
Review
Epigenetics in hepatocellular carcinoma development and
therapy: The tip of the iceberg
Maite G. Fernández-Barrena,1,2,3 María Arechederra,1,3 Leticia Colyn,1 Carmen Berasain,1,2,3,* Matias A. Avila1,2,3,*
Keywords: Hepatocellular
carcinoma; Epigenetics;
Therapy

Received 1 July 2020; received
in revised form 22 July 2020;
accepted 24 July 2020;
Available online 7 August
2020
Summary
Hepatocellular carcinoma (HCC) is a deadly tumour whose causative agents are generally well
known, but whose pathogenesis remains poorly understood. Nevertheless, key genetic alterations
are emerging from a heterogeneous molecular landscape, providing information on the tumori-
genic process from initiation to progression. Among these molecular alterations, those that affect
epigenetic processes are increasingly recognised as contributing to carcinogenesis from preneo-
plastic stages. The epigenetic machinery regulates gene expression through intertwined and
partially characterised circuits involving chromatin remodelers, covalent DNA and histone modi-
fications, and dedicated proteins reading these modifications. In this review, we summarise recent
findings on HCC epigenetics, focusing mainly on changes in DNA and histone modifications and
their carcinogenic implications. We also discuss the potential drugs that target epigenetic mecha-
nisms for HCC treatment, either alone or in combination with current therapies, including
immunotherapies.
© 2020 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the
Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

systemic therapies needs to be improved. To this
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Introduction
Hepatocellular carcinoma (HCC) is the most
frequent primary malignancy of the liver, ranking
fourth among cancer-related causes of death
worldwide.1,2 The World Health Organization pro-
jections estimate that by 2030 more than 1 million
individuals will die from liver cancer per year.1 The
prognosis of HCC remains poor, with a 5-year sur-
vival rate of just 18%, highlighting the limitations of
available treatments.3 When detected early, HCCs
are amenable to locoregional therapies and sur-
gery, however the recurrence rate 5-years post-
resection is about 70%.1 Systemic therapies are
used for patients diagnosed at more advanced
stages. HCC is very resistant to conventional che-
motherapies,4 but targeted agents such as the
multikinase inhibitors sorafenib, lenvatinib, regor-
afenib and cabozantinib, as well as monoclonal
antibodies like ramucirumab (which targets
vascular endothelial growth factor [VEGF] receptor
2), confer some survival benefit.1,3,5,6 Immuno-
therapy is also being actively tested in HCC, and
immune checkpoint inhibitors (ICIs), which are
antibodies that block the programmed cell death
protein 1 (PD-1)/programmed cell death ligand-1
(PD-L1) pathway, or the cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) pathway, have
shown clinical activity.3,5,7 Moreover, a recent
study showed very promising effects in patients
with unresectable HCC that were treated with an-
tibodies targeting PD-L1 and VEGF.8 Despite these
advances, the very high mortality rate seen in pa-
tients with HCC clearly indicates that the efficacy of
end, combination strategies including locoregional
approaches, targeted agents and ICIs are of interest,
with some combinations being actively investi-
gated.3,9 Nonetheless, when exploring systemic
therapies for advanced HCC it is important to bear
in mind that this type of tumour usually develops
on a background of chronic liver injury, inflam-
mation, fibrosis and cirrhosis, in an organ with
impaired metabolic function that renders patients
more susceptible to hepatic and systemic toxic-
ities.1,5 Chronic liver injury leading to HCC devel-
opment is mainly caused by HBV and HCV
infections, long-lasting alcohol abuse and non-
alcoholic fatty liver disease (NAFLD).1,2,10,11 With
the systematic implementation of HBV vaccination
and the advent of effective anti-HCV therapies, it is
likely that NAFLD will become the dominant cause
of HCC in the coming years.2

Development of effective therapies for any
cancer relies to a great extent on a deep under-
standing of the tumour’s molecular and cellular
biology. Such knowledge may enable the identifi-
cation (and targeting) of key tumour driver genes,
as well as providing biomarkers for prognostic
scoring and for the selection of potential re-
sponders to molecular therapies.6 Generating a
precise molecular portrait and classification of HCC
is not an easy task. Factors such as the aetiology of
the liver disease, the stage of cancer progression,
the molecular heterogeneity between different
nodules, and even within the same tumoural mass,
have hindered the genomic characterisation of
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Key points

� The term epigenetics defines somatic heritable differences in the
genome not attributable to changes in the primary sequence of DNA. In
a multicellular organism, epigenetic mechanisms establish cellular
identity out of a common genome.

� Epigenetic mechanisms regulate chromatin conformation, nucleosome
positioning and DNA wrapping around nucleosomes, modulating the
interaction of the transcriptional machinery with genes, and thus
controlling their expression.

� The epigenetic effectors that influence the structure and function of
chromatin include chromatin-remodelling complexes, DNA methyl-
ation/demethylation enzymes, histone modification enzymes, histone
marks readers and non-coding RNAs.

� Chromatin structure, DNA methylation and covalent histone modifi-
cation patterns are altered in cancer, including hepatocarcinogenesis,
and contribute to malignancy from its early stages. Mutations and
changes in the expression of epigenetic effectors underlie these
alterations.

� DNA methylation and covalent histone modifications are reversible
enzymatic reactions amenable to pharmacological intervention with
small-molecule inhibitors, epidrugs. Epidrugs are promising thera-
peutic agents that counteract tumour hallmarks and potentiate the
response to chemotherapy, targeted therapy and immunotherapy in
hepatocellular carcinoma.
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HCC. Nevertheless, over the past decade, next generation
sequencing technologies have been used to identify the most
frequently recurring mutations, DNA copy number alterations
and associated changes in gene expression that contribute to
hepatocarcinogenesis.12–19 Such studies also enabled the classi-
fication of HCCs into different molecular subgroups with asso-
ciated biological and clinical phenotypes.6,16 The most frequent
(95% of tumours) and earliest genetic alteration found in the
gradual process of hepatocarcinogenesis is the aberrant expres-
sion of telomerase reverse transcriptase (TERT). Upregulation of
TERT is due to promoter mutations (40–60%), gene amplification,
translocation, and also to viral insertion in HBV-related HCCs.17

