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Background: Deep learning methods have demonstrated great potential for processing high-resolution 
images. The U-Net model, in particular, has shown proficiency in the segmentation of biomedical images. 
However, limited research has examined the application of deep learning to esophageal squamous cell 
carcinoma (ESCC) segmentation. Therefore, this study aimed to develop deep learning segmentation 
systems specifically for ESCC. 
Methods: A Visual Geometry Group (VGG)-based U-Net neural network architecture was utilized to 
develop the segmentation models. A pathological image cohort of surgical specimens was used for model 
training and internal validation, with two additional endoscopic biopsy section cohort for external validation. 
Model efficacy was evaluated across several metrics including Intersection over Union (IOU), accuracy, 
positive predict value (PPV), true positive rate (TPR), specificity, dice similarity coefficient (DSC), area 
under the receiver operating characteristic curve (AUC), and F1-Score.
Results: Surgical samples from ten patients were analyzed retrospectively, with each biopsy section cohort 
encompassing five patients. Transfer learning models based on U-Net weights yielded optimal results. For 
mucosa segmentation, the in internal validation achieved 93.81% IOU, with other parameters exceeding 
96% (96.96% accuracy, 96.45% PPV, 96.65% TPR, 98.41% specificity, 96.81% DSC, 96.11% AUC, and 
96.55% F1-Score). The tumor segmentation model attained an IOU of 91.95%, along with other parameters 
surpassing 95% (95.90% accuracy, 95.62% PPV, 95.71% TPR, 97.88% specificity, 95.81% DSC, 94.92% 
AUC, and 95.67% F1-Score). In the external validation for tumor segmentation model, IOU was 59.86% 
for validation database 1 (72.74% for accuracy, 76.03% for PPV, 77.17% for TPR, 83.80% for specificity, 
74.89% for DSC, 71.83% for AUC, and 76.60% for F1-Score), and 50.88% for validation cohort 2 (68.03% 
for accuracy, 59.02% for PPV, 66.87% for TPR, 78.48% for specificity, 67.44% for DSC, 64.68% for AUC, 
and 62.70% for F1-Score).
Conclusions: The models exhibited satisfactory results, paving the way for their potential deployment on 
standard computers and integration with other artificial intelligence models in clinical practice in the future. 
However, limited to the size of study, the generalizability of models is impaired in the external validation, 
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Introduction

With a 5-year survival rate of 20%, esophageal carcinoma 
stands as a significant contributor to cancer-related 
fatalities worldwide (1). Notably, China accounts for half 
of the annual reported cases globally (2). The results of 
pathology examinations of gastroscopy biopsies and surgical 
specimens are the gold standard for diagnosing and staging 
this malignancy. It is imperative to identify tumor cells and 
determine the depth of wall penetration during the scrutiny 
of pathological sections to attain precise diagnoses (3). 

The advent of digital pathology techniques, which 
involve the digitization of microscopic histologic slides 
including scanning, compression, storage, and digital display, 
makes the conversion of microscopic histologic slides 
into high resolution images possible (4,5). As an advanced 

technique, the acquisition of whole slide image (WSI) 
has become a routine practice in cancer diagnosis, which 
facilitates the storage of entire pathological slides in high 
definition and the consultations for challenging cases (6).  
Typically, a high-resolution WSI comprises thousands 
of cells and trillions of pixels to ensure intricate cellular 
structures identifiable. However, when dealing with lesions 
or regions of interest (ROIs) that are relatively small 
compared to the entire sections, manually scanning of whole 
slide under microscopy or with WSI is a time-consuming 
task, even for experienced pathologists (7). The available 
pool of expert pathologists remains insufficient to meet 
the substantial clinical demand for manual pathological 
examination. Fortunately, WSIs enable the application of 
artificial intelligence for pathological diagnosis, offering a 
potential solution to the aforementioned challenge through 
automated image processing (8,9).

Computer-assisted diagnosis techniques could potentially 
recognize informative patterns in images that transcend 
human limitations and boundaries. These techniques have 
already been implemented in medical imaging, including 
endoscopic imaging, computed tomography (CT) and 
positron emission tomography (PET) (10,11). Artificial 
intelligence could also assist pathologists in identifying 
distinctive features in WSI, with the goal of early detection 
and prognosis prediction. The digital pathological images 
deep learning technologies have yielded remarkable 
capabilities in detection, segmentation, and classification for 
carcinomas in locations such the breast, lung and skin (12-14).

