
sensors

Article

Towards Efficient Implementation of an Octree for a
Large 3D Point Cloud

Soohee Han

Department of Geoinformatics Engineering, Kyungil University, Gyeongsan 38428, Korea; scivile@kiu.kr

Received: 22 October 2018; Accepted: 11 December 2018; Published: 12 December 2018
����������
�������

Abstract: The present study introduces an efficient algorithm to construct a file-based octree for
a large 3D point cloud. However, the algorithm was very slow compared with a memory-based
approach, and got even worse when using a 3D point cloud scanned in longish objects like tunnels and
corridors. The defects were addressed by implementing a semi-isometric octree group. The approach
implements several semi-isometric octrees in a group, which tightly covers the 3D point cloud, though
each octree along with its leaf node still maintains an isometric shape. The proposed approach was
tested using three 3D point clouds captured in a long tunnel and a short tunnel by a terrestrial laser
scanner, and in an urban area by an airborne laser scanner. The experimental results showed that the
performance of the semi-isometric approach was not worse than a memory-based approach, and quite
a lot better than a file-based one. Thus, it was proven that the proposed semi-isometric approach
achieves a good balance between query performance and memory efficiency. In conclusion, if given
enough main memory and using a moderately sized 3D point cloud, a memory-based approach is
preferable. When the 3D point cloud is larger than the main memory, a file-based approach seems to
be the inevitable choice, however, the semi-isometric approach is the better option.

Keywords: octree; 3D point cloud; terrestrial laser scanning; memory-based octree; file-based octree

1. Introduction

Advances in 3D terrestrial laser scanning technology and its various applications have increased
the size of 3D point clouds enormously. Unlike elements stored in conventional spatial database
management systems (SDBMS), a 3D point cloud has even more entities—points, up to billions in
number, however, each entity is not topologically related to the others. Thus, it is necessary to use
relevant methods to handle the data. The methods can be categorized into two: lossy compression
or abbreviation, and lossless indexing. The former category eliminates less meaningful points from
the 3D point cloud. Several relevant approaches have reported that the reduced data still exhibits
consistent results with half or even less point density [1–3]. The latter category retains and uses the
original coordinate information of all points, and then uses special data structures to store and retrieve
the data efficiently. For example, as a dynamic partitioning algorithm, R-tree is commonly utilized in
SDBMS with its derivatives, and might be applicable for this purpose. However, R-tree is based on
minimum bounding rectangles (MBR) and points are apt to be enclosed by overlapping nodes, making
it a poor solution [4]. K-d tree, which is also a dynamic partitioning algorithm is more efficient and
has been officially implemented in the point cloud library (PCL) [5]. However, in the worst case, all of
the child nodes should be retrieved to traverse from a node to its child node where the 3D boundary
satisfies a positional query [6]. Thus, a large 3D point cloud necessitates proper methods to re-organize
or index itself efficiently. Among the known methods, octree is popular for its memory efficiency,
query speed and structural simplicity [7]. In octree, only one child node in each depth is traversed
because the 3D boundary of each node is implicitly known by positional query. Thus, a leaf node
can be advantageously retrieved in this approach. Octree is now being exploited by a number of

Sensors 2018, 18, 4398; doi:10.3390/s18124398 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s18124398
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/12/4398?type=check_update&version=3

Sensors 2018, 18, 4398 2 of 14

applications for segmentation and visualization of 3D point clouds [8–14], and also in PCL. However,
octree, as a static partitioning algorithm, has a potential weakness, that is, memory waste because eight
child nodes are always declared, even when not all of them bear point(s) within themselves. To address
this weakness, a schema was presented to avoid declaration of child nodes that bear no points, and to
terminate subdivision if the number of points goes below a threshold after further subdivision [15,16].
A memory efficient encoding method was also employed to minimize the size of a node in octree.

The present study uses a native octree, which means that derivations of octree, as introduced in
the relevant approaches [15,16] are not considered. Instead, it deals with other issues that influence
the performance of octree. These include how to make a compact node in a native octree, how to
design functions (methods) applicable to the node, where to store and retrieve the 3D point cloud
itself (main memory or HDD), and what the shape of octree should be. From preliminary tests, several
influencing factors were found: 1) the size of a node is very flexible but does not have much influence
on query speed, and 2) dynamic declaration of nodes in the octree construction process claims more
memory than expected, thus, array declaration is preferable after a pseudo octree construction [17].
The present study is based on the array-based approach and this will not be further mentioned in
this paper. The paper is structured as follows: implementation of a compact node and relevant
methods are outlined in Section 2.1.1, implementation of a file-based octree to reduce main memory
usage is described in Section 2.1.2, more efforts to enhance the performance of octree are discussed in
Sections 2.1.3 and 2.1.4, and its application is shown in Section 2.2. Results along with the discussion
and conclusions follow in Sections 3 and 4.

2. Material and Methods

2.1. Algorithm Development

2.1.1. Implementation of Octree for a 3D Point Cloud

An octree is defined as a tree data structure in which each internal node has exactly eight children,
where a three dimensional space is created by recursively subdividing it into eight octants [18].
To index a 3D point cloud using octree the 3D boundary is divided into eight octants, which are further
subdivided recursively only when they bear point(s) within themselves until the sequence reaches a
given threshold value, namely depth. The final subdivision results in eight leaf nodes that store points
within their archives. In the present study, the basic steps used to implement octree from a 3D point
cloud were:

1. An axially-aligned minimum bounding hexahedron (hereafter, MBH) is defined to tightly enclose
the whole 3D point cloud and assigned to a head node.

2. Eight new MBHs are defined by halving the MBH along the x-, y- and z-axes, and are assigned to
eight child nodes.

3. A child node, of which MBH encloses an input point, is chosen and the input point is passed over
a child node in further depth.

4. Step 2 and Step 3 are continued until the depth reaches a given threshold value (hereafter, Depth)
and the final child node (hereafter, the leaf node) stores the input point.

5. Every point in the 3D point cloud is assigned to the head node and undergoes Step 2 to Step 4.

A larger Depth creates more subdivision and allows leaf nodes to have fewer points, and a smaller
Depth has the opposite effect. Having fewer points in a leaf node reduces computational overhead in
point retrieval, but also increases the traversing route from head to leaf node. Thus, Depth should be
experimentally adjusted to minimize the overall point retrieval time.

Pseudo codes to implement the steps in C++ language based on the standard template library
(STL) are given in Figure 1. The Addpoint method selects a child node of which octant encloses an
input point, and updates the MBH of the selected child node. The input point is recursively passed over
selected child nodes until the depth of the current node (curDepth) equals the final depth (finalDepth).

