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Abstract

Image-based screening typically produces quantitative measurements of cell appearance.
Large-scale screens involving tens of thousands of images, each containing hundreds of
cells described by hundreds of measurements, result in overwhelming amounts of data.
Reducing per-cell measurements to the averages across the image(s) for each treatment
leads to loss of potentially valuable information on population variability. We present Popu-
lationProfiler—a new software tool that reduces per-cell measurements to population statis-
tics. The software imports measurements from a simple text file, visualizes population
distributions in a compact and comprehensive way, and can create gates for subpopulation
classes based on control samples. We validate the tool by showing how PopulationProfiler
can be used to analyze the effect of drugs that disturb the cell cycle, and compare the
results to those obtained with flow cytometry.

Introduction

Automated image-based high-content microscopy provides a platform for phenotypic screen-
ing of complex compound libraries and drug combination sets [1]. Image processing and
analysis tools enable automated extraction of large numbers of quantitative measurements
describing the phenotype on a single cell basis [2]. Predicting and characterizing the mecha-
nism of action of each compound in a large library typically requires careful analysis of this
multidimensional data. However, many studies reduce per-cell measurements to population
means, leading to loss of potentially valuable information about population heterogeneity |3,
4]. Such an approach is not very surprising considering the complexity of handling hundreds
of measurements from hundreds of cells per treatment, in assays often spanning libraries of
thousands of compound-dose combinations.
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There are commercially available software that allow definition and quantification of sub-
populations such as Screener by GeneData, SpotFire by TIBCO, IN Cell Investigator Software
by GE Healthcare, and Harmony by PerkinElmer. Additionally, the machine-learning tools
within CellProfiler Analyst [5] and other software [6] can be trained to identify and count cells
belonging to different sub-populations. However, to our knowledge, no simple, free and open
source tools for full-plate visualization of per-cell measurement distributions has previously
been presented.

We present PopulationProfiler, software that allows visualization of histograms and sub-
population distribution of high-content screening data stored in the common csv text file for-
mat. The main idea is to reduce per-cell measurements to per-well distributions, each repre-
sented by a histogram, and optionally further reduce the histograms to sub-type counts based
on gating (setting bin ranges) of known control distributions and local adjustments to histo-
gram shape. Such analysis is necessary in a wide variety of applications, e.g. DNA damage
assessment using foci intensity distributions, assessment of cell type specific markers, and cell
cycle analysis. We show how PopulationProfiler can be used for cell cycle perturbation, protein
translocation, and EdU incorporation analysis.

PopulationProfiler is written in Python which makes it platform independent. The source
code, sample dataset and an executable program (for Windows only) are freely available at
http://cb.uu.se/ ~ damian/PopulationProfiler.html.

Methodology

PopulationProfiler’s simple graphical user interface (GUI) imports data from image-based
screening measurements; it allows selection of multiple csv files containing information on
treatment and position (well) within a multi-well plate. Each file is considered as an indepen-
dent experiment with rows representing individual cell measurements. One type of measure-
ment is processed at a time and cells are grouped (aggregated) based on well labels. The labels
for cell aggregation and the measurement are selected by the user from a drop-down list cre-
ated from the csv file header (first row). The GUI also allows selection of control wells based on
the treatment labels (there can be more than one well per treatment). If such labels are not
available, the user can select control wells manually. The corresponding data is pooled and
stored as a separate record in the output csv file. PopulationProfiler thereafter calculates and
displays the distribution of the selected measurement as a histogram for each well (Fig 1a). A
vector representation of each well’s histogram is saved in the output file, and can be used as
input for e.g., cluster analysis, elsewhere. The cell count for each well is also saved as a measure
of statistical relevance of population effects. A very low cell count usually indicates cell death,
and morphological measurements are then less likely to convey useful information.

