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ABSTRACT
Glioblastoma accounts for more than half of diffuse gliomas. The prognosis 

of patients with glioblastoma remains poor despite comprehensive and intensive 
treatments. Furthermore, the clinical significance of molecular parameters and 
routinely available clinical variables for the prognosis prediction of glioblastomas 
remains limited.The authors describe a novel model may help in prognosis prediction 
and clinical management of glioblastoma patients. We performed a recursive 
partitioning analysis to generate three independent prognostic classes of 103 
glioblastomas patients from TCGA dataset. Class I (MGMT promoter methylated, age 
<58), class II (MGMT promoter methylation, age ≥58; MGMT promoter unmethylation, 
age <54, KPS ≥70; MGMT promoter unmethylation, age >59, KPS ≥70), class III 
(MGMT promoter unmethylation, age 54-58, KPS ≥70; MGMT promoter unmethylation, 
KPS <70). Age, KPS and MGMT promoter methylation were the most significant 
prognostic factors for overall survival. The results were validated in CGGA dataset.

This was the first study to combine various molecular parameters and clinical 
factors into recursive partitioning analysis to predict the prognosis of patients with 
glioblastomas. We included MGMT promoter methylation in our study, which could give 
better suggestion to patients for their chemotherapy. This clinical study will serve as 
the backbone for the future incorporation of molecular prognostic markers currently 
in development. Thus, our recursive partitioning analysis model for glioblastomas 
may aid in clinical prognosis evaluation.

INTRODUCTION

Glioblastoma (GBM) accounts for the majority 
of diffuse gliomas in adults [1]. Despite intense efforts 
over the past several decades, the prognosis of patients 
with malignant glioma, particularly glioblastoma, 
remains dismal [2]. The median overall survival (OS) of 
patients with GBM is approximately 15–17 months with 
the current gold-standard first-line treatment, which is 
maximal safe resection and combination of radiotherapy 
with temozolomide chemotherapy [1-4]. The combination 

of molecular markers as directive signatures with 
radiotherapy and chemotherapy could be a promising 
treatment approach for patients with GBM.

Recently, numerous molecular biomarkers correlated 
with GBM have been discovered (for example. IDH1/2, ATRX, 
1p19q codeletion, TERT and MGMT promoter methylation), 
which were found to be highly associated with patient 
prognosis and glioma heterogeneity. For instance, MGMT 
promoter methylation blocks MGMT protein expression 
and is predictive of chemotherapy sensitivity, specifically to 
alkylating agents such as temozolomide in patients with GBM 

www.impactjournals.com/oncotarget/              Oncotarget, 2017, Vol. 8, (No. 26), pp: 42974-42982

Research Paper



Oncotarget42975www.impactjournals.com/oncotarget

[5, 6]. However, other clinical variables, such as age, Karnofsky 
performance scale (KPS), radiotherapy, and chemotherapy, 
also carry prognostic significance. Thus, further investigation 
is needed to determine how to weight the relative importance 
of molecular parameters and clinical factors and incorporate 
them into prognostication and treatment decisions.

Recursive partitioning analysis (RPA) enables 
classification of patients into successively more homogeneous 
prognostic groups based on multiple input variables [7]. 
This model can be applied to estimate prognosis and to help 
refine inclusion criteria for therapeutic trials. In this study, we 
performed RPA using routinely available clinical variables and 
molecular markers from The Cancer Genome Atlas (TCGA) 
to generate prognostic groups. The results were also validated 
in the independent CGGA dataset. Prognostic models have 
been generated in other brain tumors, including GBM [8-10], 
anaplastic astrocytoma [9], low-grade glioma [11], anaplastic 
oligodendroglioma [12], and primary central nervous system 
lymphoma [13]. However, this is the first report of an RPA 
model including both clinical and molecular factors for 
prognosis evaluation of patients with GBM. All the patients 
after the operation were treated with standard chemoradiation 
in order that this study can investigate more deeply the impact 
of molecular markers on patients with GBM. Our RPA model 
may be a useful prognostic tool for patients with GBM.