Sensors 2018, 18, 4398 3 of 14

The final selected leaf node pushes back the pointer (pt) of the input point to a vector archive (pVector).
The GetPointList method recursively retrieves child nodes enclosing the position of interest by a similar
mechanism, and points can be retrieved from the pVector of the selected leaf node. The size of the
node class in Figure 1 is determined by the type of variable used in the MBH. The size of CNode is
60 bytes (= mbh(6 × 8 bytes) + curDepth(4 bytes) + pVector(4 bytes) + pChild(4 bytes)) using double
precision or 36 bytes (=mbh(6 × 4 bytes) + depth(4 bytes) + pVector(4 bytes) + pChild(4 bytes)) using
single precision. In both cases, a great deal of memory is required during tree construction—estimated
to be up to 60 × 8n or 36 × 8n bytes after n-subdivisions, in the worst case.

Sensors 2018, 18, x FOR PEER REVIEW 3 of 14

(finalDepth). The final selected leaf node pushes back the pointer (pt) of the input point to a vector
archive (pVector). The GetPointList method recursively retrieves child nodes enclosing the position
of interest by a similar mechanism, and points can be retrieved from the pVector of the selected leaf
node. The size of the node class in Figure 1 is determined by the type of variable used in the MBH.
The size of CNode is 60 bytes (= mbh(6 × 8 bytes) + curDepth(4 bytes) + pVector(4 bytes) + pChild(4
bytes)) using double precision or 36 bytes (=mbh(6 × 4 bytes) + depth(4 bytes) + pVector(4 bytes) +
pChild(4 bytes)) using single precision. In both cases, a great deal of memory is required during tree
construction—estimated to be up to 60 × 8 or 36 × 8 bytes after n-subdivisions, in the worst case.

Figure 1. Pseudo codes of a basic form CNode.

To reduce the size of a node class, most of the variables are omitted and the methods are revised
to pass the necessary parameters over to the child nodes. A compact form of a node class declares
only a variable pChild, as shown in Figure 2. A void pointer pChild can designate both a child node
in a normal node and a vector instance in a leaf node. The AddPoint and GetPointList methods are
revised accordingly to pass over more parameters, as shown in Figure 3. AddPoint selects a child
node by using the 3D coordinates of an input point and calculates a new MBH for a selected child
node in further depth. The new MBH, along with Depth and the input point, are passed over to a
child node recursively until a leaf node is reached in which an input point is stored. Likewise,
GetPointList operates using a similar mechanism, however it selects a child node not by an input
point but by a position of interest and passes an additional parameter (ptlist) over to obtain the
queried results. Either way, the size of a node is reduced to the size of a pointer which occupies
8 bytes in 64-bit system.

Figure 2. Pseudo codes of a compact form CNode.

Figure 1. Pseudo codes of a basic form CNode.

To reduce the size of a node class, most of the variables are omitted and the methods are revised
to pass the necessary parameters over to the child nodes. A compact form of a node class declares
only a variable pChild, as shown in Figure 2. A void pointer pChild can designate both a child node
in a normal node and a vector instance in a leaf node. The AddPoint and GetPointList methods are
revised accordingly to pass over more parameters, as shown in Figure 3. AddPoint selects a child node
by using the 3D coordinates of an input point and calculates a new MBH for a selected child node
in further depth. The new MBH, along with Depth and the input point, are passed over to a child
node recursively until a leaf node is reached in which an input point is stored. Likewise, GetPointList
operates using a similar mechanism, however it selects a child node not by an input point but by a
position of interest and passes an additional parameter (ptlist) over to obtain the queried results. Either
way, the size of a node is reduced to the size of a pointer which occupies 8 bytes in 64-bit system.

Sensors 2018, 18, x FOR PEER REVIEW 3 of 14

(finalDepth). The final selected leaf node pushes back the pointer (pt) of the input point to a vector
archive (pVector). The GetPointList method recursively retrieves child nodes enclosing the position
of interest by a similar mechanism, and points can be retrieved from the pVector of the selected leaf
node. The size of the node class in Figure 1 is determined by the type of variable used in the MBH.
The size of CNode is 60 bytes (= mbh(6 × 8 bytes) + curDepth(4 bytes) + pVector(4 bytes) + pChild(4
bytes)) using double precision or 36 bytes (=mbh(6 × 4 bytes) + depth(4 bytes) + pVector(4 bytes) +
pChild(4 bytes)) using single precision. In both cases, a great deal of memory is required during tree
construction—estimated to be up to 60 × 8 or 36 × 8 bytes after n-subdivisions, in the worst case.

Figure 1. Pseudo codes of a basic form CNode.

To reduce the size of a node class, most of the variables are omitted and the methods are revised
to pass the necessary parameters over to the child nodes. A compact form of a node class declares
only a variable pChild, as shown in Figure 2. A void pointer pChild can designate both a child node
in a normal node and a vector instance in a leaf node. The AddPoint and GetPointList methods are
revised accordingly to pass over more parameters, as shown in Figure 3. AddPoint selects a child
node by using the 3D coordinates of an input point and calculates a new MBH for a selected child
node in further depth. The new MBH, along with Depth and the input point, are passed over to a
child node recursively until a leaf node is reached in which an input point is stored. Likewise,
GetPointList operates using a similar mechanism, however it selects a child node not by an input
point but by a position of interest and passes an additional parameter (ptlist) over to obtain the
queried results. Either way, the size of a node is reduced to the size of a pointer which occupies
8 bytes in 64-bit system.

Figure 2. Pseudo codes of a compact form CNode. Figure 2. Pseudo codes of a compact form CNode.

Sensors 2018, 18, 4398 4 of 14
Sensors 2018, 18, x FOR PEER REVIEW 4 of 14

Figure 3. Pseudo codes of the AddPoint and GetPointList methods.

2.1.2. Implementation of File-Based Octree

The performance of an octree is strongly influenced by the media where the 3D point cloud
practically exists. For the best performance, the 3D point cloud should be loaded into the main
memory and stored in an array of Point3D struct, as in Figure 1. A pointer to the struct, instead of the
3D coordinates themselves should be put into the head node and passed over to the child nodes until
it can be stored in a leaf node. However, the 3D point cloud itself requires a great deal of memory—
sometimes more than the main memory. To avoid defects, octree can be constructed based on file-
pointers which directly refer to 3D points stored in a hard disk drive (HDD) or a solid-state drive
(SSD). The AddPoint method is revised to pass over a new file-pointer (pos) which refers to the
address of an input point in an HDD or a SSD and is finally stored to a leaf node, as shown in Figures
4 and 5. GetPointList is also revised to substitute a new parameter (poslist) for an old one (ptlist) to
obtain the queried results in the file-pointer format.

Figure 4. Pseudo codes of a revised form CNode using a file-pointer.

Figure 3. Pseudo codes of the AddPoint and GetPointList methods.