The second most frequent mutations activate CTNNB1 (�30%),
the gene coding for b-catenin, or inactivate the tumour protein
TP53 (�30%). Other members of the WNT/b-catenin pathway,
such as AXIN1, AXIN2, ZNRF3 and APC are also recurrently
mutated and inactivated in HCC.14,16 Mutations in epigenetic
modifiers are also frequent in HCC, and altogether they can be
found in up to 50% of tumours.12,20 Recurrent inactivating mu-
tations were found in ARID1A and ARID2,21,22 key components of
the chromatin remodelling complex SWI/SNF, which has tumour
suppressor activity.23 Mutations in histone modifying enzymes
were initially described for members of the KMT2 family, such as
KMT2D, KMT2B and KMT2C.12,19,22,24,25 However, more recently,
the list of epigenetic modifiers mutated in HCC has been signif-
icantly expanded.26 DNA copy number alterations were also
frequently found, and included deletions of tumour suppressor
genes (like PTEN and RB1) and negative cell cycle regulators
(such as CDKN2A and CDKN2B),14,19,22,25,27 as well as amplifica-
tions in promitogenic genes like FGF19 and CCND1.27,28 This
impressive wealth of knowledge has indeed exposed a number
of oncogene addiction loops that drive HCC progression.29

However, the most frequently mutated genes identified, such
as TERT, CTNNB1 and TP53, are very difficult to target pharma-
cologically, or are believed to be undruggable.16 While the search
for effective inhibitors of key drivers like TERT must continue,
exploring new strategies and targets to quell HCC growth is
crucial.

One emerging approach for the treatment of solid tumours
comes from the field of epigenetics.30,31 Epigenetics refers to
heritable traits not attributable to changes in DNA sequence that
can control chromatin structure and the accessibility of the
transcriptional machinery to DNA, thereby modulating gene
expression.32 These mechanisms are thus fundamental for the
maintenance of cell identity, but are also heavily implicated in
development, stem cell renewal, genome integrity and prolifer-
ation.32–34 Their deregulation is central to pathogenesis,
including tumorigenesis,30 impacting on all hallmarks of can-
cer.35 Multiple pathways are involved in chromatin dynamics
and epigenetic gene regulation, including DNA methylation, ATP-
dependent nucleosome remodelling, the introduction of histone
variants, post-translational modifications (PTMs) of histones, and
non-coding RNAs (ncRNAs).30,32 Contrary to genetic mutations,
epigenetic mechanisms such as covalent modifications of DNA
and histones are highly flexible and dynamic, involving revers-
ible enzymatic reactions and specific protein-protein in-
teractions, which make them amenable to pharmacological
intervention.36 Epigenetic alterations involving the chromatin
remodelling machinery and ncRNAs have recently been
reviewed elsewhere.37–39 Herein, we review basic epigenetic
mechanisms and the role of their dysregulation on hep-
atocarcinogenesis, focusing on DNA methylation and histone
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PTMs. We also highlight emerging strategies for the molecular
targeting of epigenetic mechanisms with so-called “epidrugs” in
HCC treatment and prevention.
Writing, erasing and reading epigenetic marks on
chromatin
Nuclear DNA needs to be tightly packed, but it also needs to be
accessible in a specific and regulated manner to allow for
essential processes such as replication, repair and transcription.
Efficient packaging of DNA in chromatin is mediated by its
interaction with histones and the formation of nucleosomes. In
nucleosomes, DNA is wrapped around 2 copies of each of the 4
core histones: H2A, H2B, H3 and H4, and outside the nucleosome
the linker histone H1 facilitates further compaction in higher
order chromatin structures.40 Nucleosomes are highly dynamic,
they can slide along the DNA, fully or partially disassemble and
their histone components may be replaced by sequence vari-
ants.40 The promoters and enhancers of transcriptionally active
genes present reduced nucleosome abundance, which allows the
recruitment of the transcriptional machinery and regulatory
factors. Compact (repressed) and open (active) chromatin to-
pologies, as found in heterochromatin and euchromatin,
respectively, can be dictated by interrelated covalent epigenetic
marks deposited on DNA and histones.41,42 DNA methylation
mostly occurs on the 5’ carbon of cytosine residues (5mC) in CpG
dinucleotides. Methylation of CpGs in the so-called CpG islands
(CGIs), present in about 70% of human gene promoters, has been
widely associated with a closed chromatin conformation and
inhibition of transcription initiation (Fig. 1).43 However, it has
also been observed that CGI methylation in the transcribed re-
gions of genes, i.e. gene bodies, increases gene expression.44 The
list of histone PTMs is extensive and includes acetylation,
methylation, phosphorylation, ubiquitinylation, sumoylation,
ADP-ribosylation, neddylation, succinylation, crotonylation and
butyrylation, among others.45,46 The best characterised modifi-
cations take place on amino acids present in the N-terminal tail
regions of histones that protrude from the nucleosome surface
2vol. 2 j 100167
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Fig. 1. Chromatin conformation and regulation of gene expression by epigenetic effectors acting on DNA and histones: epigenetic writers, erasers and
readers. PHD, plant homeodomain.
(Fig. 1). These PTMs can modulate chromatin compaction and
control the recruitment of remodelling complexes and tran-
scription factors (TFs).45 In general, histone acetylation is related
to gene activation, while methylation, phosphorylation and
ubiquitinylation may be stimulatory or inhibitory, and sumoy-
lation has been associated with gene repression.45,46 Interest-
ingly, albeit less studied, PTMs also occur on the lateral surface of
the central globular domain of histones, where they may also
influence gene expression.47

Chromatin marks are introduced, removed and recognised by
a broad set of proteins called epigenetic modifiers. Epigenetic
modifiers can be classified into 3 groups: epigenetic writers,
epigenetic erasers and epigenetic readers (Fig. 1). Epigenetic
writers are enzymes that add covalent modifications to DNA and
histones. They include DNA methyltransferases (DNMTs), which
catalyse the transfer of a methyl group from the universal methyl
donor S-adenosyl-L-methionine (SAM) to CpG residues. In
mammals there are 3 active DNMTs (Table 1): DNMT1, the most
abundant DNMT (active at DNA replication foci and considered
to be a maintenance DNMT); and DNMT3a and DNMT3b, which
are primarily de novo DNMTs. However, these distinctions be-
tween maintenance and de novo activities seem not to be abso-
lute.41,48 Histones can be methylated in lysine and arginine
residues, and these amino acids can be mono- (me1), di- (me2)
or tri-methylated (me3) in their amino and guanidino groups,
JHEP Reports 2020
respectively, making methylation the most complex histone
PTM. Histone methylation is carried out by 3 families of enzymes
that also use SAM as a cofactor: the SET-domain-containing
histone methyltransferases (HMTs), the non-SET-domain-
containing HMTs and the protein arginine methyltransferases
(Table 1). Depending on the location and the methylation status
of the lysine and arginine residues, methylation is associated
with transcriptional activation (e.g. H3K4me2,3; H3K9me1;
H3K27me1; H3K36me3; H3K79me2,3; H4K20me1; H3R17me2;
H4R3me2) or repression (e.g. H3K9me2,3; H3K27me2,3;
H4K20me3).45,46,49 Histone acetylation, which is associated with
gene transcription, is performed by 3 types of histone acetyl-
transferases (HATs), belonging to the GNAT, MYST and CBP/p300
families (Table 1). HATs transfer an acetyl group from acetyl
coenzyme A (acetyl-CoA) to the amino group of lysine resi-
dues.45,49 Histones can also be phosphorylated in serine, threo-
nine and tyrosine residues by a plethora of kinases, a selection of
which is indicated in Table 1, with diverse effects on chromatin
remodelling and gene expression.50 At this point, it is important
to mention that the writing of histone PTMs can be dynamically
regulated at different levels, including by extracellular signals, as
initially reported for acetylation reactions51 and later profusely
analysed for phosphorylation events linked to signalling kinase
cascades.50 It is also important to emphasise that an extensive
and intricate crosstalk exists between different epigenetic marks
3vol. 2 j 100167



