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abstract

PURPOSE Clear evidence indicating whether surgery or stereotactic body radiation therapy (SBRT) is best for
non–small-cell lung cancer (NSCLC) is lacking. SBRT has many advantages. We used artificial neural networks
(NNs) to predict treatment outcomes for patients with NSCLC receiving SBRT, aiming to aid in decision making.

PATIENTS AND METHODS Among consecutive patients receiving SBRT between 2005 and 2019 in our institution, we
retrospectively identified thosewith Tis–T4N0M0NSCLC.Weconstructed twoNNs for prediction of overall survival (OS)
and cancer progression in the first 5 years after SBRT, whichwere tested using an internal and an external test data set.
We performed risk group stratification, wherein 5-year OS and cancer progression were stratified into three groups.

RESULTS In total, 692 patients in our institution and 100 patients randomly chosen in the external institution were
enrolled. TheNNs resulted in concordance indexes for OS of 0.76 (95%CI, 0.73 to 0.79), 0.68 (95%CI, 0.60 to 0.75),
and 0.69 (95%CI, 0.61 to 0.76) and area under the curve for cancer progression of 0.80 (95%CI, 0.75 to 0.84), 0.72
(95% CI, 0.60 to 0.83), and 0.70 (95% CI, 0.57 to 0.81) in the training, internal test, and external test data sets,
respectively. The survival and cumulative incidence curves were significantly stratified. NNs selected low-risk cancer
progression groups of 5.6%, 6.9%, and 7.0% in the training, internal test, and external test data sets, respectively,
suggesting that 48% of patients with peripheral Tis–4N0M0 NSCLC can be at low-risk for cancer progression.

CONCLUSION Predictions of SBRT outcomes using NNs were useful for Tis–4N0M0 NSCLC. Our results are an-
ticipated to open new avenues for NNpredictions and provide decision-making guidance for patients and physicians.
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INTRODUCTION

Lung cancer is the most common malignancy and
the most frequent cause of cancer-related deaths
worldwide.1 Non–small-cell lung cancer (NSCLC) rep-
resents 85% of all lung cancers, out of which 25%-28%
are diagnosed as stage I.2,3 Recently, numbers of patients
with early-stage NSCLC have been rising.4 For early-stage
NSCLC, surgical resection is the standard treatment,
whereas stereotactic body radiotherapy (SBRT) is a
standard treatment for medically inoperable patients.5

However, clear evidence indicating whether surgery or
SBRT is best for NSCLC is lacking.6 SBRT enables a high
percentage of patients with early-stage NSCLC to achieve
a complete cure.7 Furthermore, SBRT has many ad-
vantages; it is less painful, has few side effects, and
preserves a high quality of life after treatment, as well as
being cost-effective and that it can be performed on an
outpatient basis during a short treatment period, features
favored by governments and insurance companies.8-10

For these reasons, patients withNSCLC have increasingly
been treated with SBRT in the United States.11 In the
Netherlands, the frequency of SBRT is very similar to that
of surgery (41% v 47%).12 This suggests that there may
be an increase in the number of operable patients who
choose SBRT, along with rising use in the elderly and
those who are ineligible for surgery. In clinical practice,
we often make decisions that are not on the basis of solid
evidence, instead relying on experience. However, out-
comes following SBRT are hard to predict in all patients
and there are limits in making decisions on the basis of
experience. Were it possible to inform patients and
physicians of recurrence risks on SBRT on the basis of
advanced tools specific to a patient’s own data, such
information would be helpful to both of them while
making the decisions related to undergoing treatment or
not, facilitating a shared decision-making process.

Risk factors for poor overall survival (OS) reportedly
include high T-stage, high comorbidity score, squamous
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cell histology, and low biologically effective dose
(BED).13-15 We previously analyzed prognostic factors
in patients with NSCLC treated with SBRT, and
demonstrated pleural contact, as well as long solid
component diameter, to be associated with worse
cancer-specific mortality and OS.16 In addition, arti-
ficial intelligence (AI) such as artificial neural net-
works (ANNs, often simply referred to as NNs) and
support vector machine (SVM) approaches, which
include information obtained from computed to-
mography (CT)-based radiomics, providing prog-
nostic information for patients with NSCLC.17-19 These
findings motivated us to investigate whether combining
multiple clinical and treatment factors can predict pa-
tients’ outcomes more precisely, and whether we can
identify low-risk patients among those with NSCLC
undergoing SBRT. Furthermore, we have experience
and reported about SBRT for clinical T3-4N0M0
NSCLC at our institution.20 In light of the above con-
siderations, we reanalyzed prognostic factors in our data
set that comprised patients with Tis–4N0M0 NSCLC
treated with SBRT, developed a tool that estimates
treatment outcomes from clinical information using
NNs for not only physicians but also patients, and tested
this tool using both an internal test and an external test
data set, endeavoring to verify whether NNs were su-
perior to conventional methods.

