possibility that the observed differential ex- 
pression of the promoter in left and right ventricles is due 
to differences in processing of the exogenous lac-Z tran- 
scripts. This disparity could also be explained by the exist- 
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ence of another SM22a gene that may be expressed in 
those SM22a-expressing cell types in which the transgene 
is not expressed. This seems less likely because recent 
studies indicate that SM22a is encoded by a single copy 
gene (Solway et al., 1995). 

Previous studies on the diversification of cardiomyo- 
genic cell lineages focused on the atria and ventricles. Sev- 
eral atrial and ventricle lineage-specific markers, such as 
atrial-specific MHC (Yutzey et al., 1994), atrial-specific 
myosin light chain (MLC)-2 (Kubalak et al., 1994), and 
ventricle-specific MLC-2 (O'Brien et al., 1993), have been 
identified. Those studies suggest that the differentiation 
and diversification of atrial and ventricular cells occurs 
during the earliest stages of cardiogenesis (Yutzey and 
Bader, 1995). Less is known about possible molecular het- 
erogeneity between the left and right ventricles. Recently, 
MLC-3F gene regulatory sequences were shown to be ac- 
tive in the left ventricle and atria, but not in the outflow 
tract, nor in the bulbus cordis during embryogenesis (Kelly 
et al., 1995). This contrasts with the expression of our 
SM22a transgenes, which exclusively mark the bulbus cor- 
dis and the outflow tract. That the SM22a and MLC-3F 
promoters exhibit mutually exclusive expression patterns 
in the left and right ventricles suggests that muscle gene 
expression is controlled by different regulatory mecha- 
nisms in these two regions of the developing heart. Our re- 
suits also demonstrate that the diversification of myocar- 
dial cells to left and right ventricular lineages occurs at an 
early stage of cardiogenesis. 

The SM22a Promoter Reveals Different Expression 
Specificity In Vitro and In Vivo 

Whereas endogenous SM22a is expressed specifically in 
myogenic lineages in vivo, we detected SM22a transcripts 
in a variety of muscle and nonmuscle cell types in culture. 
The SM22a promoter was also less tissue restricted in its 
expression in cultured cells than might be expected from 
the strict cell-type specificity of SM22a expression in vivo. 
Deletion analysis indicated that the 445-bp proximal pro- 
moter of SM22~ was sufficient to direct transcription in 
these different tissue culture cell types. This finding con- 
trasts with a recent study in which the proximal SM22~ 
was shown to be active only in SMCs in vitro (Solway et 
al., 1995). 

Studies of SMC gene promoters in tissue culture cells 
have provided useful information about the cis-acting ele- 
ments that control SMC gene expression in vitro (Kahari 
et al., 1990; Katoh et al., 1994; Shimizu et al., 1995). How- 
ever, whether these regulatory elements are also sufficient 
to confer temporospatial expression specificity in vivo, 
where higher orders of transcription control exist (Felsen- 
feld, 1992), remains unknown because there have been no 
previous studies demonstrating SMC-specific gene expres- 
sion in transgenic mice. 

Transcriptional Control of  Muscle Gene Expression 

Significant progress has been made toward identifying the 
transcription factors that control skeletal and cardiac mus- 
cle gene expression (Olson, 1993; Buckingham, 1994). 
However, the mechanisms that regulate SMC-specific 
gene expression remain largely unknown. Skeletal muscle 

gene expression is controlled by a family of skeletal mus- 
cle-specific basic-helix-loop-helix (bHLH) proteins, MyoD, 
Myogenin, Myf5, and MRF4, which activate muscle gene 
expression by binding to the E box consensus sequence 
(CANNTG) in the control regions of muscle structural 
genes (Olson, 1990; Weintraub et al., 1991; ). There are no 
E boxes in the 445-bp SM22a promoter that directs cell 
type-restricted expression, suggesting that bHLH factors 
are not essential for SM22a gene expression. 

CArG boxes have been shown to play an important role 
in the control of skeletal, cardiac, and smooth muscle 
genes (Gustafson et al., 1988; Sartorelli et al., 1990; Treis- 
man, 1990; Blank et al., 1992). Deletion of the region of 
the SM22~ promoter containing the two CArG boxes re- 
suited in about a sixfold reduction in promoter activity in 
vitro, suggesting that these CArG boxes may be important 
for SM22o~ gene expression in SMCs. Interestingly, the 
promoter of the SM a-actin gene, which is expressed in a 
similar pattern to SM22o~ in the SMC lineage, contains two 
CArG elements in nearly the same spatial orientation as 
those in the SM22a promoter and optimal activity of the 
SM o~-actin promoter in cultured SMCs requires these ele- 
ments (Shimizu et al., 1995). 

Members of the MEF2 family of MADS box transcrip- 
tion factors have also been shown to be expressed in car- 
diac, skeletal, and smooth muscle cells (reviewed in Olson 
et al., 1995). Loss of function mutations of the single reef2 
gene in Drosophila result in a loss of muscle differentia- 
tion in cardiac, skeletal, and visceral muscle cells (Bour et 
al., 1995; Lilly et al., 1995; Ranganayakulu et al., 1995). 
There is an A/T-rich element in the SM22a promoter that 
resembles a MEF2 site, but it does not perfectly fit the 
MEF2 consensus binding site. Whether MEF2 acts through 
this element or indirectly through another element in the 
SM22a promoter remains to be determined. 

Further dissecting the SM22~ promoter in transgenic 
mice is likely to provide insights into the molecular mecha- 
nisms that control early cardiovascular development and 
SMC lineage determination and differentiation. The iso- 
lated SM22a promoter also offers an opportunity to genet- 
ically manipulate the physiology and pathology of the car- 
diovascular system by directing genes involved in cell 
growth and differentiation into the cardiovascular system. 
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