The convolutional neural networks (CNNs) have already 
existed for decades, large biomedical datasets containing 
thousands of training images are still required for the 
generation of complex outputs. The U-Net network, 
initially proposed by Ronneberger et al. in 2015, has shown 
precise segmentations even with very few training images 
for biomedical domain (15). The network primarily consists 
of a contracting path and an expansive path, both of which 
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have been validated for their effectiveness in biomedical 
image processing and segmentation across various 
diseases (16,17). For esophageal cancer, previous studies 
have demonstrated that CNN networks could achieve 
comparable accuracy as clinicians, especially with computed 
tomography-based or endoscopic datasets (18,19). However, 
few studies focused on the artificial intelligence based 
pathological images processing in esophageal carcinoma. 
As the only gold standard for diagnosing esophageal cancer, 
and determining the depth of invasion (20), this study aimed 
to develop deep U-Net architecture-based learning models 
for the segmentation of esophageal mucosa and esophageal 
squamous cell carcinoma (ESCC). We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://jgo.amegroups.com/article/view/10.21037/jgo-
23-587/rc).

Methods

Datasets

Pathological images of surgical specimen from patients with 
ESCC who underwent esophagectomy at the Department of 
Thoracic Surgery, Zhongshan Hospital, Fudan University 
between January 2021 and June 2021 were retrospectively 
reviewed as the primary dataset of the study. The inclusion 
criteria were: (I) age between 18 to 80 years; (II) histological 
diagnosis of ESCC; (III) underwent radical esophagectomy 
with available surgical specimens. And the exclusion criteria 
included: (I) history of other tumors; (II) unavailable or 
unqualified surgical specimens. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013). The study was approved by ethics review board 
of Zhongshan Hospital, Fudan University (No. ZS-B2021-
708) and individual consent for this retrospective analysis 
was waived. WSIs were acquired from hematoxylin and 
eosin (H&E) staining of paraffin-embedded tissues, and 
the slides would be re-imaged if distortion, blurs, or 
occlusions were detected on the quality assessment. WSIs 
of tumor areas were allocated into tumor cohort, while 
WSIs of paracancerous area and normal tissue comprised 
mucosa cohort. Small patches were then generated based 
on a sliding-window sampling strategy, with patches of less 
than 10% ROIs eliminated. Patches in mucosa and tumor 
cohort were utilized for the construction of segmentation 
model for esophageal mucosa and ESCC, respectively. 
After cohort generation, patches were allocated into the 
training and validation sets randomly with a 9:1 split ratio. 

Specifically, attention was focused on the effectiveness of the 
tumor identification model. And therefore, two additional 
WSI datasets from endoscopic biopsy slides outside the 
Department of Pathology, Zhongshan Hospital, Fudan 
University, were allocated as external validation cohorts, 
encompassing samples from five ESCC patients each. 
Patches in the external validation cohorts were acquired 
through random window strategy sampling from WSIs. 

Basic network architecture

Input patches were resized to of 512×512 pixels with 
matching resolution for segmentation model outputs. 
The basic network was U-Net structure, a convolutional 
network advantageous for medical image segmentation (15). 
It is composed of a contracting path for feature extraction 
and an expansive component for segmentation prediction 
as well (21). The Visual Geometry Group (VGG) Network 
was applied as the backbone for the contracting path, which 
consisted of repeated application of convolutions, followed 
by a rectified linear unit and a max pooling operation (22). 
And the prediction step consisted of an upsampling followed 
by convolutions. Each layer of the expansive component 
was concatenated and fused with the corresponding layer 
in the contracting path via skip-connection to prevent 
edge information loss. Besides training from scratch, pre-
trained Xception, U-Net, VGG16, VGG19 and ResNet50 
models were used for the transfer learning (23-25). Training 
epoch weights and performance were recorded to identify 
contributing features. The network architecture is available 
in Figure 1, with main hyperparameters presented in the 
Table 1. The deep learning process was performed on a 
laptop equipped with GeForce RTX3050Ti (NVIDIA) 
graphics processing unit and CUDA 11.0.2 for graphics 
processing unit (GPU) acceleration.