PATIENTS AND METHODS

Patients

This was a retrospective multicohort study of con-
secutive patients with clinical Tis–4N0M0 NSCLC on
the basis of the eighth TNM staging system, treated
with SBRT in Ofuna Chuo Hospital (OCH) or Kyoto
University Hospital (KUH) between January 2005 and
August 2019. The inclusion criteria were as follows:
clinically staged as Tis–4N0M0; total peripheral dose

or minimum dose that covered 95% of the planning
target volume of 40-60 Gy; 4-10 fractions; and no
history of SBRT (if SBRT had been performed twice or
more for metachronous lung cancers, the first SBRT
was described). Patients lacking follow-up were ex-
cluded. Although principally biopsy was proposed to
patients, some refused, others could not undergo a
biopsy because of technical or clinical difficulties, and
yet others were examined but without pathologic
confirmation. For patients lacking pathologic confir-
mation, clinical diagnoses of NSCLC were made by the
lung cancer board on the basis of clinical information.
This detail and dose prescriptions are described in the
Data Supplement. All patients provided written in-
formed consent for their treatments and the retro-
spective use of their data for future investigations. The
review boards of both institutions approved this study
(OCH, No. 2019-013; KUH, No. R2292).

Model Development and Evaluation

We constructed two NN types (Fig 1 and Data Sup-
plement). First, we implemented DeepSurv21 for OS,
designated NN1. DeepSurv is a deep feed-forward NN
that follows the Cox proportional hazards (CPH) model
and predicts the hazard function. Next, we con-
structed another NN for a binary classification of
cancer progression in the first 5 years after SBRT,
depicted as NN2. The cancer progression category
included local recurrence, regional lymph node re-
currence, pleural cavity recurrence, and distant me-
tastasis. Five sixths of the eligible patients in OCH
served as a training data set and one sixth as an in-
ternal test data set. The eligible patients in KUH served
as an external test data set.

All of the factors shown in Table 1 except the maximum
standardized uptake value (SUVmax) were input into
the NNs. In histology, nonspecific NSCLC represented

CONTEXT

Key Objective
To develop and validate artificial neural network (NN) models that predict systemic treatment outcomes for patients with

Tis–4N0M0 non–small-cell lung cancer receiving stereotactic body radiotherapy and stratify the patients into three risk
groups, aiming to aid in decision making.

Knowledge Generated
The devised NNs predicted outcomes more accurately than other statistical and machine learning models and significantly

stratified the survival and cumulative incidence curves into high-, intermediate-, and low-risk cohorts for overall survival and
cancer progression.

Relevance
The NNs suggested that approximately half of the patients with peripheral Tis–4N0M0 non–small-cell lung cancer expected to

receive our current stereotactic body radiotherapy delivery with a high maximum dose and steep gradient should be
informed beforehand of the likelihood of belonging to the low-risk cancer progression group. Our results are anticipated to
open new avenues for NN predictions and provide decision-making guidance for patients and physicians.
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NSCLC with no specific diagnosis such as adenocar-
cinoma and squamous cell carcinoma. We excluded
SUVmax because there are concerns about the con-
sistency of values obtained using different [18F] fluo-
rodeoxyglucose positron emission tomography-CT
machines. Tumor characteristics22 were classified as
pure ground-glass opacity (GGO), part-solid (GGO +
solid), and pure-solid. Radiation oncologists (T.E. and
A.T. in OCH; N.K. and Y.M. in KUH) retrospectively
reviewed pretreatment CT images.