Case study—cell cycle analysis

A commonly studied treatment response is disruption of the cell cycle. We therefore added
functionality specialized for analysis of relative per-cell DNA content, measured as log2 of the
integrated intensity of a DNA stain such as DAPI, Hoechst or PI [7]. For an unperturbed cell
population, a histogram of the DNA content typically consists of two peaks, as shown in Fig la
(DMSO). The higher peak to the left (2N) corresponds to the larger part of the cell population
with a single copy of the genome, whereas the smaller peak on the right (4N), corresponds to
the sub-population that has doubled the amount of DNA. Before exploring the effect of treat-
ments that potentially perturb the cell cycle, PopulationProfiler allows the user to set bin ranges
(subpopulation gates) using data from untreated control wells. Values corresponding to the
centers of the 2N and 4N sub-populations are defined as the largest and second largest
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Fig 1. Image-based cell cycle analysis of cell line A549 with PopulationProfiler and its comparison to flow cytometry. a) DNA content histograms
created with PopulationProfiler. The blue and red lines show data before and after smoothing, respectively. The numbers under the x-axis present the
percentage contribution of each cell cycle sub-population. b) The corresponding cell cycle analysis with flow cytometry. c) A comparison of the results (the
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contributions of the 5 cell cycle sub-populations) reveals high correlation. The respective total cell counts used by PopulationProfiler and flow cytometry are
18292 and 102751.

doi:10.1371/journal.pone.0151554.g001

maximum respectively, and all DNA intensity measurements are normalized such that the
maximum of the 2N peak corresponds to 1 and the center of the 4N peak corresponds to 2. In
order to avoid multiple peaks at 2N and 4N locations the histograms are smoothed with a
Gaussian filter (o = 1.5). Individual cells are thereafter assigned to five classes named <2N, 2N,
S, 4N, and >4N based on thresholds at 0.75, 1.25, 1.75 and 2.5 respectively, in accordance with
[7]. During analysis of treated wells, thresholds are automatically adjusted to the shape of each
well’s histogram within limits defined by the 2N and 4N peaks of the untreated wells. This
adaptive gating allows a comparison of cell cycle effects decoupled from changes in, e.g., cell
size or uptake of DNA stain. The alternative, i.e. using the gates found for the negative controls
for all the other samples, is also possible with the PopulationProfiler. In addition, the tool
allows setting manual customized gates which gives more analysis possibilities (arbitrary num-
ber and range of non-overlapping gates) to the user.

Results

The experiments performed had two goals; to compare population data collected by the pre-
sented image-based cell cycle analysis approach using PopulationProfiler to population data
collected by flow cytometry (one dimensional intensity measurements), and to compare their
ability to detect treatments that disturb the cell population. We tested the two cell cycle analysis
approaches on a cancer cell line (lung cancer, A549, known to be sensitive to cell cycle pertur-
bants) and a slow replicating control cell line (insensitive to cell-cycle perturbations non-
transformed colon epithelial, CCD841) exposed to five treatments (DMSO, Aphidicolin, Noco-
dazole, NaCl and Cisplatin) at one or two doses, as detailed in the supplementary material. Cell
cycle histograms were compared visually (Fig 1a and 1b and Figs B and C in S1 Text), and by
calculating Pearson’s correlation coefficient of normalized cell cycle sub-population distribu-
tion vectors found using PopulationProfiler and Beckman Coulter Kaluza software for the

flow cytometry data. Data from the drug sensitive cell line (A549) showed high Pearson’s cor-
relation coefficient for all equal drug-dose comparisons (Fig 1c and Fig D in S1 Text) and rela-
tively high correlation for different doses of the same drug, while noticeably lower correlation
between the effect of different drugs. A very similar pattern appears when comparing replicates
of the flow cytometry experiments, while no effects were observed for the more stable CCD841
cell line (Fig E in S1 Text). More results, detailed experiment description and discussion can

be found in S1 Text, together with example of protein translocation and EdU incorporation
analysis.

Discussion

Rather than reducing per-cell measurements to population averages, PopulationProfiler allows
data reduction while maintaining information on population heterogeneity. We show that
PopulationProfiler keeps enough information to discriminate between drugs that perturb the
cell cycle with similar detail as obtained by flow cytometry, but at significantly lower cell
counts. Image based analysis allows efficient discrimination between true signals and artifacts
and PopulationProfiler enables comparison of measurements of morphological features, such
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as sub-cellular signal localization and cytoskeletal patterns, not possible to observe by flow
cytometry.

Supporting Information

S1 Text. PopulationProfiler: Supplementary Material. This file contains the user manual,
additional application examples, and the detailed description and discussion of the presented
cell cycle analysis comparison.
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