ROIs

ROIs were manually annotated by two authors with 
Labelme under the assistance of Department of Pathology 
as the gold diagnoses of mucosa and cancer, and the 
generated JSON files were converted to mask map and 
trained on the Pytorch platform. Two ROI sets were 
labeled—mucosa/non-mucosa and tumor/non-tumor. 
Reproducibility was assessed in a blinded manner with 
disagreements resolved by consensus or by appealing to the 
third experienced thoracic surgeon. To assure the accurate 
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diagnoses of ESCC and mucosa, all the ROIs would be 
verified by an experienced thoracic surgeon.

Statistical analysis

The performance of the models in predicting histological 
ROIs would be assessed with the following parameters: 
(I) the Intersection over Union (IOU); (II) the positive 
predictive value (PPV); (III) the true positive rate (TPR); 
(IV) the accuracy; (V) the specificity; (VI) the dice similarity 
coefficient (DSC); (VII) the area under the receiver 
operating characteristic curve (AUC); (VIII) the balanced 
F score (F1-Score) (26). Loss function is a parameter 
evaluating the relative differences between prediction and 
truth; IOU is a parameter assessing the consistency between 
the ground truth and the segmentation mask, IOU = TP/

(TP + FP + FN); PPV is a measurement of precision, PPV 
= TP/(TP + FP); TPR could reflect the sensitivity, TPR = 
TP/(TP + FN); the accuracy = (TP + TN)/(TP + FP + FN 
+ TN); specificity = TN/(TN + FP); DSC is a statistical 
measure of spatial overlap for segmentation accuracy, 
DSC = 2 TP/(2 TP + FP + FN); while AUC is a criteria to 
optimize the model hyperparameters; and the balanced F 
score is the harmonic mean of the sensitivity and specificity 
and is used to establish optimal system accuracy (TP, true 
positive; FN, false negative; FP, false positive; TN, true 
negative).

Results

Training dataset and validation datasets

A retrospective analysis was conducted on surgical samples 
from ten patients (mean age: 62.7 years; male: 90%). 
Clinical data for patients in the primary cohort and two 
additional cohorts is available in Table 2. A total of 30 pairs 
of carcinomas and para-carcinomas tissues were obtained 
from surgical specimens and subsequently underwent 
H&E staining. Following WSI pre-processing, 292 and 
239 patches were derived for the mucosa and tumor cohort 
with a sliding window sampling approach, respectively. 
Meanwhile, the two additional datasets primarily featured 
tumor-dominant WSIs, from which 59 and 48 patches were 
generated for external validation cohort 1 and validation 

Figure 1 The overview of the U-Net neural network architecture with input image matrix size of 512×512 pixels.

Table 1 List of hyperparameters submitted in the framework
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cohort 2 following random attention sampling, respectively. 
An overview of the training and validation process is 
depicted in the Figure 2.

Performance in the deep learning for mucosa

There were 262 and 30 patches  allocated in the training 
and internal validation cohort for the mucosa segmentation 
task. The performance of models exhibited variability 
when different pretrained models were applied, however, 
all models consistently demonstrated robust discriminatory 
capability between mucosa and non-mucosa composition 
after 100 epochs of training (Table 3). The ascension of IOU 
in the training is shown in Figure 3A. Notably, the trained 
U-Net model exhibited the highest potential, achieving an 
IOU of 93.81%, accuracy of 96.96%, PPV of 96.45%, TPR 
of 96.65%, specificity of 98.41%, DSC of 96.81%, AUC of 
96.11% and F1-Score of 96.55% in the internal validation. 
Besides, the transfer learning VGG19 (IOU =82.52%) 
model and model trained from scratch (IOU =84.70%) also 
demonstrated commendable identification abilities, with 
most parameters basically reaching 90%. 

Performance in the deep learning for tumor

In the tumor segmentation, the training and internal 

validation cohorts consisted of 215 and 24 patches 
respectively. The IOU curves of models are displayed in the 
Figure 3B and the performance of models in the internal 
validation is summarized in Table 4. Except the U-Net 
model, most models performed poorly, with IOU not 
exceeding 52%. The U-Net based model outperformed 
all other models, achieving an IOU of 91.95%, accuracy 
of 95.90%, PPV of 95.62%, TPR of 95.71%, specificity of 
97.88%, DSC of 95.81%, AUC of 94.92% and F1-Score of 
95.67%.