For comparison, we constructed CPH, elastic net
penalized CPH,23 random survival forest (RSF),24 lo-
gistic regression (LR), SVM, random forest (RF), and
extreme gradient boosting (XGBoost).25 Elastic net is a
mixture of lasso and ridge regression penalties. RSF is
a survival model that applies RF. XGBoost is an al-
gorithm of gradient boosted decision trees designed
for speed and performance. Regarding CPH, LR, and
elastic net, the variables were selected using a step-
wise method on the basis of the Akaike information
criterion. Since our goal was to create a predictive
model, we strictly adopted the output factors of the
stepwise selection without making any adjustments on
the basis of clinical judgment. Concordance index
(C-index) was evaluated for OS and the area under the
receiver operating characteristic curve (AUC) for
cancer progression. Finally, risk group stratification
and a feature analysis were performed. As subgroup
analyses, groups of Tis–2N0M0 NSCLC and histo-
logically proven NSCLC were evaluated. Further details
are given in the Data Supplement.

Statistical Analysis

For comparison of baseline characteristics between
the data sets, the chi-squared test was used for cat-
egorical variables, and the Mann-Whitney U test for
continuous variables. Median follow-up was calculated
using the reverse Kaplan-Meier method. The log-rank
test was used for OS. Gray’s test was used for cancer
progression, with nonspecific death being regarded as
a competing risk. For all tests, a two-tailed P-value of
, .05 was considered to indicate a statistically sig-
nificant difference. Clopper-Pearson 95% CIs were
calculated for the proportions of each factor (Data
Supplement). All statistical analyses were performed
with Python 3.7.4, SAS 9.4, and R 3.6.3.

RESULTS

In total, 692 patients in OCH and 100 patients ran-
domly chosen in KUH satisfying the criteria were
enrolled (Fig 1). The 692 OCH patients were randomly
divided into 576 as a training data set and 116 as an
internal test data set. All 100 KUH patients served as
an external test data set. The characteristics of the
eligible patients are shown in Table 1. Median follow-
up durations in OCH and KUH were 68.6 and
65.3 months, respectively. Although some charac-
teristics differed significantly between the two insti-
tutions, for example, the OCH patients had larger
tumors, more severe T-classification, and a higher
BED at the planning target volume center, OS and the
cumulative cancer progression incidence of the in-
stitutions did not differ significantly (Fig 2). There was

Records of patients with NSCLC treated with SBRT in OCH (N = 786)

Eligible patients in OCH (n = 692) 

Records of patients treated a second time or more (n = 66)

Patients not treated with 40-60 Gy in 5-10 fractions (n = 20)

Patients who have never been followed up after treatment (n = 8)

Excluded

Excluded

Excluded

Training data set in OCH (n = 576)

Test data set in OCH (n = 116) Test data set in KUH (n = 100)  

NN1 and CPH for OS

NN2 and LR for cancer progression

Tested

Created models

FIG 1. Flowchart of patient recruitment
and analysis. We created NN1 and CPH
models for OS, and NN2 and LR models
for cancer progression using OCH
training data set. The models were
tested using the internal (OCH) and
external (KUH) data sets. CPH, Cox
proportional hazards; KUH, Kyoto Uni-
versity Hospital; LR, logistic regression;
NN, neural network; NSCLC, non–small-
cell lung cancer; OCH, Ofuna Chuo
Hospital; OS, overall survival; SBRT,
stereotactic body radiotherapy.
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TABLE 1. Patient, Tumor, and Treatment Characteristics in the Eligible Data Sets

Characteristic
OCH

(n = 692)

OCH Training
Data Set
(n = 576)

OCH Test
Data Set
(n = 116)

KUH
(n = 100)

OCH v
KUH
P

OCH
Training
v OCH
Test
P

Follow-up, months (range) 68.6 (0.1-162.7) 68.6 (0.1-162.7) 66.8 (2.4-136.9) 65.3 (6.3-152.5) .33 .39

Age, years (IQR) 78 (74-83) 78 (74-83) 79 (73-82) 78 (73-83) .70 .78

Sex, female/male 221/471 (32/68) 186/390 (32/68) 35/81 (30/70) 30/70 (30/70) .78 .74

Height, cm (IQR) 159.5 (151.9-165.6) 159.7 (151.4-166.6) 158.8 (154.2-164.5) 158.5 (151.8-164.2) .19 .71

Weight, kg (IQR) 54.9 (47.0-62.0) 54.9 (47.0-62.0) 54.2 (46.8-60.0) 53.6 (44.8-61.5) .29 .59