2.1.2. Implementation of File-Based Octree

The performance of an octree is strongly influenced by the media where the 3D point cloud
practically exists. For the best performance, the 3D point cloud should be loaded into the main
memory and stored in an array of Point3D struct, as in Figure 1. A pointer to the struct, instead
of the 3D coordinates themselves should be put into the head node and passed over to the child
nodes until it can be stored in a leaf node. However, the 3D point cloud itself requires a great deal of
memory—sometimes more than the main memory. To avoid defects, octree can be constructed based
on file-pointers which directly refer to 3D points stored in a hard disk drive (HDD) or a solid-state
drive (SSD). The AddPoint method is revised to pass over a new file-pointer (pos) which refers to
the address of an input point in an HDD or a SSD and is finally stored to a leaf node, as shown in
Figures 4 and 5. GetPointList is also revised to substitute a new parameter (poslist) for an old one
(ptlist) to obtain the queried results in the file-pointer format.

Sensors 2018, 18, x FOR PEER REVIEW 4 of 14

Figure 3. Pseudo codes of the AddPoint and GetPointList methods.

2.1.2. Implementation of File-Based Octree

The performance of an octree is strongly influenced by the media where the 3D point cloud
practically exists. For the best performance, the 3D point cloud should be loaded into the main
memory and stored in an array of Point3D struct, as in Figure 1. A pointer to the struct, instead of the
3D coordinates themselves should be put into the head node and passed over to the child nodes until
it can be stored in a leaf node. However, the 3D point cloud itself requires a great deal of memory—
sometimes more than the main memory. To avoid defects, octree can be constructed based on file-
pointers which directly refer to 3D points stored in a hard disk drive (HDD) or a solid-state drive
(SSD). The AddPoint method is revised to pass over a new file-pointer (pos) which refers to the
address of an input point in an HDD or a SSD and is finally stored to a leaf node, as shown in Figures
4 and 5. GetPointList is also revised to substitute a new parameter (poslist) for an old one (ptlist) to
obtain the queried results in the file-pointer format.

Figure 4. Pseudo codes of a revised form CNode using a file-pointer. Figure 4. Pseudo codes of a revised form CNode using a file-pointer.

Sensors 2018, 18, 4398 5 of 14

Sensors 2018, 18, x FOR PEER REVIEW 5 of 14

Figure 5. Pseudo codes of the revised AddPoint and GetPointList methods.

The former method, hereafter referred to as the memory-based method, is enormously faster
than the latter, hereafter referred to as the file-based method, during octree-construction and point-
retrieval. The latter can save the main memory by omitting loading of the 3D point cloud to the main
memory, thus, it is applicable when the size of the 3D point cloud is larger than the main memory.
However, the average time to retrieve arbitrary data using a file-pointer in an HDD is 100 times
slower than using a normal pointer in the main memory. This means that the file-based method may
suffer from slow octree-construction and point-retrieval speed. Nevertheless, the file-based approach
is preferable because it can expand the volume of the 3D point cloud to be indexed in an octree.

2.1.3. Implementation of an Anisometric Octree

An octree is commonly implemented in an isometric shape; that is, the MBH of an octree is cubic-
shaped regardless of the original shape of the 3D point cloud. If the 3D point cloud is severely
imbalanced in the x-, y- and z-axes, it is preferable to tightly fit the MBH to the point cloud. As seen
in Figure 6a, an isometric implementation of octree to cover an oval-shaped 3D point cloud can yield
empty nodes. Point concentration in fewer nodes results in load-unbalance and query performance
degradation. To avoid this defect, an octree can be implemented in an anisometric shape in which the
points are better distributed to more nodes (Figure 6b).

Figure 6. Comparison of octrees: (a) an isometric octree; (b) an anisometric octree.

However, even an anisometric octree can have a negative effect on point retrieval performance.
This is because a leaf node inherits the shape of an octree, and an anisometric leaf can increase query

Figure 5. Pseudo codes of the revised AddPoint and GetPointList methods.

The former method, hereafter referred to as the memory-based method, is enormously faster than
the latter, hereafter referred to as the file-based method, during octree-construction and point-retrieval.
The latter can save the main memory by omitting loading of the 3D point cloud to the main memory,
thus, it is applicable when the size of the 3D point cloud is larger than the main memory. However,
the average time to retrieve arbitrary data using a file-pointer in an HDD is 100 times slower than
using a normal pointer in the main memory. This means that the file-based method may suffer from
slow octree-construction and point-retrieval speed. Nevertheless, the file-based approach is preferable
because it can expand the volume of the 3D point cloud to be indexed in an octree.

2.1.3. Implementation of an Anisometric Octree

An octree is commonly implemented in an isometric shape; that is, the MBH of an octree is
cubic-shaped regardless of the original shape of the 3D point cloud. If the 3D point cloud is severely
imbalanced in the x-, y- and z-axes, it is preferable to tightly fit the MBH to the point cloud. As seen in
Figure 6a, an isometric implementation of octree to cover an oval-shaped 3D point cloud can yield
empty nodes. Point concentration in fewer nodes results in load-unbalance and query performance
degradation. To avoid this defect, an octree can be implemented in an anisometric shape in which the
points are better distributed to more nodes (Figure 6b).

Sensors 2018, 18, x FOR PEER REVIEW 5 of 14

Figure 5. Pseudo codes of the revised AddPoint and GetPointList methods.

The former method, hereafter referred to as the memory-based method, is enormously faster
than the latter, hereafter referred to as the file-based method, during octree-construction and point-
retrieval. The latter can save the main memory by omitting loading of the 3D point cloud to the main
memory, thus, it is applicable when the size of the 3D point cloud is larger than the main memory.
However, the average time to retrieve arbitrary data using a file-pointer in an HDD is 100 times
slower than using a normal pointer in the main memory. This means that the file-based method may
suffer from slow octree-construction and point-retrieval speed. Nevertheless, the file-based approach
is preferable because it can expand the volume of the 3D point cloud to be indexed in an octree.

2.1.3. Implementation of an Anisometric Octree

An octree is commonly implemented in an isometric shape; that is, the MBH of an octree is cubic-
shaped regardless of the original shape of the 3D point cloud. If the 3D point cloud is severely
imbalanced in the x-, y- and z-axes, it is preferable to tightly fit the MBH to the point cloud. As seen
in Figure 6a, an isometric implementation of octree to cover an oval-shaped 3D point cloud can yield
empty nodes. Point concentration in fewer nodes results in load-unbalance and query performance
degradation. To avoid this defect, an octree can be implemented in an anisometric shape in which the
points are better distributed to more nodes (Figure 6b).

Figure 6. Comparison of octrees: (a) an isometric octree; (b) an anisometric octree.

However, even an anisometric octree can have a negative effect on point retrieval performance.
This is because a leaf node inherits the shape of an octree, and an anisometric leaf can increase query
overheads. For example, if we retrieve points within a distance from a position of interest in an

Figure 6. Comparison of octrees: (a) an isometric octree; (b) an anisometric octree.