RESULTS

Patient, tumor, and treatment characteristics

In this study, 103 patients with GBM were enrolled from 
TCGA as training set and 116 GBM patients from CGGA 
were constituted the validation set (Table 1). TCGA cohort 
included 66 males and 37 females with a median age of 59 
years (range, 21–83 years) and a median preoperative KPS of 
70. Six molecular markers associated with prognosis were also 
shown in Table 1. In the CGGA dataset, there were 77(66%) 
men and median age was 49 years. Median preoperative 
KPS was 80 (supplementary Table 1). The selection criteria 
of patients were that: (a) adult patients with primary GBM, 
patients younger than 18 years old and secondary and recur 
GBM were excluded; (b) patients were treated with standard 
chemoradiation and chemotherapy followed by adjuvant 
chemotherapy [15]; (c) we excluded patients with an OS time 
(defined as the interval from the date of diagnosis until death or 
the last follow-up) of < 30 days, since in these cases, death may 
have occurred due to factors other than GBM.

Prognostic factors

After univariate analysis, multivariate Cox models 
were applied (Table 2). From the univariate analysis in 
TCGA, MGMT promoter methylation status was found 
to be significant and favorable prognostic factors (p 
< 0.01). Age (median age was 59 at GBM diagnosis) 
(p =0.04), KPS (median KPS was 70) (p = 0.05) were 

also statistically significant factors based on univariate 
analysis. In the multivariate model, KPS (HR 0.46, 95% 
CI 0.23-0.92, p =0.03) and MGMT promoter methylation 
status (HR 0.35, 95% CI 0.18-0.68, p <0.01) were 
independently associated with improved OS. It is well-
known that chemotherapy and radiation are prognostic 
factors for GBM patients. The results of univariate and 
multivariate analysis for validation set were shown in 
supplementary Table 1.

Recursive partitioning analysis

We utilized RPA to predict OS with our dataset 
collected retrospectively from the TCGA. The optimal 
tree size was one with three leaves (Figure 1). Only three 
variables were included in the final model: age, KPS 
and MGMT promoter methylation status. We identified 
a primary split corresponding to MGMT promoter 
methylation status and secondary splits corresponding 
to age and KPS. Among patients with MGMT promoter 
methylation and age <58 were the strongest prognostic 
factors, and these patients survived longest. Furthermore, 
MGMT promoter methylation was the only prognostic 
factor in patients with age > 58. For patients with 
MGMT promoter unmethylation and KPS≥70, younger 
patients (age <54) exhibited increased OS compared to 
older patients (age >59). Finally, the worst prognosis 
was observed for patients with MGMT promoter 
unmethylation, KPS ≥70 and age band at 54-58, or 
patients with MGMT promoter unmethylation, KPS <70.

Therefore, RPA identified three distinct risk 
groups based on median survival similarity (Table 3): 
class I (MGMT promoter methylation, age <58), class 
II (MGMT promoter methylation, age ≥58; MGMT 
promoter unmethylation, age <54, KPS ≥70; MGMT 
promoter unmethylation, age >59, KPS≥70), class III 
(MGMT promoter unmethylation, age 54-58, KPS ≥70; 
MGMT promoter unmethylation, KPS <70). Kaplan–
Meier survival analysis confirmed the existence of the 
three distinct risk classification groups identified by RPA, 
with the best outcome for class I (median, 33.6 month), the 
worst for class III (median, 11.7 month), and intermediate 
outcomes for classes II (Table 4 and Figure 2A). The global 
difference in OS between the classes, reflecting different 
survival categories, was highly statistically significant (p 
< 0.01). Table 4 shows the median OS and the survival 
rate at 0.5, 1, 3, and 5 years for each class. For instance, 
the survival rate of class I at 0.5, 1, 3, and 5 years were 
100%, 88.9%, 66.7%, 61.9%, respectively. The outcomes 
of same trend were found in the validation set from 
CGGA (Figure 2B). Although, there was no significant 
difference of OS between class II and class III (p= 0.49), 
the median survival remained significantly different (class 
II 584, class III 438). When patients from the training and 
validation sets were combined, the three risk classification 
groups also remained significantly different (median OS 
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Table 1: Clinical and molecular pathology features between patients from TCGA and CGGA

Variable
TCGA (n=103) CGGA (n=116)