Treated tumor size, cm (IQR) 2.5 (1.9-3.3) 2.5 (1.9-3.3) 2.5 (1.8-3.2) 2.0 (1.5-2.9) , .001 .50

T-category , .001 .32

Tis/1mi/1a/1b/1c 24/7/35/179/145 (3/1/5/26/21) 17/5/30/154/121 (3/1/5/27/21) 7/2/5/25/24 (6/2/4/22/21) 8/2/6/39/27 (8/2/6/39/27)

T2a/2b/3/4 167/31/77/27 (24/4/11/4) 133/24/67/25 (23/4/12/4) 34/7/10/2 (29/6/9/2) 16/2/0/0 (16/2/0/0)

Histology .46 .52

Ad/SCC/LCC/nonspecific
NSCLC/unproven

192/104/3/41/352 (28/15/0.4/6/51) 166/83/3/33/291 (29/14/1/6/51) 26/21/0/8/61 (22/18/0/7/53) 29/18/1/2/50 (29/18/1/2/50)

Tumor texture .008 .06

Pure GGO/GGO + solid/pure
solid

29/105/558 (4/15/81) 20/92/464 (3/16/81) 9/13/94 (8/11/81) 9/6/85 (9/6/85)

Pleural contact, yes/no 274/418 (40/60) 234/342 (41/59) 40/76 (34/66) 34/66 (34/66) .34 .26

PET/CT SUVmax (range) 3.0 (0-30.1) 2.9 (0-30.1) 3.1 (0-16.4) 5.1 (0.6-30.0) .01 .68

Charlson comorbidity index .99 .72

0/1/2/3 95/161/185/126 (14/23/27/18) 79/141/153/100 (14/25/27/17) 16/20/32/26 (14/17/28/22) 17/19/31/18 (17/19/31/18)

4/5/6-12/unknown 56/37/31/1 (8/5/4/0.1) 45/30/27/1 (8/5/5/0.2) 11/7/4/0 (9/6/3/0) 8/4/3/0 (8/4/3/0)

GOLD classification , .001 .53

0/I/II/III/IV/unknown 366/53/149/102/19/3 (53/8/22/15/3/0.4) 306/41/123/85/18/3 (53/7/21/15/3/1) 60/12/26/17/1/0 (52/10/22/15/1/0) 47/16/17/6/1/13 (47/16/17/6/1/13)

Performance status .10 .65

0/1/2/3/4/unknown 407/193/71/18/2/1 (59/28/10/3/0.3/0.1) 339/161/57/17/2/0 (59/28/10/3/0.3/0) 68/32/14/1/1 (59/28/12/1/1) 50/42/7/1/0/0 (50/42/7/1/0/0)

History of lung cancer 166 (24) 141 (24) 25 (22) 27 (27) .60 .58

History of nonlung cancer 151 (22) 128 (22) 23 (20) 33 (33) .02 .66

Operability, yes/no 151/541 (22/78) 120/456 (21/79) 31/85 (27/73) 30/70 (30/70) .09 .20

Dose prescription at PTV periphery NA .77

40 Gy/5 fr 98 (14) 78 (14) 20 (17) 0 (0)

50 Gy/5 fr 489 (71) 410 (71) 79 (68) 0 (0)

60 Gy/5 fr 80 (12) 66 (11) 14 (12) 0 (0)

60 Gy/10 fr 20 (3) 17 (3) 3 (3) 0 (0)

42 Gy/4 fr 0 (0) 0 (0) 0 (0) 42 (42)

(Continued on following page)
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no significant difference between the OCH training and
OCH test data sets.