Table 1. Epigenetic writers, erasers and readers: target residues in DNA and histones, and representative examples.

Epigenetic modifiers Major modified/recognised site Family Examples

Writers
DNA methyltransferases (DNMTs) CpG (Met, 5mC) DNMT1 DNMT3 DNMT1A DNMT3A/3B
Histone methyltransferases (HMTs):
lysine (KMTs)

H3 K4/K9/K27/K36/K79 (Met)
H4 K20 (Met)

SUV39 SET1/2 EZH PRDMs G9a/KMT1C MLL1/KMT2A
SETD1A EZH2/KMT6

Histone methyltransferases (HMTs):
protein arginine (PRMTs)

H3 R2/R8/R17 (Met) H4 R3 (Met) PRMT PRMT1 PRMT4/CARM1

Histone acetyltransferases (HATs) H3 K9/K14/K56 (Ac) H4 K5/K8/K16
(Ac) H2A K5 (Ac)

GNAT MYST CBP/p300 GCN5 TIP60 CBP/P300

Serine-Threonine and Tyrosine kinases Ser (P)
Thr (P)
Tyr (P)

Haspin MSK CKII

Erasers
DNA demethylation system CpG (Met, 5mC) TET TDG/BER
Histone demethylases (HDMs/KDMs) H3 K4/K9/K27/K36/K79 H4 K20 LSD/KDM1A-B JARID/KDM2-8 KDM1A/LSD1 KDM4/JMJD2

KDM5/RBP2
Histone deacetylases (HDACs) H3 K9/K14

H4 K5/K8/K12
HDAC I-IV HDAC1

Sirtuin
Readers

MBD-containing proteins Methylated DNA (Methyl-CpG) MeCP2 MBDs 1–6 SETDB1/2
Chromo domain- containing proteins Methylated H3 K4/K9/K27/K36 CHD1 HP1
Tudor domain-containing proteins Methylated H3 K4/K9/K20/K36 UHRF1
MBT-containing proteins Methylated H3 K4/K9/K27/K36 SFMBT1 MBTD1
PHD-containing proteins Acetylated H3 K14 Methylated H3 K4/K9 TFIID KMT2D
Bromodomain (BRD)-containing proteins Acetylated H3 K14 Acetylated H4 K5/K8/K16 GCN5 BRD4

PCAF (HAT)
Yeats domain-containing proteins Acetylated H3 K9 AF9

5mC, 5-methyl-cytosine; Ac, acetylation; MBD, methyl-CpG binding domain; MBT, malignant brain tumour; Me, methylation; PHD, plant homeodomain.
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in the regulation of gene expression. This was initially shown to
occur between DNA CpG methylation and histone deacetylation,
leading to chromatin condensation and gene repression.52 This
notion has been exponentially extended over the past years, and
now we recognise extensive hierarchical relations between DNA
methylation and chromatin marks. Just to mention a few, there is
an inverse correlation between DNA methylation and H3K4me2/
3 and H3K79me3 levels in active gene promoters, while a posi-
tive association has been demonstrated between H3K36me3 and
DNA methylation in the bodies of actively expressed genes.
Conversely, gene expression and the presence of H3K27me3 and
H3K9me3 in gene bodies are negatively associated. High
H3K9me3 and H4K20me3 levels in gene promoters is also
associated with DNA methylation and gene repression.41,42,53

These interactions can operate in both directions and be mutu-
ally reinforcing, as described between DNMTs and H3K9 HMTs in
gene repression and heterochromatin formation.54

As mentioned, epigenetic marks are reversible and can be
removed by a group of dedicated enzymes, collectively named
epigenetic erasers (Fig. 1). Regarding DNA demethylation, this
process can occur through 2 mechanisms. First, the lack of
maintenance methylation during DNA replication, which is
mainly carried out by DNMT1 in complex with the UHRF1
adaptor protein,55 can result in the passive dilution of 5mC. More
recently, a replication-independent process involving enzymatic
conversions has been elucidated. This is performed by a family of
dioxygenases known as ten-eleven translocation (TET) enzymes
(Table 1), that catalyse the sequential oxidation of 5mC to
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-
carboxylcytosine (5caC) using oxygen and a-ketoglutarate (a-KG)
as substrates.56 These oxidized forms of 5mC can also be
diluted upon DNA replication. Alternatively, the 5fC and 5caC
forms can be removed in a 2-step process involving the
sequential action of thymine-DNA-glycosylase (TDG) coupled
JHEP Reports 2020
with base excision repair (BER).56,57 Interestingly, the majority of
5hmC, and also 5fC to a certain extent, are not just short-lived
intermediates and can remain in genomic DNA where they
may play regulatory roles in gene expression.57,58 Histone
demethylation is performed by 2 different families of enzymes
with distinct mechanisms of action: the lysine specific deme-
thylases (LSD/KDM1A-B) that use flavin adenine dinucleotide
(FAD) as a co-substrate, and the Jumonji (JmjC) domain-
containing demethylases (JARID/KDM2-8) which require a-KG
and oxygen (Table 1). Interestingly, LSD enzymes can only
remove mono- and dimethyl- marks on H3K4 and H3K9,
whereas JmjC-containing demethylases can remove all 3
methylation states in all lysine residues.49,59 Depending on the
histone and specific lysine residue that is demethylated, KDM
activity may contribute to gene repression or activation.59 Acetyl
groups from lysine residues are removed by a large set of histone
deacetylases (HDACs) which are divided into 4 families: class I,
class II, class III and class IV HDACs (Table 1). Class III encom-
passes the so-called Sirtuins, which present a different mecha-
nism of action to the other 3 classes, requiring NAD+ for their
catalytic activity.60 HDAC activity is generally linked to the gen-
eration of compact and repressive chromatin. However, the na-
ture of the phosphatases involved in histone dephosphorylation
and their regulation remains to be fully characterised.50 From
this brief overview of the machinery that establishes the epige-
netic marks on chromatin one may grasp its enormous intricacy.
Nevertheless, this is just one layer of complexity. Additional as-
pects that cannot be covered here include the mechanisms
involved in the timely recruitment of epigenetic writers and
erasers to specific regions of chromatin. Here, TFs, long non-
coding RNAs, and the presence of specific protein domains in
epigenetic modifiers (i.e. the CXXC un-methylated CpG binding
domain) play fundamental roles.54,61,62 Another increasingly
recognised and critical regulatory layer emerges from cellular
4vol. 2 j 100167