However, even an anisometric octree can have a negative effect on point retrieval performance.
This is because a leaf node inherits the shape of an octree, and an anisometric leaf can increase query

Sensors 2018, 18, 4398 6 of 14

overheads. For example, if we retrieve points within a distance from a position of interest in an
isometric octree, four leaves are queried and four points are examined (Figure 7a). In an anisometric
octree, four leaves are also queried but eight points are examined, causing double query overhead
(Figure 7b). As noted earlier, point query is very slow in a file-based octree, and query increment
results in severe performance degradation.

Sensors 2018, 18, x FOR PEER REVIEW 6 of 14

isometric octree, four leaves are queried and four points are examined (Figure 7a). In an anisometric
octree, four leaves are also queried but eight points are examined, causing double query overhead
(Figure 7b). As noted earlier, point query is very slow in a file-based octree, and query increment
results in severe performance degradation.

Figure 7. Comparison of leaf nodes: (a) in an isometric octree; (b) in an anisometric octree.

2.1.4. Implementation of a Semi-Isometric Octree Group

The tradeoff between isometric and anisometric octrees can be complemented by implementing
an isometric octree group. An isometric octree group is composed of isometric octrees which cover
the 3D point cloud tightly, but each octree along with its leaf node still maintains an isometric shape.
For example, the octree group in Figure 8a resembles the anisometric octree shown in Figure 6b, but
its leaf nodes resemble those of the isometric octree in Figure 7a.

An isometric octree group is preferable to achieve better performance in point retrieval. In most
cases, however, a perfect isometric octree group is not possible because the length of the larger axis
of the MBH is not always an integer multiplication of minor one. Even if possible, an isometric octree
group such as in Figure 8a can require three times more memory than a single octree, as in Figure 6b.
As an alternative, a semi-isometric octree group is introduced in Figure 8b. It occupies less memory
than an isometric octree group and performs better than a single anisometric octree. The shape of an
octree in a semi-isometric octree group can be adjusted by controlling a threshold 𝑡 which is a
number not smaller than one (Equation (1)). 𝑙 = argmin 𝑙 , 𝑙 , 𝑙 , 𝑛 = floor 𝑙𝑡 𝑙 , 𝑛 = floor 𝑙𝑡 𝑙 , 𝑛 = floor 𝑙𝑡 𝑙 𝑑 = 𝑙𝑛 , 𝑑 = 𝑙𝑛 , 𝑑 = 𝑙𝑛

(1)

where argmin() gives the minimum value among inputs, 𝑙 , 𝑙 , 𝑙 denote the lengths of the MBH of
the 3D point cloud, 𝑛 , 𝑛 , 𝑛 give the numbers of octrees in the octree group, floor() denotes the
largest integer number not larger than an input value, and 𝑑 , 𝑑 , 𝑑 give the lengths of the MBH of
an octree. One of 𝑑 , 𝑑 , 𝑑 is equal to 𝑙 and the others cannot be larger than 𝑙 𝑡 by two times.
When 𝑡 = 1, for example, it means that any axial length of a single octree is not two times larger than
the others and the shape of a single octree is most similar to an isometric one. Given the state of the
computational resources, a user can put more weight on memory efficiency or point retrieval
performance by adjusting the threshold.

Figure 7. Comparison of leaf nodes: (a) in an isometric octree; (b) in an anisometric octree.

2.1.4. Implementation of a Semi-Isometric Octree Group

The tradeoff between isometric and anisometric octrees can be complemented by implementing
an isometric octree group. An isometric octree group is composed of isometric octrees which cover the
3D point cloud tightly, but each octree along with its leaf node still maintains an isometric shape. For
example, the octree group in Figure 8a resembles the anisometric octree shown in Figure 6b, but its
leaf nodes resemble those of the isometric octree in Figure 7a.

An isometric octree group is preferable to achieve better performance in point retrieval. In most
cases, however, a perfect isometric octree group is not possible because the length of the larger axis of
the MBH is not always an integer multiplication of minor one. Even if possible, an isometric octree
group such as in Figure 8a can require three times more memory than a single octree, as in Figure 6b.
As an alternative, a semi-isometric octree group is introduced in Figure 8b. It occupies less memory
than an isometric octree group and performs better than a single anisometric octree. The shape of an
octree in a semi-isometric octree group can be adjusted by controlling a threshold ti which is a number
not smaller than one (Equation (1)).

ls = argmin
(
lx, ly, lz

)
,

nx = floor
(

lx
ti×ls

)
, ny = floor

(
ly

ti×ls

)
, nz = floor

(
lz

ti×ls

)
dx = lx

nx
, dy =

ly
ny

, d z =
lz
nz

(1)

where argmin() gives the minimum value among inputs, lx, ly, lz denote the lengths of the MBH
of the 3D point cloud, nx, ny, nz give the numbers of octrees in the octree group, floor() denotes the
largest integer number not larger than an input value, and dx, dy, dz give the lengths of the MBH of
an octree. One of dx, dy, dz is equal to ls and the others cannot be larger than ls × ti by two times.
When ti = 1, for example, it means that any axial length of a single octree is not two times larger
than the others and the shape of a single octree is most similar to an isometric one. Given the state
of the computational resources, a user can put more weight on memory efficiency or point retrieval
performance by adjusting the threshold.

Sensors 2018, 18, 4398 7 of 14

Sensors 2018, 18, x FOR PEER REVIEW 7 of 14

Figure 8. Comparison of octree groups: (a) an isometric octree group; (b) a semi-isometric octree group.

2.2. Application to Real Point Clouds

The three approaches—memory-based octree, file-based octree, and semi-isometric octree
groups—were implemented using three 3D point clouds captured in a long tunnel (Figure 9), a short
tunnel (Figure 10), and an urban area (Figure 11), respectively. The first and second 3D point clouds
were captured by terrestrial laser scanners, and the third by an airborne laser scanner. The first 3D
point cloud was composed of 300.5 million points and occupied 6878 MB, the second had
18.4 million points and 420 MB, and the third had 267.5 million points and 6122 MB. The computing
system was composed of a 64-GB main memory and a 512-GB SSD. More detailed specifications are
shown in Tables 1 and 2.

Figure 9. 3D point cloud of a long tunnel.

Figure 10. 3D point cloud of a short tunnel.

Figure 8. Comparison of octree groups: (a) an isometric octree group; (b) a semi-isometric octree group.

2.2. Application to Real Point Clouds

The three approaches—memory-based octree, file-based octree, and semi-isometric octree groups—
were implemented using three 3D point clouds captured in a long tunnel (Figure 9), a short tunnel
(Figure 10), and an urban area (Figure 11), respectively. The first and second 3D point clouds were
captured by terrestrial laser scanners, and the third by an airborne laser scanner. The first 3D point
cloud was composed of 300.5 million points and occupied 6878 MB, the second had 18.4 million points
and 420 MB, and the third had 267.5 million points and 6122 MB. The computing system was composed
of a 64-GB main memory and a 512-GB SSD. More detailed specifications are shown in Tables 1 and 2.