The prognostic performances are shown in Table 2.
The multivariate CPH regression model consisted of
the following 13 factors: squamous cell carcinoma,
operability, T-category, tumor texture, maximum dose,
fraction number, total tumor size, solid-part tumor size,
age, Charlson comorbidity index, performance status,
height, and weight, and the LR model consisted of the
following seven factors: large cell carcinoma, non-
specific NSCLC, operability, T-category, tumor texture,
age, and history of nonlung cancer. The performance
of the NNs was consistently superior to that of the
traditional statistical models and the other machine
learning models in both the OCH and KUH test data
sets. The C-index of OS for the training data set in OCH
using univariate (T-category) CPH regression, multi-
variate CPH regression, and NN were 0.64 (95% CI,
0.61 to 0.67), 0.71 (95% CI, 0.68 to 0.74), and 0.76
(95% CI, 0.73 to 0.79), respectively. The AUC of
cancer progression for the training data set using
univariate (T-category) and multivariate LR and NN
were 0.65 (95% CI, 0.60 to 0.71), 0.68 (95% CI, 0.63
to 0.73), and 0.80 (95%CI, 0.75 to 0.84), respectively.
Figure 3 shows stratification of the outcomes into high-
risk, intermediate-risk, and low-risk groups on the
basis of the tertile values of the training data set derived
using the NNmodels. In the OCH training data set, the
5-year OS rates for the high-risk, intermediate-risk,
and low-risk groups were 17.8% (95% CI, 12.2 to
24.3), 55.1% (95% CI, 46.6 to 62.7), and 77.2%
(95% CI, 68.8 to 83.6), respectively. The corre-
sponding 5-year cancer progression rates were 56.6%
(95% CI, 48.1 to 63.2), 22.3% (95% CI, 16.3 to 28.9),
and 5.6% (95% CI, 2.5 to 10.3). The survival and
cumulative incidence curves also showed significant
stratification for both of OS and cancer progression, in
both the internal and external test data sets. Subgroup
analyses of groups of Tis–2N0M0 NSCLC and histo-
logically proven NSCLC revealed reasonable perfor-
mance and risk stratifications of the NNs (Table 2,
Data Supplement). Calibration plots of the NN models
generally followed the 45-degree diagonal line, which
is widely considered to be ideal (Data Supplement).

Proportions of features in the low-, intermediate-, and
high-risk groups in the training data set are shown in
Figure 4 and the Data Supplement. In the high-risk
group, T-category, proportion of positive pleural con-
tacts, and proportion of solid tumor textures were
higher, and the BED at alpha/beta of 10 (BED10) of the
maximum dose was lower for both OS and cancer
progression, whereas age, performance status, and
Charlson comorbidity index were higher only for OS. As
to cancer progression, NN2-derived low risk
accounted for 48% of the group with BED10 of theTA
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maximum dose ≥ 200, which is equivalent to the dose
currently prescribed for peripheral tumors in OCH
(Data Supplement).

DISCUSSION

To our knowledge, this is the first study attempting to
predict systemic treatment outcomes of patients with
NSCLC undergoing SBRT, using NNs with input of
pretreatment information. This is among the largest
studies of SBRT for lung cancer, given the patient
number: the internal data set was composed of 692
patients, and the independent external test data set was
composed of 100 patients (Fig 1). Themedian follow-up
duration was longer than 5 years and 73% of the pa-
tients had more than 5 years of follow-up or died before
the 5th year, enhancing the reliability of the results
(Table 1). In this research, we focused on patients with
a wide range of staging, Tis–T4N0M0. We were inter-
ested to predict the prognosis of a wide range of patients
without being limited to T-category using factors such as
pleural contact and tumor size. Although SBRT for T3-
4N0M0 is unusual, we have reported good results with
SBRT alone for patients who were inoperable or refused
surgery at our hospital.20 The 5-year cancer progression
rates in the NN2-derived low-risk group, which
accounted for one third of the training data set, were
5.6%, 6.9%, and 7.0% of the OCH training, OCH in-
ternal test, and KUH external test data sets, respectively
(Fig 3). Since 2011, OCH has been treating peripheral
NSCLC patients with SBRT using a high dose of 50-
60 Gy/5 fractions with a steep dose gradient, which is
over 200 Gy of the BED10 of the maximum dose. Nearly
half of these patients, 48%, were categorized into the
NN2-derived low-risk group for cancer progression in

the training data set (Data Supplement). Therefore, the
results of this study raise the possibility that, in the
future, approximately half of patients with peripheral
Tis–4N0M0 NSCLC recommended to undergo SBRT
with an equivalent dose prescription could be informed
beforehand of the prediction of a low cancer progres-
sion rate on the basis of the group into which they were
categorized.