metabolism. As described, most epigenetic writers and erasers
utilise metabolites such as oxygen, ATP, SAM, NAD+, acetyl-CoA,
FAD and a-KG as cofactors or substrates. Fluctuations in the
levels of these metabolites have been shown to impinge on the
enzymatic activities of epigenetic modifiers.63 Moreover,
elevated levels of other types of cellular metabolites such as the
ketone body b-hydroxybutyrate, or the tricarboxylic acid cycle
intermediates succinate and fumarate, can inhibit the activities
of HDACs and a-KG-dependent enzymes (TETs, KDMs), respec-
tively.64 Therefore, changes in the levels of metabolic substrates
and inhibitors may effectively modulate the epigenome, while in
turn epigenetic mechanisms control essential metabolic path-
ways and participate in their alterations in cancer.63,65 This link
between metabolism and epigenetics may be particularly rele-
vant for a prominent metabolic organ like the liver.

In order to translate the epigenetic marks deposited on DNA
and histones into functional responses, these modifications must
first be recognised. This is mediated by a third group of proteins
called epigenetic readers (Table 1), endowed with specialised
binding domains for specific covalent modifications. Readers are
often found as part of multimeric complexes in association with
writers and erasers, enabling the dynamic integration of signals
that modulate chromatin conformation.49,66 The best charac-
terised epigenetic readers are those that recognise 5mC, acetyl-
lysines and methyl-lysines, while there is less information
available for other modifications, such as Ser- and Thr- phos-
phorylation (Fig. 1).66 The methyl-CpG-binding proteins recog-
nise 5mC through their methyl-CpG binding domain.49 This is a
family with 11 members, of which MeCP2 was the first charac-
terised. The presence of MeCP2 is mainly associated with tran-
scriptional inhibition via recruitment of corepressor complexes,
like those encompassing HDAC or H3K9 HMT activities, to
methylated regions of DNA.52 Interestingly, interactions between
MeCP2 and 5mC can also protect these residues from binding
and oxidation by TET enzymes.52 Histone methylation readers
have been well-characterised, and include a broad variety of
proteins that contain different types of methyl-lysine binding
domains such as chromodomains, tudor domains, plant home-
odomain (PHD) fingers, PWWP motifs, WD40 repeat domains,
bromo-adjacent homology domains, or malignant brain tumour
domains, among others (Table 1).49 These domains discriminate
between specific lysine residues and the degree of their
methylation, and can be found on many different protein types.
For instance, H3K4me2 and H3K4me3 can be recognised by
chromatin remodelers, such as the enzyme CHD1 through its 2
chromodomains, while H3K4me3 is bound by the general tran-
scription factor TFIID through a PHD domain-containing subunit,
contributing to enhanced preinitiation complex formation.59

Repressive marks such as H3K9me3 can be recognised by the
adaptor protein UHRF1 through a tandem tudor domain, or by a
chromodomain present in heterochromatin protein 1 (HP1),
leading to chromatin condensation.42,49 Several protein domains
can recognise and bind acetylated histones. These domains are
classified into 3 major categories: bromodomain (BRD), PHD
finger and Yeats domains (Table 1).49 Based on structural simi-
larities, BRD-containing proteins can be subdivided into 8 fam-
ilies, which display different affinities for specific histone
acetylation marks, whereas PHD fingers are more flexible, rec-
ognising multiple acetylated histones but also methylation
marks.67 Proteins containing the Yeats domain recognise several
acetylation marks, nonetheless they have recently been shown to
efficiently bind crotonylated lysine residues.49 Interestingly,
JHEP Reports 2020
many of the proteins encompassing these histone acetylation
reader domains are chromatin remodelling/modifying enzymes,
or can recruit these activities to chromatin. Just to name a few,
the HAT PCAF encompasses a BRD domain that recognises
acetylated H3K14 (H3K14ac) and the HMT KMT2D displays a
PHD finger targeting H4K16ac, while the Yeats domain-
containing AF9 protein can recruit the HMT DOT1 to chromatin
regions displaying the H3K9ac mark.67 Together, these examples
illustrate the extremely complex and intertwined nature of
epigenetic regulatory mechanisms.
Epigenetic alterations in hepatocarcinogenesis
DNA methylation
Alterations in DNA methylation, both genome-wide hypo-
methylation and region-specific hypermethylation, frequently
occur in tumours and are among the most consistent epigenetic
changes observed during multistage carcinogenesis.68 This also
holds true for HCC, where changes in DNA methylation are
already observed in the livers of patients with preneoplastic
conditions, such as chronic hepatitis and cirrhosis of different
aetiologies, including HCV/HBV infection, chronic alcohol con-
sumption and, as more recently described, NAFLD.69–74 Further-
more, alterations in DNA methylation markedly increase during
the progression from cirrhosis to early and more advanced
neoplastic lesions, and many of them are preserved in fully
developed HCCs (Fig. 2, Table 2).70–72 Importantly, the methyl-
ation changes observed in non-tumoural liver tissues from pa-
tients with chronic hepatitis and cirrhosis may have prognostic
value for HCC development or recurrence.69,71,75 These findings
already indicate a causal relationship between epigenetic alter-
ations and liver carcinogenesis. Early studies did not observe
significant differences in overall changes to DNA methylation in
HCCs from patients with different liver disease aetiologies.76

However, later works implementing more sensitive technolo-
gies identified different patterns of altered DNA methylation
between HCV, HBV and NAFLD-related HCCs,70–72,74 as well as
during cirrhotic stages in alcohol or HCV-related carcinogen-
esis.72 DNA hypomethylation in HCC occurs in repeated DNA
sequences, intergenic regions and in CpG sites away from CGIs,
the so-called CpG shores, CpG shelfs and “open sea” regions
(Fig. 2).77,78 Like in other tumours, DNA hypomethylation was
initially associated with genomic instability in HCC.76 More
recently, frequent mutations and rearrangements have been
confirmed to occur in inactive chromatin regions specifically
hypomethylated in HCCs.79 Very interestingly, a genome-wide
hypomethylation pattern at transcriptional enhancers has also
been reported recently. This was illustrated by the recurrent
hypomethylation at the enhancer of C/EBPb, resulting in the
reactivation of its enhancer RNA (eRNA) and gene over-
expression, leading to increased tumourigenesis.80 Other exam-
ples of genes –with possible tumour-promoting effects – that are
hypomethylated and overexpressed in HCC are summarised in
Table 2. Together, these observations provide further mechanistic
links explaining the role of DNA hypomethylation in
hepatocarcinogenesis.