Sensors 2018, 18, x FOR PEER REVIEW 7 of 14

Figure 8. Comparison of octree groups: (a) an isometric octree group; (b) a semi-isometric octree group.

2.2. Application to Real Point Clouds

The three approaches—memory-based octree, file-based octree, and semi-isometric octree
groups—were implemented using three 3D point clouds captured in a long tunnel (Figure 9), a short
tunnel (Figure 10), and an urban area (Figure 11), respectively. The first and second 3D point clouds
were captured by terrestrial laser scanners, and the third by an airborne laser scanner. The first 3D
point cloud was composed of 300.5 million points and occupied 6878 MB, the second had
18.4 million points and 420 MB, and the third had 267.5 million points and 6122 MB. The computing
system was composed of a 64-GB main memory and a 512-GB SSD. More detailed specifications are
shown in Tables 1 and 2.

Figure 9. 3D point cloud of a long tunnel.

Figure 10. 3D point cloud of a short tunnel.

Figure 9. 3D point cloud of a long tunnel.

Sensors 2018, 18, x FOR PEER REVIEW 7 of 14

Figure 8. Comparison of octree groups: (a) an isometric octree group; (b) a semi-isometric octree group.

2.2. Application to Real Point Clouds

The three approaches—memory-based octree, file-based octree, and semi-isometric octree
groups—were implemented using three 3D point clouds captured in a long tunnel (Figure 9), a short
tunnel (Figure 10), and an urban area (Figure 11), respectively. The first and second 3D point clouds
were captured by terrestrial laser scanners, and the third by an airborne laser scanner. The first 3D
point cloud was composed of 300.5 million points and occupied 6878 MB, the second had
18.4 million points and 420 MB, and the third had 267.5 million points and 6122 MB. The computing
system was composed of a 64-GB main memory and a 512-GB SSD. More detailed specifications are
shown in Tables 1 and 2.

Figure 9. 3D point cloud of a long tunnel.

Figure 10. 3D point cloud of a short tunnel.

Figure 10. 3D point cloud of a short tunnel.

Sensors 2018, 18, 4398 8 of 14

Sensors 2018, 18, x FOR PEER REVIEW 8 of 14

Figure 11. 3D point cloud of an urban area.

Table 1. Specifications of data.

 Data 1 Data 2 Data 3

Laser scanner
C10, Leica

Geosystems
Scan station 2, Leica

Geosystems ALTM 3070, Optech

Scanned object A long tunnel A short tunnel An urban area

Dimension
∆x = 569.16 m ∆y = 1442.58 m ∆z = 19.05 m

∆x = 56.05 m ∆y = 25.57 m ∆z = 11.98 m

∆x = 10708.77 m ∆y = 3380.64 m ∆z = 290.26 m
Number of points 300,525,406 18,376,726 267,490,366

Data file size
(in double precision float) 6878 MB 420 MB 6122 MB

Table 2. Specifications of the computing environments.

Item Description
CPU Intel Core i7-6700K @ 4.00 GHz
RAM 64.0 GB DDR4
SSD 512 GB
OS Windows 7 64 bit

Coding language C++, compiled in 64-bit release mode in Visual studio 2017

3. Results and Discussion

As the long tunnel (Data 1) is 1.5 km long horizontally and only 19 m long vertically, the lengths
of the MBH are seriously unequal in the x-, y- and z-directions (Table 1). Memory-based and file-
based octrees were constructed in single octrees. The lengths in the x- and y-directions of a leaf node
were 29.87 and 69.97 times larger than in the z-direction (Table 3). A semi-isometric octree group was
implemented using three thresholds. The group was composed of 171 (= 9 × 19 × 1,
threshold = 3) to 1711 (= 29 × 59 × 1, threshold=1) octrees, where the ratio of the x- to z-direction ranged
from 3.32 (threshold = 3) to 1.03 (threshold = 1) (Table 3). On the contrary, the lengths of the MBH of
the short tunnel (Data 2) were 56 m and 26 m horizontally and 12 m vertically, which are not seriously
unequal (Table 1). The length in the x- and y-directions of a leaf node were only 4.68 and 2.13 times
larger, respectively, than the length in the z-direction (Table 4). A semi-isometric octree group was
implemented using three thresholds and the group was composed of 1 (= 1 × 2 × 1, threshold = 3) to
8 (= 4 × 2 × 1, threshold = 1) octrees (Table 4). The lengths of the MBH of the urban area (Data 3) are
10.7 km and 3.4 km horizontally and 0.3 km vertically, which are very unequal (Table 1). The lengths

Figure 11. 3D point cloud of an urban area.

Table 1. Specifications of data.

Data 1 Data 2 Data 3

Laser scanner C10,
Leica Geosystems

Scan station 2,
Leica Geosystems ALTM 3070, Optech

Scanned object A long tunnel A short tunnel An urban area

Dimension
∆x = 569.16 m

∆y = 1442.58 m
∆z = 19.05 m

∆x = 56.05 m
∆y = 25.57 m
∆z = 11.98 m

∆x = 10708.77 m
∆y = 3380.64 m
∆z = 290.26 m

Number of points 300,525,406 18,376,726 267,490,366

Data file size
(in double precision float) 6878 MB 420 MB 6122 MB

Table 2. Specifications of the computing environments.

Item Description

CPU Intel Core i7-6700K @ 4.00 GHz
RAM 64.0 GB DDR4
SSD 512 GB
OS Windows 7 64 bit

Coding language C++, compiled in 64-bit release mode in Visual studio 2017

3. Results and Discussion

As the long tunnel (Data 1) is 1.5 km long horizontally and only 19 m long vertically, the lengths
of the MBH are seriously unequal in the x-, y- and z-directions (Table 1). Memory-based and file-based
octrees were constructed in single octrees. The lengths in the x- and y-directions of a leaf node were
29.87 and 69.97 times larger than in the z-direction (Table 3). A semi-isometric octree group was
implemented using three thresholds. The group was composed of 171 (= 9 × 19 × 1, threshold = 3)
to 1711 (= 29 × 59 × 1, threshold = 1) octrees, where the ratio of the x- to z-direction ranged from
3.32 (threshold = 3) to 1.03 (threshold = 1) (Table 3). On the contrary, the lengths of the MBH of the
short tunnel (Data 2) were 56 m and 26 m horizontally and 12 m vertically, which are not seriously
unequal (Table 1). The length in the x- and y-directions of a leaf node were only 4.68 and 2.13 times
larger, respectively, than the length in the z-direction (Table 4). A semi-isometric octree group was
implemented using three thresholds and the group was composed of 1 (= 1 × 2 × 1, threshold = 3) to 8

Sensors 2018, 18, 4398 9 of 14

(= 4 × 2 × 1, threshold = 1) octrees (Table 4). The lengths of the MBH of the urban area (Data 3) are
10.7 km and 3.4 km horizontally and 0.3 km vertically, which are very unequal (Table 1). The lengths in
the x- and y-directions of a leaf node were 36.89 and 11.65 times larger than the length in the z-direction
(Table 5). A semi-isometric octree group was implemented using three thresholds and the group was
composed of 36 (= 12 × 3 × 1, threshold = 3) to 396 (= 36 × 11 × 1, threshold = 1) octrees (Table 5).