NNs are highly scalable, and DeepSurv is a NN op-
timizing the hazard function of CPH.21 DeepSurv was
reported to have a higher C-index for survival pre-
diction than RSF and CPH in studies of patients with
cancer.26,27 Similar to these previous studies, we used
DeepSurv to predict OS, and found the C-index of
DeepSurv (NN1) to be greater than those of CPH,
elastic net, and RSF in the test data sets (Table 2).
TNM staging is the most widely used prognostic scale
and facilitates selecting appropriate treatment on the
basis of stages. However, because of its simplicity,
each stage contains various cancer and patient states.
Traditional statistical approaches such as CPH and LR
are powerful for analyzing and explaining data, but
they are not necessarily as good at prediction as NNs.
It also difficult for the traditional approaches to handle
a very large number of dimensions because multi-
collinearity needs to be avoided, and they cannot
process imaging or language data unless there is
feature extraction.28 NN is a method that can over-
come these shortcomings.

We further analyzed cancer progression, because
progression of the malignancy was the second most
serious event next to mortality for patients. For cancer
progression, nonspecific death is a competing risk, and
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must be considered for correctly predicting cancer
progression because almost half of patients with NSCLC
treated with SBRT die of other diseases. However, no

standard NN has as yet been established representing
the cumulative incidence function (CIF) considering
time-to-event and competing risks. In this study, we
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constructed a binary classification NN (NN2) for cancer
progression and stratified risks by the output of NN2,
plotting CIF to evaluate the probability. NN2 showed
better predictive performance than LR, SVM, RF, and
XGBoost in the test data sets and significantly stratified
risk assignment, that is, NN2 worked satisfactorily
(Table 2 and Fig 3). In the near future, it is expected that
more efficient NN methods dealing with CIF would be
developed.

As there is a black box within the NNs, we demon-
strated the compositions of each risk group stratified
by NNs for each factor considered to be clinically
important (Fig 4). As mentioned in the results section,
there were factors that seemed to be related to both OS
and the cancer progression, and factors appar-
ently related only to OS. These results are clinically
plausible. Histology correlated with both OS and
cancer progression, but more strongly with cancer
progression; the low-risk group for cancer progression
had a higher proportion of cases with unproven his-
tology. We can speculate as to several possible
mechanisms. Approximately half of the patients in-
cluded in this study had histologically unproven tu-
mors. These were usually small and often GGO, and
therefore more likely to be classified into the low-risk
group for cancer progression. Moreover, biopsies are
frequently skipped in patients who are elderly and/or
frail, and these patients often die of other diseases.

Indeed, the possibility that the group with histologically
unproven cancers included tumors that were not truly
malignant cannot be ignored. However, we can rea-
sonably speculate that inflammatory diseases in-
cluding tuberculosis and benign tumors would not
have been particularly high in the group with histo-
logically unproven tumors, because the diagnosis of
lung cancer was carefully made by a multidisciplinary
lung cancer review board after thorough consideration
of these diseases. Overall, the results produced by the
NNs were within the range of what is currently un-
derstood by experienced clinicians.

Various types of data have been widely input using AI,
not only to predict outcomes but also to identify links
relevant to the treatment decision-making process.19 A
number of studies input CT imaging features extracted
by radiomics, and recent studies have directly input
images using a convolutional neural network , a novel
NN technology that can automatically extract features
of an image and optimize them.19,29,30 Yet other studies
have used pathologic images or genes as input.30,31

Also, for lung cancer, there has been AI prediction
research. She et al developed a DeepSurv model to
predict cancer-specific survival for patients with
NSCLC receiving surgery and reported that the C-index
was 0.739 for the internal test and 0.742 for the ex-
ternal test.17 Zhou et al18 predicted distant metastasis
for patients with stage I NSCLC receiving SBRT using a

TABLE 2. Prognostic Performances of NNs and Classic Regression Methods
Outcome Model OCH Training Data Set OCH Test Data Set KUH Test Data Set

OS (C-index) Univariate (T-category) CPH 0.64 (0.61-0.67) 0.62 (0.54-0.69) 0.57 (0.49-0.65)

Multivariate CPH 0.71 (0.68-0.74) 0.64 (0.57-0.71) 0.67 (0.59-0.75)

Elastic net 0.71 (0.68-0.74) 0.64 (0.57-0.72) 0.68 (0.60-0.76)

RSF 0.79 (0.77-0.82) 0.66 (0.59-0.73) 0.65 (0.57-0.73)

NN1 (Tis–2N0M0) 0.76 (0.72-0.79) 0.66 (0.58-0.73) 0.69 (0.61-0.76)

NN1 (histologically proven NSCLC) 0.76 (0.73-0.80) 0.68 (0.56-0.79) 0.68 (0.58-0.78)