DNA hypermethylation at preneoplastic stages and in HCC
tissues occurs predominantly in promoter-associated CGIs
(Fig. 2) and cis-regulatory elements, and correlates with reduced
gene expression.71,81 Moreover, this epigenetic alteration pre-
cedes the appearance of chromosomal instability during hep-
atocarcinogenesis.68 Hypermethylated and downregulated genes
5vol. 2 j 100167



Table 2. Representative examples of genes with altered CpG methylation
and expression in hepatocellular carcinoma.

Expression Function Gene

Hypermethylation
Repressed
Induced

Cell cycle and cell
growth regulation
Cell signalling regulation

Gene transcription

Metabolic regulation

Matrix remodelling
Gene transcription

APC CDH1 CDKN1A CDKN2A
CDKN2B PTGS2
DAB2IP DKK3 GNA14 HHIP
RASSF1A SFRP2 SOCS1
ESR1 HOXA9 RUNX3 SALL3
TP73
CPS1 FBP1 GSTP1 IGFBP5
MAT1A
MMP9 MMP12
WT1

Hypomethylation
Induced Gene transcription

Metabolic and signalling
regulation
Chemotaxis and
angiogenesis

C/EBPb
IGF2 NOX4 SPINK1

CCL20 ESM1

Global DNA hypomethylation/TSG hypermethylation (SOCS1, HHIP, CDKN2A...) 
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found in hepatocarcinogenesis include well-known tumour
suppressor genes (TSGs), regulators of cell signalling, prolifera-
tion, survival and metastasis, such as SOCS1, HHIP, SFRP2, APC,
RASSF1, CDKN1A, CDKN2B, CDKN2A and CDH1, among others
(Fig. 2 and Table 2).39,82 Similar findings were made for meta-
bolic genes like MAT1A, FBP1 and CPS1, involved in SAM syn-
thesis, gluconeogenesis and the urea cycle, respectively, whose
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repression may contribute to pro-oncogenic metabolic reprog-
ramming.83–85 Interestingly, hypermethylation of CGIs located in
the gene bodies of bona fide oncogenes has recently been re-
ported in experimental HCC, and this modification was consis-
tently associated with their transcriptional activation.86 Of note,
the hypermethylated and transcriptionally active regions in gene
bodies seem to be more prone to mutagenic and rearrangement
events, at least in HBV-related HCC.79 The strong association
between DNA hypermethylation and hepatocarcinogenesis
enabled the identification of a DNA-methylation signature in
HCC tissues that could predict survival.78 More recently, the
existence of a CGI methylator phenotype (CIMP), a biological
phenomenon characterised by a subset of concurrently hyper-
methylated genes, has been identified in HCC tissues. Patients
with higher CIMP scores were shown to have worse clinical
outcomes, and robust CIMP-based diagnostic and prognostic
models were developed based on few CIMP-associated
genes.87,88

The mechanisms involved in the dysregulation of DNA
methylation in hepatocarcinogenesis are likely multifarious.
Oxidative stress,89 as well as HCV and HBV infection, have been
shown to alter normal DNA methylation patterns in hepato-
cytes.16,90,91 The expression of the enzymes involved in DNA
methylation and demethylation, DNMTs and TETs, is known to be
altered in hepatocarcinogenesis. In this context, DNMT1 and its
epigenetic adaptor partner UHRF1 are upregulated in HCC tissues
6vol. 2 j 100167



and associated with poor prognosis.92–94 Interestingly, the
expression of DNMT1 and DNMT3a is already elevated in chronic
hepatitis, and DNMT3a and DNMT3b are also overexpressed in
HCCs.95 Regarding active DNA demethylation, the levels of 5hmC
are consistently reduced in cirrhotic tissues and early HCC stages,
remaining low in tumours and correlating with cancer progres-
sion.96–98 The significant depletion in 5hmC may be attributed in
part to the fall in global 5mC levels, but also to the reduced
expression and activity of TET enzymes observed in HCC tis-
sues,99 where the concentrations of their substrate a-KG are also
markedly diminished.98 Impaired 5hmC turnover and DNA
demethylation activity may contribute to the epigenetic repres-
sion of TSGs in HCC, as shown for SOCS1.100 However, the func-
tional consequences of 5hmC depletion may still not be fully
appreciated. Beyond being an intermediary in the DNA deme-
thylation process, this epigenetic mark is normally enriched in
the bodies of actively transcribed genes and enhancer elements;
it can modify interactions between DNA and TFs, interfering with
maintenance DNA methylation, as the DNMT1-UHRF1 complex
does not recognise 5hmC.99

Histone PTMs
The dysregulation of epigenetic modifiers of histones and their
role in hepatocarcinogenesis is being actively investigated
(Fig. 2). There is some information on the expression of HATs in
hepatocarcinogenesis. For instance, a recent study showed that
upregulation of hMOF/KAT8 promoted microvascular invasion in
HCCs.101 However, many works have reported the over-
expression of class I HDACs, like HDAC1 and HDAC2, in HCC
tissues and their association with mortality.102,103 Class II and
class III HDACs, such as HDAC4, HDAC5, SIRT1, SIRT2 and SIRT7,
have also been found upregulated in HCCs, 104,105 and their cor-
relation with tumour progression has been established in some
cases.104,106,107 Emerging experimental evidence also supports
the involvement of HDACs in NAFLD-related HCC develop-
ment.108 The mechanisms underlying the dysregulation of HDAC
expression in HCC are not fully understood, but a relevant role
for specific miRNAs is clearly being elucidated.105,109 A plethora
of mechanistic studies have demonstrated the involvement of
HDACs in the pathogenesis of HCC. When overexpressed, these
epigenetic modifiers display multifaceted pro-oncogenic effects,
including the inhibition of TSG expression, activation of cell cycle
progression, apoptosis evasion, adaptation to hypoxia and
metabolic reprogramming.105,110,111 The molecular mechanisms
by which HDACs contribute to carcinogenesis can be quite
complex. For instance, HDAC8 upregulation contributes to insulin
resistance in NAFLD progression and, in coordination with the
HMT KTM6 (EZH2), epigenetically represses the expression of
Wnt antagonists, enhancing cell proliferation in HCC.108