No. of patients Median OS (days) No. of patients Median OS (days)
Gender
 Men 66 397 77 520
 Women 37 498 38 733
Age
 <59 49 476 95 733
 ≥59 54 372 21 520
Preoperative KPS 
score
 <70 24 357 23 487
 ≥70 79 640 69 681
Radiotherapy
 Yes 103 478 116 657
 No 0 0
Chemotherapy
 Yes 103 478 116 657
 No 0 0
ATRX mutation
 Mutation 8 439 / /
 Wild type 95 507 / /
TERT mRNA 
expression
 High 50 387 20 563
 Low
 NA

10
43 571 20

76 681

TERT promoter 
mutation
 mutation 13 446 10
 Wild type
 NA

2
88 414 21

85
965
584

1p19q codeletion
 Non-codeletion 98 432 115 657
 Codeletion 0 1 372
 NA 5 458 0
IDH mutation
 Mutation 9 498 18 1262
 Wild type 94 446 98 563
MGMT promoter 
methylation
 Methylation 44 809 43 970
 Unmethylation 59 369  73 455

OS: overall survival; / : CGGA dataset not supplied; NA: not available.
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of class I, class II and class III = 1009, 498 and 387 days 
Figure 2C). The p value between class I and class II by 
log-rank test was 0.0012 (class II and class III: p= 0.0246). 
According to the 2016 WHO glioblastomas classification 
[25]., we used RPA model specially in the IDH wild-type 
patients. Except for a slightly different number of patients 
in the nodes, the similar RPA model was observed in IDH 
wild-type cohort. Then, we validated the overall survival 
of patients in IDH wild-type cohort. The three distinct risk 
groups also had significance prognosis value (Figure 2D).

DISCUSSION

Since its initial development in the early 1990s, the 
RPA classification system has been validated in multiple 
clinical trials [14]. In contrast with other measures of 
prognosis analysis, RPA allows enrollment of as many 
variables correlated with potential prognostic significance 
as desired. Undoubtedly, in RPA, the introduction of more 
significantly prognostic variables may help clarify some 
of the heterogeneity in patients and more realistically 

Table 2: Univariate and multivariate analysis of 103 patients with GBM in TCGA

Variable
Total (n=103)

No. of patients P 1 HR 95%CI P 2

Gender

 Men 66 0.16

 Women 37

Age

 <59 49 0.04 1.22 0.68-2.20 0.51

 ≥59 54

Preoperative KPS score

 <70 24 0.05 0.46 0.23-0.92 0.03

 ≥70 79

ATRX mutation

 Mutation 8 0.46

 Unmethylation 95

TERT mRNA expression

 High 50 0.07

 Low 10

 NA 43

TERT promoter mutation

 Mutation 13 0.71

 Wild type 2

 NA 88

IDH mutation

 Mutation 9 0.10

 Wild type 94

MGMT promoter 
methylation

 Methylation 44 <0.01 0.35 0.18-0.68 <0.01

 Unmethylation 59

OS: overall survival; HR: Hazard ratio; NA: not available.
P 1: the P value of univariate analysis; P 2: the P value of multivariate analysis.
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delineate patient prognosis. Malignant gliomas are 
known to comprise various heterogeneous populations. 
Previously, the molecular basis of heterogeneity in gliomas 
was confirmed. Therefore, comprehensive molecularly 
targeted treatment of GBM could play a critical role in 
the future. In addition, RPA avoided the bias inherent in 
subjective selection of evaluative variables for generating 
prognostic classifications.

We identified three different prognostic groups 
using readily available clinical variables and molecular 
parameters. There were only three variables identified 
in this classification schema: age, KPS and MGMT 
promoter methylation status. The most powerful variable 
was MGMT promoter methylation. Most prospective 
trials recognize the prognostic importance of KPS, 
and our analysis further categorized KPS as ≥70 or 
<70. Therefore, patients with different KPS could be 
accurately partitioned. Previously, some seminal Phase 
III studies used age cutoffs of 40 [15, 16] or 50 [17, 18] 
in randomization procedures or multivariate analyses. 
However, our results suggest that age band at 50-60 years 
may be the most important cut-points. KPS, age and 
MGMT promoter methylation were critical prognostic 
factors for OS in the univariate analysis (p < 0.05).