Table 3. Comparison of leaf node dimensions of Data 1.

Memory- and File-Based Octree Semi-Isometric Octree Group

ti
Ratios Ratios No. of octrees

x y z x y z x y z

1
29.87 59.97 1.00

1.03 1.02 1.00 29 59 1
2 2.13 2.07 1.00 14 29 1
3 3.32 3.16 1.00 9 19 1

Table 4. Comparison of leaf node dimensions of Data 2.

Memory- and File-Based Octree Semi-Isometric Octree Group

ti
Ratios Ratios No. of octrees

x y z x y z x y z

1
4.68 2.13 1.00

1.10 1.07 1.00 4 2 1
2 2.34 2.13 1.00 2 1 1
3 4.68 2.13 1.00 1 1 1

Table 5. Comparison of leaf node dimensions of Data 3.

Memory- and File-Based Octree Semi-Isometric Octree Group

ti
Ratios Ratios No. of octrees

x y z x y z x y z

1
36.89 11.65 1.00

1.02 1.06 1.00 36 11 1
2 2.05 2.33 1.00 18 5 1
3 3.07 3.88 1.00 12 3 1

The main memory occupancy and time duration were measured during octree construction.
To evaluate the performance, a proximity operation was conducted as introduced in [6]. This operation
aims to query and retrieve neighboring points within a searching sphere from the sample points
(Figure 12). Such an operation is known as fixed distance neighbors (FDN) [19] and can be applied
to k-NN [20] if supplemented by distance sorting. The operation is necessary in normal estimation
and noise filtering [19,21]. A total of 3005 sample points, or 1/100,000 of the data, were selected from
Data 1 and neighboring points within a 5 cm (radius of the searching sphere) were queried. In all
methods, the same 1,735,755 points were retrieved, and thus, no faults were detected in the proximity
operation. Likewise, the same operation was conducted using Data 2 and Data 3 (Table 6).

Octrees were constructed in Depth 8 to 13 for the memory-based approach and in Depth 8 to
9~11 for the file-based and semi-isometric approaches to avoid memory occupancy exceeding any
of the memory-based approach (Tables 7–9). Memory usage, along with construction time increased
accordingly. As is the precondition, main memory occupancy includes the size of the 3D point cloud
itself in the memory-based approach (for example, 6878 MB for Data 1). The memory-based approach
exhibited enormous speed in the proximity operation. The result is credible because the performance
of the main memory can never be exceeded by a file-based operation, even using SSD. Nevertheless,
the semi-isometric approach using Data 1 resulted in a performance that was a little better than the
memory-based approach, and quite a lot better than the file-based one. The semi-isometric approach

Sensors 2018, 18, 4398 10 of 14

in Depth 8 was defeated once by a file-based one in Depth 13, but the main memory occupancy was
almost half. A little more memory occupancy quickly enabled enough performance improvement
in the semi-isometric approach in Depth 9. Similar results were observed using Data 2 and Data 3.
However, the semi-isometric approach using Data 2 did not result in dramatically better performance
than the file-based one because the lengths of the MBH are not seriously unequal in the x-, y- and
z-directions.Sensors 2018, 18, x FOR PEER REVIEW 10 of 14

Figure 12. Proximity operation.

Table 6. Specifications of proximity operation.

 Data 1 Data 2 Data 3
Number of sample points
(ratio to the whole data)

3,005
(1/100,000)

3,063
(1/6,000)

2,675
(1/100,000)

Number of retrieved points 1,735,755 1,319,435 1,528,718
Radius of searching sphere 5cm 5cm 5m

Octrees were constructed in Depth 8 to 13 for the memory-based approach and in Depth 8 to

9~11 for the file-based and semi-isometric approaches to avoid memory occupancy exceeding any of
the memory-based approach (Tables 7–9). Memory usage, along with construction time increased
accordingly. As is the precondition, main memory occupancy includes the size of the 3D point cloud
itself in the memory-based approach (for example, 6878 MB for Data 1). The memory-based approach
exhibited enormous speed in the proximity operation. The result is credible because the performance
of the main memory can never be exceeded by a file-based operation, even using SSD. Nevertheless,
the semi-isometric approach using Data 1 resulted in a performance that was a little better than the
memory-based approach, and quite a lot better than the file-based one. The semi-isometric approach
in Depth 8 was defeated once by a file-based one in Depth 13, but the main memory occupancy was
almost half. A little more memory occupancy quickly enabled enough performance improvement in
the semi-isometric approach in Depth 9. Similar results were observed using Data 2 and Data 3.
However, the semi-isometric approach using Data 2 did not result in dramatically better performance
than the file-based one because the lengths of the MBH are not seriously unequal in the x-, y- and z-
directions.

Table 7. Performance comparison among octree implementing methods using Data 1.

 Memory-Based Octree File-Based Octree Semi-Isometric Octree
Group (𝒕𝒊 = 𝟐)

Depth

Memor
y

usage
(MB)

Constr
uction

time (s)

Proxi
mity

operat
ion

time
(s)

Memor
y usage

(MB)

Constr
uction

time (s)

Proxim
ity

operati
on time

(s)

Memor
y

usage.
(MB)

Constr
uction

time (s)

Proxim
ity

operati
on time

(s)

8 9500 49.30 1.62 2607 51.01 290.32 3025 58.41 9.47
9 9617 55.19 0.76 2725 57.03 127.02 3477 66.80 4.24

10 9765 61.53 0.31 2874 63.40 48.63 4784 78.56 2.45

Figure 12. Proximity operation.

Table 6. Specifications of proximity operation.

Data 1 Data 2 Data 3

Number of sample points
(ratio to the whole data)

3005
(1/100,000)

3063
(1/6,000)

2675
(1/100,000)

Number of retrieved points 1,735,755 1,319,435 1,528,718
Radius of searching sphere 5 cm 5 cm 5 m

The best performance for the semi-isometric approach using Data 1 was achieved in Depth 10
with threshold = 1 (Table 10). In this case, the main memory occupancy was 72.76% that of the
memory-based approach in Depth 8, but performance increased to 81.82%. In the grey-highlighted
cases, the semi-isometric approach achieved better performance than the file-based approach in the
same Depth. In the green-highlighted cases, the semi-isometric approach achieved better performance
than the best of the file-based approach with less memory occupancy. In the yellow-highlighted
cases, the semi-isometric approach resulted in even better performance. The results in the cases of
threshold = 3 using Data 3 were almost the same as the file-based approach (Tables 8 and 11). This
can be easily understood by the fact that the two approaches share the same leaf node dimensions
(Table 4). Nevertheless, it is clear that the performance of the semi-isometric approach is better than
the file-based one in the same Depth in all cases. Thus, it can be said that the semi-isometric approach
is a good alternative compared to the other approaches.