External validation for tumor segmentation

Given the clinical value of tumor segmentation, the 
performance of models, especially the U-Net based model, 
were validated on two additional datasets.

Dataset 1: the results of external validation for 
dataset 1 are summarized in Table 5. As expected, U-Net 
outperformed other models. The VGG16, VGG19, 
ResNet50, Xception and scratch-based models yielded IOU 
of 25%, while U-Net model attained 59.86% for overall 
IOU. Notably, the resolution capability of U-Net model for 
tumor segmentation was specifically investigated, yielding 
79.00% for IOU, 86.00% for accuracy, 90.00% for PPV, 
90.66% for TPR, 92.21% for specificity, 88.27% for DSC, 
85.61% for AUC, and 90.33% for F1-Score. 

Table 2 Clinical characteristics for patients with ESCC in Zhongshan Hospital, Fudan University

Characteristics Main cohort Additional cohort 1 Additional cohort 2

Patients 10 5 5

Age (years) 62.7±5.0 67.4±6.7 57.4±7.2

Male 9 [90] 5 [100] 4 [80]

Tumor location

Middle 8 [80] 5 [100] 3 [60]

Lower 2 [20] 0 [0] 2 [40]

Clinical stage

II 5 [50] 5 [100] 4 [80]

III 5 [50] 0 [0] 1 [20]

Histological grade

2 9 [90] 3 [60] 4 [80]

3 1 [10] 2 [40] 1 [20]

Data are shown as mean ± SD or n [%]. ESCC, esophageal squamous cell carcinoma; SD, standard deviation.
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Figure 2 The illustration of the framework for the development of segmentation models for hematoxylin and eosin staining WSIs. 
Magnification: 10×40. WSI, whole slide image.
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Dataset 2: in the dataset 2, similar result of external 
validation as dataset 1 was achieved (Table 6). The 
performance of 5 models other than U-Net was far from 
satisfactory. Interestingly, the prediction ability of the whole 
model in the dataset 2 (U-Net achieved 50.88% for IOU, 

68.03% for accuracy, 59.02% for PPV, 66.87% for TPR, 
78.48% for specificity, 67.44% for DSC, 64.68% for AUC, 
and 62.70% for F1-Score) might be not as good as that 
in dataset 1, however, the differentiation ability of tumor 
tissue surpassed the dataset 1 (IOU of 89.00%, accuracy 

Figure 3 The IOU in the training process. (A) Mucosa segmentation models; (B) tumor segmentation models. VGG, Visual Geometry 
Group; ResNet, Residual Network; IOU, Intersection over Union.

Table 3 The performance of segmentation system for mucosa in internal validation

Models IOU (%) Accuracy (%) PPV (%) TPR (%) Specificity (%) DSC (%) AUC (%) F1-Score (%)

U-Net 93.81 96.96 96.45 96.65 98.41 96.81 96.11 96.55

VGG16 75.69 82.75 87.47 89.87 89.55 86.16 82.62 88.65

VGG19 82.52 90.52 89.35 90.33 94.77 90.42 88.65 89.84

ResNet50 68.23 75.74 84.52 87.31 84.85 81.12 76.54 85.89

Xception 58.28 67.00 78.99 81.74 78.88 73.64 68.58 80.34

No pretrained 84.70 90.75 91.79 92.70 94.86 91.72 89.78 92.24

IOU, Intersection over Union; PPV, positive predictive value; TPR, true positive rate; DSC, dice similarity coefficient; AUC, area under the 
receiver operating characteristic curve; F1-Score, balanced F score.

Table 4 The performance of segmentation system for tumor in internal validation

Models IOU (%) Accuracy (%) PPV (%) TPR (%) Specificity (%) DSC (%) AUC (%) F1-Score (%)

U-Net 91.95 95.90 95.62 95.71 97.88 95.81 94.92 95.67

VGG16 51.01 65.71 51.75 69.51 73.81 67.56 62.41 59.33

VGG19 51.05 65.72 51.73 69.58 73.79 67.59 62.42 59.34

ResNet50 51.16 65.80 51.80 69.69 73.84 67.69 62.50 59.43

Xception 51.11 65.71 51.76 69.70 73.75 67.65 62.43 59.41

No pretrained 51.15 65.89 51.69 69.57 73.93 67.68 62.54 59.31

IOU, Intersection over Union; PPV, positive predictive value; TPR, true positive rate; DSC, dice similarity coefficient; AUC, area under the 
receiver operating characteristic curve; F1-Score, balanced F score.
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of 91.00%, PPV of 97.00%, TPR of 97.59%, specificity of 
94.78%, DSC of 94.18%, AUC of 91.89% and F1-Score of 
97.29%).