Many recent studies demonstrate the altered expression of
genes coding for both HMTs and KDMs in HCC tissues. While his-
tone deacetylation is generally associated with repression of gene
expression, the intricacies of the histone methylation code make
the impact of its dysregulation far more complex.Within the HMT
family, one of the best characterised enzymes is EZH2/KMT6, a
component of the polycomb repressive complex 2 that mediates
gene repression through H3K27 trimethylation.112 Increased EZH2
expression and H3K27me3 levels are found in HCC tissues, corre-
lating with tumour aggressiveness.112 Several mechanisms have
been reported to be involved in the pro-tumourigenic effects of
EZH2, including the repression of Wnt pathway antagonists, the
silencing of tumour suppressor miRNAs or the cooperation with
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cell cycle-related kinases to enhance androgen receptor signal-
ling.113–115 Other HMTs upregulated in HCC and also associated
with poor prognosis are SUV39H1/KMT1A, SETDB1/KMT1E and
G9a/KMT1C, which target H3K9 and are mostly associated with
gene repression.94,116–118 The overexpression of theseHMTs results
in enhanced growth and survival of HCC cells through multiple
mechanisms, such as repression of TSG expression in coordination
with promoter DNA hypermethylation, the adaptation to hypoxia
andpro-oncogenicmetabolic reprogramming, asdemonstrated for
G9a/KMT1C.94,118 Interestingly, a recent study identified the HMTs
MLL1/KMT2A and MLL2/KMT2B as transcriptional targets of
mutated TP53 (p53R249S), and their pharmacological inhibition
abrogated p53R249S-driven HCC cell growth.75 There are also
numerous examples of the dysregulation of KDM enzymes in HCC
tissues and their association with enhanced tumour progression.
For instance, increased KDM3A expression was associated with
tumour recurrence after resection,119 while the upregulation of
LSD1/KDM1, KDM5B, KDM6B, KDM4B and KDM2A has been
related to tumour aggressiveness and poor prognosis.120–124 The
transcriptional programmes influenced by the overexpression of
KDMs are complex to elucidate. The activity of these enzymesmay
have differential effects on gene expression depending on the
specific histone residue on which they act. For example, LSD1/
KDM1 and KDM4B, both upregulated in HCC, can remove repres-
sive H3K9 methyl marks, while concomitantly, LSD1/KDM1 and
KDM4B can eliminate H3K4 and H3K36 active methyl marks,
respectively.59 Nevertheless, several pro-tumorigenicmechanisms
triggered by KDMs in HCC have been elucidated, including the
promotionof stemcell-like traits byKDM6BandKDM2A,122,124 and
the maintenance of glycolytic metabolism, stemness and drug
resistance by LSD1/KDM1.125,126

The role of dysregulated histone PTM readers in hep-
atocarcinogenesis is increasingly being recognised. This is clearly
illustrated by BRD-containing protein 4 (BRD4), which was
originally shown to be overexpressed in HCC tissues – derived
from patients with a poor prognosis – wherein it promoted
epithelial-mesenchymal transition.127 BRD4 recognises H3K27ac
marks in chromatin, and H3K27ac is highly enriched in large
clusters of enhancers, called super-enhancers (SE), that syner-
gistically drive gene expression. Interestingly, many of the
H3K27ac-marked SEs in HCC cells were associated with well-
known oncogenes, and the presence of BRD4 was necessary for
the expression of these SE-driven oncogenes.128

Despite the accumulating data on epigenetic alterations in
HCC that we have tried to summarise herein, the epigenetic map
of human HCC is far from complete. A recent TCGA-based
comprehensive study analysed the mutational status and
expression of 90 histone epigenetic readers, writers and erasers
in HCC tissues. The authors found that 75% of patients presented
at least one somatic mutation in one of the epigenetic modifiers
examined, while 20% had more than 5. Regarding gene expres-
sion, when epigenetic modifiers were analysed in aggregate, 43%
were upregulated and 22% downregulated in HCC tissues vs.
non-tumoural tissues.26
Targeting epigenetic mechanisms in HCC
As opposed to gene mutations, the inherent reversibility of
epigenetic abnormalities makes them promising targets for
small molecules (epidrugs) in cancer treatment. The first FDA-
approved epidrugs were DNMT and HDAC inhibitors for the
treatment of haematological malignancies.31,129,130 The
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Table 3. Examples of epigenetic drugs undergoing clinical trials.

Drug Disease Phase Reference/Clinical
trial number

DNMTi
Azacitidine CMML, AML, MDS Clinical practice (137)
Decitabine CMML, AML, MDS Clinical practice (137)
Decitabine + Chemo- or immunotherapy HCC Phase I/II NCT01799083
Guadecitabine (SGI-110) AML Phase III NCT02920008
Guadecitabine (SGI-110) + sorafenib + oxaliplatin HCC Phase II NCT01752933
Guadecitabine (SGI-110) + durvalumab HCC and biliopancreatic tumours Phase I NCT03257761
TdCyd (4’-thio-2’- deoxycytidine) Advanced solid tumours Phase I NCT02423057

HDACi
Belinostat (PXD-101) Relapsed or refractory PTCL Clinical practice (138)
Belinostat (PXD-101) HCC Phase I/II NCT00321594
Chidamide PTCL Phase II NCT02944812
Panobinostat Multiple myeloma Clinical practice (139)
Quisinostat Ovarian cancer Phase II NCT02948075
Resminostat + sorafenib HCC Phase I/II NCT00943449
Romidepsin CTCL Clinical practice (140)
Vorinostat CTCL Clinical practice (141)

HMTi
MAK683 DLBCL, NPC and other advanced

solid tumours
Phase I/II NCT02900651

Tazemetostat (EPZ-6438) Refractory B cell (NHL) with EZH2
gene mutation

Phase I/II NCT03456726

HDMi
GSK2879552 Relapsed or refractory SCLC Phase II NCT02034123
INCB059872 Advanced solid tumours and

hematologic malignancies
Phase I/II NCT02712905

BETi
BMS-986158 Advanced solid tumours and

hematologic malignancies
Phase I/II NCT02419417

GS-5829 Solid tumours, lymphoma Phase I NCT02392611
INCB057643 Advanced solid tumours and

hematologic malignancies
Phase I/II NCT02711137

PF-06821497 SCLC, DLBCL, CRPC, and FL Phase I NCT03460977
ZEN003694 Triple negative breast cancer Phase II NCT03901469