NN1 0.76 (0.73-0.79) 0.68 (0.60-0.75) 0.69 (0.61-0.76)

Cancer progression within 5 years (AUC) Univariate (T-category) LR 0.65 (0.60-0.71) 0.61 (0.49-0.73) 0.63 (0.50-0.74)

Multivariate LR 0.68 (0.63-0.73) 0.64 (0.52-0.76) 0.69 (0.55-0.81)

SVM 0.64 (0.59-0.69) 0.59 (0.49-0.70) 0.62 (0.50-0.74)

RF 0.65 (0.60-0.70) 0.61 (0.50-0.72) 0.60 (0.48-0.72)

XGBoost 0.87 (0.83-0.90) 0.64 (0.52-0.77) 0.62 (0.47-0.74)

NN2 (Tis–2N0M0) 0.81 (0.75-0.85) 0.74 (0.62-0.85) 0.70 (0.57-0.81)

NN2 (histologically proven NSCLC) 0.78 (0.71-0.84) 0.66 (0.50-0.80) 0.61 (0.42-0.78)

NN2 0.80 (0.75-0.84) 0.72 (0.60-0.83) 0.70 (0.57-0.81)

NOTE. The performances of NN, CPH, and LR were evaluated using the C-index for OS and the AUC for cancer progression. The values presented are
means and 95% CIs derived by a bootstrap approach of 2,000 iterations.
Abbreviations: AUC, area under the curve; C-index, concordance index; CPH, Cox proportional hazards; KUH, Kyoto University Hospital; LR, logistic

regression; NN, neural network; NSCLC, non–small-cell lung cancer; OCH, Ofuna Chuo Hospital; OS, overall survival; RF, random forest; RSF, random
survival forest; SVM, support vector machine; XGBoost, extreme gradient boosting.
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binary classification NN, SVM, and LR. The AUCs for
the NN, SVM, and LR were 0.75, 0.80, and 0.73,
respectively. However, the results of Zhou et al were
not evaluated using an internal and/or an external test
data set. To our knowledge, this is the first study to
apply NNs including DeepSurv to systemic treatment
outcomes after SBRT for NSCLC, in contrast to the
DeepSurv model of surgical data studied by She et al.
We used both internal and external tests, thereby
evaluating the generalization performance of the de-
vised models. Our results showed the accuracies for
the test data set to be lower than those of the training
data set; however, the difference was modest because
not only cross-validation but also generalizing tech-
niques such as regularization and dropout worked
efficiently. We obtained approximately 0.7-8 for both

the C-index of OS and the AUC of the cancer pro-
gression rate, and these values were similar to those
obtained in previously reported studies (Table 2).

The reason why NNs are important, despite the ef-
fectiveness of regression analysis, is that NNs are
scalable to multidimensional image and language
input without the need for manual feature extraction.
As our next project, we are considering integrating a
convolutional neural network for images into this re-
search. We believe that imaging information such as
CT scans, contoured structures, and dose distribution
would be particularly rich and prognostically important
in radiation therapy. Health care is shifting toward a
more participative, patient-centered approach.32 We
hope that this research will lead to the development of
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AI-based tools to aid in making treatment decisions,
thereby contributing to both shared decision making
and precision medicine.

This study has limitations. First, although we previously
reported that SUVmax was a significant prognostic
factor for OS,33 we excluded it from the input features
because there are concerns about the consistency of
values obtained using different positron emission
tomography-CT machines. Next, the data included
records lacking pathologic confirmation, which may
bias the result. Then, although the number of cases
was larger than in previous studies and independent
external tests were performed, themodels were trained
by the data from a single institution and the data had
variation in clinical practice over a long period. Finally,

as all patients here underwent SBRT, this study did not
provide a way to discriminate about those who should
go to surgery. There are concerns about applying this
prognostic approach uniformly to patients with oper-
able cancers since many of those undergoing SBRT
had inoperable tumors, and even if operable, many of
the patients were elderly and/or frail.

In conclusion, the devised NNs predicted outcomes
more accurately than other statistical and machine
learning models methods and were also able to stratify
patients with Tis–4N0M0 NSCLC treated with SBRT
into high-, intermediate-, and low-risk cohorts. Our
results are anticipated to open new avenues for NN
predictions and provide decision-making guidance for
patients and physicians.
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