Discussion

In this article, a rigorous development and validation 
of novel deep learning models for segmenting ESCC 
pathology were presented. And the model based on the 
U-Net pretrained parameters has demonstrated outstanding 
performance for mucosa and tumor segmentation in 
both internal and external validation. To the best of our 
knowledge, this is a pioneering study exploring deep 
learning methods for pathological images segmentation of 
esophageal carcinoma.

The rise and widespread adoption of digital image system 
and WSI have enabled features extraction and quantitative 
histomorphometry analysis. The implementation of deep 

learning based artificial intelligence assists on various tasks 
including diagnosis, grading and subtyping for carcinomas 
located in breast, lung and digestive tract (27). Based on 
CNNs, deep learning can ideally deal with the complex 
digital pathological image analysis tasks, and it could serve 
as a promising frontier. Previous studies have documented 
the utilization of CNNs in the classification for esophageal 
carcinoma H&E-stained images (7,28). In addition to 
classification, CNNs are also implemented in tumor image 
segmentation (29). In order to achieve precise segmentation, 
various networks structures have been proposed (21,30). 
However, current deep learning techniques for tumor 
segmentation primarily focused on morphological images 
including ultrasound (US), X-ray, CT, magnetic resonance 
imaging (MRI), and PET/CT, with only a limited emphasis 
on pathological images of certain carcinomas. This article 
delves into the viability of integrating deep learning 
techniques with pathological WSIs, widely regarded as 

Table 5 The performance of segmentation system for tumor in external validation data set 1

Models IOU (%) Accuracy (%) PPV (%) TPR (%) Specificity (%) DSC (%) AUC (%) F1-Score (%)

U-Net for tumors 79.00 86.00 90.00 90.66 92.21 88.27 85.61 90.33

U-Net 59.86 72.74 76.03 77.17 83.80 74.89 71.83 76.60

VGG16 25.09 51.53 38.36 32.84 70.73 40.12 47.91 35.39

VGG19 25.00 52.28 36.08 32.39 70.47 40.00 47.73 34.14

ResNet50 25.61 52.45 37.41 33.35 70.76 40.78 48.19 35.27

Xception 25.64 54.21 33.86 32.73 70.84 40.82 48.24 33.28

No pretrained 25.68 52.44 37.64 33.48 70.80 40.87 48.24 35.44

IOU, Intersection over Union; PPV, positive predictive value; TPR, true positive rate; DSC, dice similarity coefficient; AUC, area under the 
receiver operating characteristic curve; F1-Score, balanced F score.

Table 6 The performance of segmentation system for tumor in external validation data set 2

Models IOU (%) Accuracy (%) PPV (%) TPR (%) Specificity (%) DSC (%) AUC (%) F1-Score (%)

U-Net for tumors 89.00 91.00 97.00 97.59 94.78 94.18 91.89 97.29

U-Net 50.88 68.03 59.02 66.87 78.48 67.44 64.68 62.70

VGG16 5.00 34.80 9.59 5.52 60.05 9.52 32.53 7.00

VGG19 5.55 36.31 7.59 6.15 56.23 10.52 30.89 6.79

ResNet50 6.06 36.86 9.12 6.76 58.19 11.43 32.12 7.77

Xception 10.32 44.37 14.59 11.85 64.42 18.71 37.37 13.08

No pretrained 5.96 36.34 10.08 6.65 59.49 11.25 32.72 8.02

IOU, Intersection over Union; PPV, positive predictive value; TPR, true positive rate; DSC, dice similarity coefficient; AUC, area under the 
receiver operating characteristic curve; F1-Score, balanced F score.