Theoretically, a better performance of the semi-isometric approach should be achieved with a
smaller threshold ti and a larger Depth. This is because query candidate points are more delicately
selected if a leaf node gets more cubic-shaped and smaller. Accordingly, all results using Data 1 meet
the expectation (Table 10). However, the best performance was achieved in Depth 9 with threshold = 1
using Data 2, and in Depth 8 with threshold = 2 using Data 3 (Tables 11 and 12). This is because of
over-subdivision of the octree, in which a route to reach a leaf node is so long that it overwhelms the
effect of the more delicate selection of query candidate points. For this reason, an optimal parameter is
hard to determine before an experiment, and thus, several configurations should be investigated to
find the best one.

Sensors 2018, 18, 4398 11 of 14

Table 7. Performance comparison among octree implementing methods using Data 1.

Memory-Based Octree File-Based Octree Semi-Isometric Octree Group (ti=2)

Depth Memory
usage (MB)

Construction
time (s)

Proximity
operation time (s)

Memory
usage (MB)

Construction
time (s)

Proximity
operation time (s)

Memory
usage. (MB)

Construction
time (s)

Proximity
operation time (s)

8 9500 49.30 1.62 2607 51.01 290.32 3025 58.41 9.47
9 9617 55.19 0.76 2725 57.03 127.02 3477 66.80 4.24

10 9765 61.53 0.31 2874 63.40 48.63 4784 78.56 2.45
11 10065 68.92 0.19 3174 70.72 22.34 8240 99.67 2.14
12 10868 78.23 0.16 3978 80.03 11.25
13 12968 91.26 0.17 6077 92.81 5.71

Table 8. Performance comparison among octree implementing methods using Data 2.

Memory-Based Octree File-Based Octree Semi-Isometric Octree Group (ti=2)

Depth Memory
usage (MB)

Construction
time (s)

Proximity
operation time (s)

Memory
usage (MB)

Construction
time (s)

Proximity
operation time (s)

Memory
usage. (MB)

Construction
time (s)

Proximity
operation time (s)

8 606 3.12 0.05 185 3.26 7.66 187 3.68 5.54
9 625 3.65 0.05 204 3.79 4.07 223 4.29 2.65

10 713 4.37 0.09 293 4.51 2.59 364 5.15 2.20
11 997 5.43 0.30 576 5.52 2.59
12 1593 7.21 1.44
13 2491 10.06 8.27

Table 9. Performance comparison among octree implementing methods using Data 3.

Memory-Based Octree File-Based Octree Semi-Isometric Octree Group (ti=2)

Depth Memory
usage (MB)

Construction
time (s)

Proximity
operation time (s)

Memory
usage (MB)

Construction
time (s)

Proximity
operation time (s)

Memory
usage. (MB)

Construction
time (s)

Proximity
operation time (s)

8 8718 44.63 0.30 2584 46.82 36.47 3370 58.70 3.46
9 8890 51.47 0.14 2756 53.57 11.79 5299 76.17 3.67

10 9392 60.61 0.19 3258 62.68 7.24
11 10962 74.01 0.61 4828 75.96 7.07
12 15048 94.72 2.64
13 22289 131.93 13.68

Sensors 2018, 18, 4398 12 of 14

Table 10. Performance comparison among isometric octree groups using Data 1.

ti=1 ti=2 ti=3

Depth Memory
usage (MB)

Construction
time (s)

Proximity
operation time (s)

Memory
usage (MB)

Construction
time (s)

Proximity
operation time (s)

Memory
usage. (MB)

Construction
time (s)

Proximity
operation time (s)

8 3324 59.80 4.18 3025 58.41 9.47 2913 57.97 12.87
9 4272 69.92 2.70 3477 66.80 4.24 3242 65.47 7.29

10 6912 84.83 1.98 4784 78.56 2.45 4115 76.35 2.82
11 8240 99.67 2.14 6515 95.63 2.36

Table 11. Performance comparison among isometric octree groups using Data 2.

ti=1 ti=2 ti=3

Depth Memory
usage (MB)

Construction
time (s)

Proximity
operation time (s)

Memory
usage (MB)

Construction
time (s)

Proximity
operation time (s)

Memory
usage. (MB)

Construction
time (s)

Proximity
operation time (s)

8 211 3.84 2.59 187 3.68 5.54 183 3.65 7.64
9 301 4.60 2.08 223 4.29 2.65 205 4.18 4.07

10 598 5.65 2.25 364 5.15 2.20 292 4.91 2.60
11 574 5.94 2.62

Table 12. Performance comparison among isometric octree groups using Data 3.

ti=1 ti=2 ti=3

Depth Memory
usage (MB)

Construction
time (s)

Proximity
operation time (s)

Memory
usage (MB)

Construction
time (s)

Proximity
operation time (s)

Memory
usage. (MB)

Construction
time (s)

Proximity
operation time (s)

8 4893 65.04 3.67 3370 58.70 3.46 3007 56.41 4.48
9 5299 76.17 3.67 4101 70.67 3.53

10 7289 91.43 4.15
11

Sensors 2018, 18, 4398 13 of 14

4. Conclusions

In the present study, a basic algorithm to construct an octree for a 3D point cloud is introduced.
The algorithm can be improved in terms of memory efficiency by using a compact form of node
and revised parameter passing methods, and even further by using a file-based approach. However,
the query speed of a file-based approach is very poor and becomes even worse when dealing with very
longish 3D point clouds scanned in tunnels and corridors. The defects can be somewhat addressed
by avoiding point concentration on fewer nodes using an anisometric approach, but this also brings
about the problem of query overhead increment. Finally, the semi-isometric approach was introduced
to improve query performance by implementing several semi-isometric octrees in a group. In the
experiments, query performance and memory efficiency could be significantly improved in the case of
a 3D point cloud captured in a long tunnel. When applied on a 3D point cloud captured in a short
tunnel, the semi-isometric approach resulted in better performance (though not dramatically improved)
than the file-based approach. Airborne laser scanning data was also tested and the semi-isometric
approach resulted in acceptable enhancement of performance. By using media such as HDD of SDD,
known to be much slower than main memory, a file-based approach and its derivations can never
exceed the performance of a memory-based approach. Therefore, given enough main memory and
using a moderately sized 3D point cloud, the memory-based approach is the best choice. When a
3D point cloud is larger than the main memory, as is quite common today, a file-based approach is
the inevitable choice. In this case, however, the semi-isometric approach is a better choice no matter
whether the 3D point cloud is longish or not.