The RPA model produced in TCGA was excellent 
validated in CGGA and combined cohort. This RPA model 
could be more useful prognostic tool for patients with 
GBM. When we began to research this study, we wanted to 
use the more stable and more comprehensive databases to 
apply RPA algorithm. Because the most of the molecular 
information of the CGGA database was not publicly 
available for downloading. Then, the TCGA database 
contained a higher credible level. Other researchers could 
use this available database to verify our study results 
and to continue in-depth studies. Provided RPA for the 
CGGA cohort made the model become more complicated. 
Furthermore, the complex model was not conducive to the 
clinical application. In addition, we found that there were a 
few differences in age between CGGA and TCGA cohorts 
in the nodes when we used RPA to analyze the CGGA 
and TCGA cohorts respectively. It may be the results that 
Orientals and Westerns have difference risk of glioma. 
Thus, it need further research to investigate.

To our knowledge, RPA models have been 
generated and tested for brain tumors, like GBM (using 
only routine clinical factors: age, performance status, 
extent of resection, tumor site, and neurologic function) 
[8-10], anaplastic astrocytoma (using histology confirmed 
supratentorial GBM or astrocytomas with anaplastic or 

Figure 1: Recursive partitioning analysis (RPA) tree for the 103 patients in the TCGA data set. The tree was evaluated 
as potential split points. The final decision tree is shown with terminal nodes and consolidation into three distinct prognostic classes using 
commonly available clinical variables. Abbreviations: KPS = Karnofsky performance scale; MGMT = MGMT promoter methylation; Met: 
Methylation; Unm: Unmethylation; n=the number of patients in the node; p=p-value.
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Table 3: Risk-group splits according to RPA

Class No. of patients MGMT Age, y KPS

I 21 Met <58 Any

II 23 Met ≥58 Any

11 Unm <54 ≥70

26 Unm >59 ≥70

III 10 Unm 54-58 ≥70

12 Unm Any <70

RT: Radiotherapy; CT: Chemotherapy.
MGMT: MGMT promoter methylation; Met: Methylation; Unm: Unmethylation.

Table 4: Survival rate of TCGA patients in all Glasses

Class I Class II Class III

Median OS (month) 33.6 15.9 11.7

at 6-month (%) 100 46.7 50

at 1-year (%) 88.9 77.1 44.4

at 3-year (%) 66.7 50 NR

at 5-year (%) 61.9 NR NR

OS: Overall survival; NR: Not reached.

Figure 2: Kaplan-Meier curves. The overall survival split according to subgroups derived from RPA for (A) training set (B) validation 
set, (C) combined set and (D) GBM, IDH-wildtype.
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atypical foci, age, KPS, mental status, extent of surgery, 
and RT dose) [9], anaplastic oligodendroglioma (using 
age, tumor location, and only one molecular marker: 
deletion of chromosomes 1p and 19q) [12], and primary 
central nervous system lymphoma (using age and KPS) 
[13]. However, this is the first study to use various 
molecular parameters for RPA model construction to 
study prognosis in GBM. In some other RPA models 
some patients were treated with standard chemoradiation 
followed by adjuvant chemotherapy and some had 
either radiation or chemotherapy only. Currently, the 
chemoradiation and chemotherapy is the standard-of-care 
for GBM patients. It is of great value to generate models 
in patients with standard treatment instead of confirming 
the well-known conclusions that chemotherapy and 
radiation are prognostic factors for GBM patients. 
Thus, all enrolled patients were treated with standard 
chemoradiation, which this study can investigate more 
deeply the impact of molecular markers on patients with 
GBM.

The KPS describes a patient’s functional status as 
a comprehensive 11-point scale correlating to percentage 
values ranging from 100% (no evidence of disease, 
no symptoms) to 0% (death). The KPS is an artificial 
construct which measures the ability to function. Important 
for survival is not the KPS percentage score, rather it is the 
disease state and co-morbidities, and the impact of these 
two items upon the patient’s vitality [19]. The location 
of glioma growth, for example, did not involve the brain 
functional area and was easier to excise (frontal gliomas). 
These patients had higher score of KPS and higher 
opportunity to take total resection. These will undoubtedly 
increase the survival time of the patient. In this study, we 
used KPS to classify patients and guided clinical treatment 
programs. But, the further study can research the different 
survival and aberrant expression of molecular biomarkers 
in patients’ cohort with the similar tumor localization or 
the same extent of resection.