Su et al. Deep learning segmentation model for esophageal neoplasm1990

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2023;14(5):1982-1992 | https://dx.doi.org/10.21037/jgo-23-587

the benchmark for tumor diagnosis. On the other hand, 
the development of traditional CNN network demands a 
sizable image cohort to ensure efficacy, while the U-Net 
network has demonstrated the ability to segment biomedical 
images effectively with minimal training data. To ensure the 
effectiveness of models with limited sample size, we applied 
the U-Net segmentation model in our study and achieved 
satisfactory results. 

In this study, the U-Net framework was used for the 
segmentation learning, with the VGG net serving as the 
backbone. In the absence of specific threshold values, 
we basically assumed a threshold of 80% for parameters. 
Notably, apart from learning from scratch, transfer 
learning, a common technique in artificial intelligence, 
was employed to explore compatible segmentation models. 
In artificial intelligence community, finely tuned pre-
trained models through transfer learning are utilized to 
reduce training time and potentially achieve better results. 
The IOU curves of transfer learning models reached a 
performance plateau in fewer epochs compared to models 
learned from scratch. This might be attributed to inherent 
differences between digital pathological images and images 
in ImageNet datasets. Moreover, compared to previous 
network structures, the U-Net model demonstrated several 
advantages. The corresponding layers in the expansive path 
and contracting path were seamed in order to ensure the 
sufficient features were extracted from limited images, as a 
result, a large number of feature channels in the upsampling 
part allowed the network to propagate characteristics 
information to higher resolution layers (15). Besides, the 
adoption of a tiling strategy enables the prediction of border 
region in large images without consuming excessive GPU 
memory. Therefore, it was expected that the U-Net based 
transfer learning model would exhibit superior performance 
in both mucosa and tumor segmentation in esophageal 
carcinoma, which was aligned with the findings of this 
study. 

The current study has several strengths. Firstly, the 
employed networks, especially the U-Net transfer learning 
model, appeared capable of segmenting ESCC WSIs, 
generating accurate ROI segmentation masks with clear 
borderline. This indicates its potential clinical application in 
tumor staging and sections screening for surgical specimen. 
Even with a small training cohort, models demonstrated 
acceptable efficacy on external validation. Secondly, 
this study is the first exploration of the deep learning 
segmentation for ESCC pathology images, establishing 

a foundation to guide future researches. The mucosa 
segmentation model could aid in the tumor stage of ESCC, 
and tumor segmentation models may help pathologists 
rapidly screen slides and identify concerning areas. 
Moreover, previous studies have also demonstrated systems 
detecting neoplasia in endoscopic images to guide biopsy, 
these segmentation models could facilitate biopsy diagnosis 
(19,31). The combination of multiple deep learning 
segmentation systems could assist diagnosis and clinical 
decision, especially the feasibility of minimal invasive 
surgery. Overall, these strengths highlight the significance 
of this study and its potential implications for improving the 
diagnosis and management of ESCC.

This study has several limitations as well. In the first 
place, despite appealing results, the cohort was relatively 
small. Cancer heterogeneity means that limited sample size 
might affect the generalizability of the model, potentially 
contributing to poor segmentation in the external validation. 
Expanding the cohort, particularly with clinically studied 
patients, would improve the robustness of models. Besides, 
even though the VGG based U-Net network structure 
is highly regarded for medical images segmentation, the 
efficacy of other network architectures warrant exploration, 
and in further studies, comparisons should be made between 
the segmentation ability of different network structures. 
Based on limitations above, the model has not been applied 
in clinical practice yet. The model could be expected to be 
deployed on common computers and combined with other 
artificial intelligence models in clinical applications, while 
mature models developed with more extensive, diverse data 
are prerequisite for the clinical practice. 

Conclusions

In conclusion, a deep learning framework for surgical 
pathology segmentation in ESCC was successfully 
developed and validated using a VGG based U-Net 
network in this study. The model based on U-Net 
pretraining weights offered a promising performance in 
contouring accurately mucosa and tumor in particular. 
These results hold potential for advancing quantitative 
histopathology diagnosis methodologies for patients with 
ESCC after surgery. Importantly, these segmentation 
models could be deployed on common computers or even 
personal laptops embedded with medical image equipment, 
offering the capabilities to highlight the ROIs for ESCC, 
thereby enhancing clinical decision making. Further studies 
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will be needed to train these models in a comprehensive 
clinical WSI databases to distill the complex heterogeneity 
encountered in real-world clinical practice.
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