AML, acute myeloid leukaemia; BETi, bromodomain and extra-terminal domain inhibitors; CMML, chronic myelomonocytic leukaemia; CRPC, castration-resistant prostate
cancer; CTCL, cutaneous T cell lymphoma; DLBCL, diffuse large-B cell lymphoma; DNMTi, DNA methyltransferase inhibitor; FL, follicular lymphoma; HCC, hepatocellular
carcinoma; HDACi, histone deacetylase inhibitor; HDMi, histone demethylase inhibitor; HMTi, histone methyltransferase inhibitor; MDS, myelodysplastic syndrome; NHL,
non-Hodgkin lymphoma; NPC, nasopharyngeal carcinoma; PTCL, peripheral T cell lymphoma; SCLC, small cell lung cancer.
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experimental and clinical experience gathered over the past
years has shown us that: i) these specific but at the same time
“globally acting” agents can reprogramme cancer stemness
through their interaction with multiple genes and pathways,
inhibiting cancer initiation and progression;129,131 ii) long-lasting
cancer cell reprogramming, and therefore improved activity, can
be achieved at low and less toxic doses of epidrugs;129,132 iii)
epidrugs can overcome primary resistance and restore sensitivity
of cancer cells to targeted agents and conventional chemother-
apeutics;129,133,134 iv) epigenetic alterations in cells of the tumour
microenvironment (TME), both stromal and immune cells,
contribute to carcinogenesis and can be targeted to enhance
therapeutic efficacy. Indeed, recent evidence indicates that tar-
geting different epigenetic regulators, including writers (DNMTs
and HMTs), readers (BRDs) and erasers (HDACs, KDMs) can in-
crease immune recognition of tumour cells and synergise with
immunotherapy.135,136

Awide variety of epidrugs have been developed over the past
years. Most of them are in use, or are undergoing clinical trials,
for the treatment of haematological malignancies (Table 3).
137–141 However, these compounds are increasingly being
experimentally and clinically tested in solid tumours, including
HCC (Fig. 3 and Table 3). The effects of DNA methylation in-
hibitors (DNMTi) on HCC cells have been extensively studied.
JHEP Reports 2020
The first-generation DNMTi included 5-azacytidine (5-aza) and
5-aza-2’-deoxycytidine (decitabine). Both can be incorporated
into DNA, bind DNMT1 irreversibly and induce its degradation,
leading to DNA demethylation. In addition, significant amounts
of 5-aza can also be incorporated into RNA, also altering gene
expression.130 In response to these agents TSG expression is
reactivated and HCC cells partially recover their hepatocellular
differentiation, becoming less tumourigenic and more sensitive
to sorafenib.142,143 Decitabine was tested in patients with
advanced HCC at low doses, showing favourable toxicity and
signs of clinical benefit.144 However, 5-aza and decitabine have
very short half-lives in vivo due to degradation by cytidine
deaminase (CDA), which is abundant in the liver;39 therefore
improved DNMTis have been developed. These include zebu-
larine, an orally available and more stable DNMTi that is
potentially less toxic as it does not incorporate into DNA, which
has shown preclinical efficacy in a subclass of HCCs with a high
degree of CpG methylation.145 Guadecitabine (SGI-110) is
another second generation DNMTi consisting of 5-aza-2’-deox-
ycytidine linked to deoxyguanosine by a phosphodiester bond
that is converted in vivo into decitabine; it is resistant to CDA
and thus more stable.130 Preclinical studies have shown the
inhibitory effects of SGI-110 on HCC growth and its ability to
improve the antitumoral actions of sorafenib and
8vol. 2 j 100167



Erasers inhibitorsWriters inhibitors Readers inhibitors

DNMTi
5-aza

Decitabine
Zebularine 

Guadecitabine (SGI-110)

Dual inhibitors
CM-272

HMTi/KMTi
GSK126

3-deazaneplanocin A
BRDi
JQ-1

HDACi
Panobinostat

Belinostat
Resminostat

HDMi/KDMi
GSK2879552

JIB-04

BRD4

HDMs

Me

Me Ac

5mC
DNMTs

HMTs

HDACs
Ac

Fig. 3. Drugs targeting epigenetic writers, erasers and readers in HCC therapy. 5mC, 5-methyl-cytosine; Ac, acetylation; BRDi, bromodomain inhibitor; DNMT,
DNA methyltransferase; DNMTi, DNMT inhibitor; HCC, hepatocellular carcinoma; HDAC, histone deacetylase; HDACi, HDAC inhibitor; HDM, histone demethylase;
HDMi, HDM inhibitor; HMT, histone methyltransferase; HMTi, HMT inhibitor; KMT, lysine methyltransferase; KMTi, KMT inhibitor; KDMi, lysine specific
demethylase inhibitor; Me, methylation.
oxaliplatin.146,147 Interestingly, besides TSG reinduction, the
antitumoral effects of SGI-110 may also be attributable to DNA
demethylation in gene body regions and the downregulation of
pro-tumorigenic gene expression, including the epigenetic
regulator UHRF1 and the HMT KMT6 (EZH2).148 Moreover, SGI-
110 robustly reactivated the expression of epigenetically
silenced endogenous retroviruses in HCC cells, triggering an
innate immune response that can be harnessed to improve ICI
sensitivity in vivo.136,148 The results of clinical trials testing SGI-
110 administered alone or in combination with other anti-
tumoural or immunotherapeutic agents in patients with
advanced HCC are awaited (Table 3).

HDAC inhibitors (HDACi) have also been approved and clini-
cally evaluated, mostly for the treatment of haematological ma-
lignancies (Table 3).31,130 Their efficacy in experimental HCC has
been demonstrated. For instance, the non-selective pan-HDACi
panobinostat was found to inhibit HCC proliferation, induce
apoptosis, reprogramme cancer cell metabolism and reduce
tumour angiogenesis.39 Another pan-HDACi, belinostat, also
showed experimental efficacy and its clinical performance in
patients with unresectable HCC suggests some value as a second-
line treatment.39,105 Interestingly, the combination of belinostat
with ICIs increased their efficacy in an experimental model of
HCC.149 Resminostat, an oral pan-HDACi, was tested in patients
with advanced HCC who had previously progressed on sorafenib.
The combined administration of resminostat with sorafenib
showed clinical efficacy, indicating that this HDACi may restore
sensitivity to sorafenib.150 Mechanistically, the ability of
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resminostat to induce the reversion of HCC cells’ stem-like
properties may underlie the increased cytotoxic effects of the
multikinase inhibitor.151 A recent study also provided a rationale
for SIRT7 inhibition to increase the efficacy of immunotherapy
(anti PD-L1) in mouse models, however potent and specific SIRT7
small molecule inhibitors still need to be synthesised.152