Corticosteroid (such as dexamethasone) was 
suggested to be immunosuppressant, as are radiotherapy 
and TMZ [20]. But a recent correlative study found that 
DEX treatment-induced immune suppression could 
interfere with clinical efficacy of standard therapy in 
recurrent glioblastoma [21]. In addition, Kenneth et. 
said use of corticosteroids early in the course of disease, 
during radiotherapy without or with chemotherapy, was 
an independent predictor of poor outcome in glioblastoma 
patients [22]. The EGFRvIII is expressed in approximately 
20–30% of primary GBM and is not expressed on normal 
tissues, it is an effective target for immunotherapy [23]. 
These findings prompted us to enroll emerging molecular 
and clinical markers into RPA in further investigation 
work to allow this scoring system to be applied in routine 
clinical investigation to aid realistic patient prognosis.

Our analysis was limited by the retrospective nature 
of the original dataset and the lack of other central reviews, 

most notably its inherent associated biases. We also did 
not capture tumor size, which was previously shown to 
be prognostic for brain tumors [10]. Moreover, additional 
molecular abnormalities with potential prognostic 
significance beyond those examined herein have been 
discovered recently, and which of these can or should be 
routinely analyzed is an emerging area of investigation in 
neuro-oncology [24].

In conclusions, the RPA prognostic model presented 
herein was simple yet powerful. Although the model 
appears complex, we found that combining molecular and 
clinical data yielded three variables (MGMT promoter 
methylation, age, KPS) that powerfully predicted 
survival. Of these, MGMT promoter methylation was 
the most important factors influencing patients’ survival. 
To our knowledge, this was the first study to combine 
various molecular parameters and clinical factors into 
RPA to predict the prognosis of patients with GBM. We 
also included MGMT promoter methylation in our RPA 
model, which could give better suggestion to patients for 
their chemotherapy. This clinical RPA model will serve 
as the backbone for the future incorporation of molecular 
prognostic markers currently in development. Thus, 
our RPA model for GBM may aid in clinical prognosis 
evaluation.

MATERIALS AND METHODS

Patients and clinicopathological information

The corresponding clinical information (gender, 
age, Karnofsky Performance score), survival information 
and molecular biomarkers for 103 GBM patients were 
downloaded from The Cancer Genome Atlas (TCGA) 
database (http://cancergenome.nih.gov) as training set. 
Validation set containing one hundred and sixteen GBM 
patients were downloaded from CGGA database (http://
www.cgga.org.cn). The clinical characteristics of patients 
from the two datasets were summarized in Table 1. 
We excluded patients with OS time of < 30 days, who 
might die due to other factors. All the patients (both in 
training dataset and validation dataset) were after standard 
treatment (operation and standard chemoradiation). 
The chemoradiation regimens were implemented for all 
patients as previously reported [25].

Statistical analysis

Since RPA was developed in the early 1990s, it 
has been used to model predictors by building a pattern 
decision tree [26, 27]. RPA enables classification of 
patients into successively more homogeneous prognostic 
groups based on multiple input variables [7]. This 
recursive algorithm divides the data into two subgroups 
by searching through all possible prognostic variables, 
in terms of finding the division that is most prognostic 
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for survival. Then RPA repeats the search to identify 
additional partitions within a previously identified 
subgroup. Each partition point is called as a node. 
The algorithm stops when the data have been divided 
into subgroups that are too small to divide further in a 
meaningful manner. The partitions and nodes build a 
tree, which allows for a clinically intuitive visual display 
of the factors examined and any potential interactions. 
The recursive PARTitioning package (RPART) was 
downloaded from https://cran.r-project.org/web/
packages/rpart/index.html.

We constructed the tree using the following 
collected variables with potential prognostic significance: 
age (as a continuous variable), KPS at diagnosis, six 
molecular markers (IDH1/2, ATRX mutation status, 
mRNA expression level of TERT, 1p19q codeletion, 
TERT promoter mutation, and MGMT promoter 
methylation). Interestingly, the RPA originally generated 
six prognostic classes (Supplementary Figure 1). 
We combined some of the classes based on similar 
median survival.

The OS time was defined as time interval from 
histologic diagnosis of GBM to death or last follow-
up. Univariate analysis was used to test the relationship 
between each prognostic factor and OS. Kaplan–Meier 
curves with log-rank test presented the final classification 
of prognostic groups.
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