In all of the above approaches, however, every insertion of a point to a leaf node increases the
main memory usage because a pointer to the point is pushed back to a vector archive of the leaf node.
Eventually, the maximum number of points is limited to the size of the main memory. In future work,
a more advanced approach is being planned to address this limitation.

Funding: This research was funded by Foundation of Korea (NRF) grant funded by the Korea government (MSIP),
grant number NRF-2016R1C1B1013973.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Balsa Barreiro, J.; Avariento Vicent, J.P.; Lerma García, J.L. Airborne light detection and ranging (LiDAR)
point density analysis. Sci. Res. Essays 2012, 7, 3010–3019. [CrossRef]

2. Balsa-Barreiro, J.; Lerma, J.L. Empirical study of variation in lidar point density over different land covers.
Int. J. Remote Sens. 2014, 35, 3372–3383. [CrossRef]

3. Singh, K.K.; Chen, G.; McCarter, J.B.; Meentemeyer, R.K. Effects of LiDAR point density and landscape
context on estimates of urban forest biomass. ISPRS J. Photogramm. Remote Sens. 2015, 101, 310–322.
[CrossRef]

4. Schön, B.; Bertolotto, M.; Laefer, D.F.; Morrish, S. Storage, manipulation, and visualization of LiDAR data.
In 3rd ISPRS International Workshop 3D-ARCH 2009; International Society of Photogrammetry and Remote
Sensing: Trento, Italy, 2009.

5. Point Cloud Library (PCL): Module Octree. Available online: http://docs.pointclouds.org/1.8.1/group_
_octree.html (accessed on 12 October 2018).

6. Han, S.; Kim, S.; Hoon Jung, J.; Kim, C.; Yu, K.; Heo, J. Development of a hashing-based data structure for
the fast retrieval of 3D terrestrial laser scanned data. Comput. Geosci. 2012, 39, 1–10. [CrossRef]

7. Han, S.-H.; Lee, S.-J.; Kim, S.-P.; Kim, C.-J.; Heo, J.; Lee, H.-B. A Comparison of 3D R-tree and Octree to Index
Large Point Clouds from a 3D Terrestrial Laser Scanner. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2011,
29, 39–46. [CrossRef]

8. Woo, H.; Kang, E.; Wang, S.; Lee, K.H. A new segmentation method for point cloud data. Int. J. Mach.
Tools Manuf. 2002, 42, 167–178. [CrossRef]

9. Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for Point-Cloud Shape Detection. Comput. Graph. Forum
2007, 26, 214–226. [CrossRef]

http://dx.doi.org/10.5897/SRE12.278
http://dx.doi.org/10.1080/01431161.2014.903355
http://dx.doi.org/10.1016/j.isprsjprs.2014.12.021
http://docs.pointclouds.org/1.8.1/group__octree.html
http://docs.pointclouds.org/1.8.1/group__octree.html
http://dx.doi.org/10.1016/j.cageo.2011.05.005
http://dx.doi.org/10.7848/ksgpc.2011.29.1.39
http://dx.doi.org/10.1016/S0890-6955(01)00120-1
http://dx.doi.org/10.1111/j.1467-8659.2007.01016.x

Sensors 2018, 18, 4398 14 of 14

10. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D
mapping framework based on octrees. Auton. Robots 2013, 34, 189–206. [CrossRef]

11. Schnabel, R.; Klein, R. Octree-based Point-cloud Compression. In 3rd Eurographics/IEEE VGTC Conference on
Point-Based Graphics; SPBG’06; Eurographics Association: Aire-la-Ville, Switzerland, 2006; pp. 111–121.

12. Vo, A.-V.; Truong-Hong, L.; Laefer, D.F.; Bertolotto, M. Octree-based region growing for point cloud
segmentation. ISPRS J. Photogramm. Remote Sens. 2015, 104, 88–100. [CrossRef]

13. Maréchal, L. Advances in Octree-Based All-Hexahedral Mesh Generation: Handling Sharp Features.
In Proceedings of the 18th International Meshing Roundtable; Clark, B.W., Ed.; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 65–84.

14. Wang, M.; Tseng, Y.H. Automatic segmentation of Lidar data into coplanar point clusters using an
octree-based split-and-merge algorithm. Photogramm. Eng. Remote Sens. 2010, 76, 407–420. [CrossRef]

15. Elseberg, J.; Borrmann, D.; Nüchter, A. One billion points in the cloud – an octree for efficient processing of
3D laser scans. ISPRS J. Photogramm. Remote Sens. 2013, 76, 76–88. [CrossRef]

16. Elseberg, J.; Borrmann, D.; Nüchter, A. Efficient processing of large 3D point clouds. In 2011 XXIII
International Symposium on Information, Communication and Automation Technologies; IEEE: New York, NY,
USA, 2011; pp. 1–7.

17. Han, S. Design of Memory-Efficient Octree to Query Large 3D Point Cloud. J. Korean Soc. Surv. Geod.
Photogramm. Cartogr. 2013, 31, 41–48. [CrossRef]

18. Octree. Available online: https://en.wikipedia.org/w/index.php?title=Octree&oldid=853700715 (accessed
on 12 October 2018).

19. Rabbani Shah, T. Automatic reconstruction of industrial installations: Using point clouds and images.
Doctoral Thesis, Delft University of Technology, Delft, The Netherlands, 2006.

20. k-nearest Neighbors Algorithm. Available online: https://en.wikipedia.org/w/index.php?title=K-nearest_
neighbors_algorithm&oldid=860439224 (accessed on 18 October 2018).

21. Schall, O.; Belyaev, A.; Seidel, H.-P. Robust Filtering of Noisy Scattered Point Data. In Proceedings of the Second
Eurographics/IEEE VGTC Conference on Point-Based Graphics; SPBG’05; Eurographics Association: Aire-la-Ville,
Switzerland, 2005; pp. 71–77.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10514-012-9321-0
http://dx.doi.org/10.1016/j.isprsjprs.2015.01.011
http://dx.doi.org/10.14358/PERS.76.4.407
http://dx.doi.org/10.1016/j.isprsjprs.2012.10.004
http://dx.doi.org/10.7848/ksgpc.2013.31.1.41
https://en.wikipedia.org/w/index.php?title=Octree&oldid=853700715
https://en.wikipedia.org/w/index.php?title=K-nearest_neighbors_algorithm&oldid=860439224
https://en.wikipedia.org/w/index.php?title=K-nearest_neighbors_algorithm&oldid=860439224
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Material and Methods
	Algorithm Development
	Implementation of Octree for a 3D Point Cloud
	Implementation of File-Based Octree
	Implementation of an Anisometric Octree
	Implementation of a Semi-Isometric Octree Group

	Application to Real Point Clouds

	Results and Discussion
	Conclusions
	References