The development of HMT and HDM inhibitors is also being
actively pursued, with some compounds being clinically tested in
haematological malignancies (Table 3).49,153 In the context of
HCC, the KMT6/EZH2 inhibitor GSK126 has recently been shown
to enhance natural killer (NK) cell-mediated HCC cell death
through its ability to re-induce the expression of NK cell ligands
in HCC cells.154 Another recent study demonstrated that com-
bined administration of 5-aza and 3-deazaneplanocin A (a non-
specific EZH2 inhibitor) enhanced intratumor T cell trafficking
and improved the antineoplasic effects of ICIs in a model of
subcutaneously implanted HCC cells.155 However, another recent
report found that administration of decitabine and GSK126
resulted in an impaired antitumorigenic T cell response and
increased growth of orthotopically implanted HCC cells.156

Although, targeting G9a/KMT1C with different selective in-
hibitors reactivated TSG expression in HCC cells and demon-
strated antitumoral effects in both in vitro and in vivo HCC
xenograft models.118

Regarding KDM (HDM) targeting, inhibition of LSD-1/KDM1
with GSK2879552 could revert stem cell-like properties and
re-sensitise HCC cells to sorafenib in vivo.157 More recently the
JmjC KDM family inhibitor JIB-04 was shown to exert potent
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antitumoral effects in an immunocompetent mouse model of
inflammation and fibrosis-associated HCC.26

As mentioned, epigenetic mechanisms act in concert in the
normal regulation of gene expression, but can also become
dysregulated in a “coordinated” manner to drive disease pro-
gression.41 This notion has led to the development of a novel set
of drugs that combine dual inhibitory activities by acting on
different epigenetic targets, or against an epigenetic and a non-
epigenetic enzyme.36 One of these agents is CM-272,158 a new
class of dual inhibitors of G9a/KMTC1 and DNMT1, enzymes that
coordinate to mediate TSG silencing and foster cancer growth.159

CM-272 showed anti-HCC efficacy in vitro and in vivo, being able
to restore the differentiated phenotype of HCC cells and to abate
the pro-tumorigenic effects of the fibrogenic stroma.94 CM-272
has been shown to potentiate the efficacy of ICIs in other solid
tumours;160 thus, evaluation of this combination in immuno-
competent HCC models is warranted.

Pharmacological targeting of epigenetic readers is also an area
of active research, and studies on haematological malignancies
are also pioneering the field (Table 3).161 As mentioned, BRD4
and H3K27ac marks are known to be increased in HCC.128,162

Targeting the H3K27ac reader BRD4 with the inhibitor JQ-1
reduced HCC cell growth and survival,26,128 and most interest-
ingly it prevented non-alcoholic steatohepatitis-associated
experimental HCC development.162 Besides disrupting tumour-
intrinsic oncogenic pathways, interference with BRD4 in
myeloid-derived suppressor cells inhibits the development of
fibrosis-associated experimental HCC, and enhances ICI effi-
cacy.163 Together, these findings highlight the potential of pre-
venting/treating HCC by targeting epigenetic mechanisms in the
fibrotic stroma. Indeed, fibrogenesis is a key contributor to HCC
development, and dysregulation of epigenetic circuits is central
to liver fibrogenic cell activation and HCC progression.164,165

Pharmacological interference with such circuits is therefore
emerging as an alternative strategy to halt liver fibrosis, and
ultimately HCC development, as shown for BRD4 inhibitors 166

and more recently for the dual G9a/DNMT inhibitor CM-272.167

Conclusions
Our understanding of epigenetics has increased significantly
over the last 2 decades. We are now aware of its importance for
the regulation of cell function and its involvement in cancer
development. However, we have also learned that the
complexity of epigenetic regulatory circuits is enormous, and we
have barely begun to scratch the surface of the iceberg. Although
not covered here because of space limitations, epigenetic mod-
ifiers such as HMTs, KDMs and HDACs may also act on multiple
protein targets, besides histones, with important regulatory
consequences.30,129 Moreover, a given epigenetic modifier, such
as G9a/KMT1C, can behave as a coactivator or corepressor of the
transcription of different target genes in the same cell,168 while
others like EZH2/KMT6 may act as gene repressors or as
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transcriptional activators depending on the tumour type where
they are overexpressed.30 It is therefore critical to unravel all the
dimensions of the epigenetic machinery to fully understand their
pathophysiological implications. Given the magnitude of the
task, the implementation of artificial intelligence tools for the
molecular analyses of clinical samples and relevant experimental
models appears essential.

Despite our still limited knowledge, current evidence sug-
gests that epigenetic therapies also hold promise for the treat-
ment of HCC, particularly in combination with other
chemotherapeutics or with ICIs. However, there are still impor-
tant general issues that need to be addressed when epigenetic
drugs are considered as combination partners in cancer therapy.
One relevant aspect is the potential systemic toxicity of these
compounds. In general, combinations with chemotherapeutic
agents or ICIs have been well tolerated.169 Nevertheless, adverse
reactions to epidrugs may emerge due to their pleiotropic effects
on gene expression, their activity on non-histone targets, or their
interaction with non-tumoural cells.31,170 The specificity issues of
epigenetic drugs are difficult to harness, as the diversity of their
biological effects depends not only on the quality of their
chemical design, but mostly on the complex functional in-
teractions among their targets, as previously discussed. Accu-
mulating evidence indicates that epidrug toxicity may be averted
or attenuated by modifying the administration strategies.
Importantly, it should be considered that dosing epigenetic drugs
below their maximum tolerated dose can still result in full
pharmacodynamic effects.171,172 Additionally, in combination
regimens, selection of treatment sequence and schedule (i.e.
concomitant administration, sequential administration, inter-
mittent dosing, epigenetic priming, etc.) may not only reduce
toxicity but also leverage synergies and overcome intrinsic and
acquired resistance.169 The selection of adequate dosages and
schedules may be particularly important in combinations be-
tween epidrugs and ICIs, as pro-tumorigenic effects have been
recorded for both types of agents in experimental and clinical
settings.156,173 Therefore, administration strategies still need to
be thoroughly addressed in carefully designed clinical studies.
Another determinant for the optimal application of epigenetic
therapies is the availability of epigenetic biomarkers. Ideally,
molecular biomarkers would enable patient selection and strat-
ification, as well as the prediction of therapeutic response.
However, the diversity and dynamism of epigenetic marks make
the development of biomarkers for heterogeneous tumours such
as HCC particularly challenging. So far, the identification of mu-
tations in epigenetic genes, and the detection of CpG methylation
at specific loci constitute the most successful epigenetic bio-
markers in cancer.31 All in all, extracting the full potential of
epidrugs for HCC treatment will require a precision-medicine
approach, involving multidisciplinary cooperation and ad hoc
trial designs. Nevertheless, the potential reward is clearly worth
the effort.
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