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Abstract: Mycotoxin contamination threatens health and life of humans and animals throughout
the food supply chains. Many of the mycotoxins have been proven to be carcinogens, teratogens
and mutagens. The reliable and sensitive sensing methods are requested to monitor mycotoxin
contamination. Advanced sensors based on antibodies or aptamers boast the advantages of high
sensitivity and rapidity, and have been used in the mycotoxin sensing. These sensors are miniaturized,
thereby lowering costs, and are applicable to high-throughput modes. In this work, the latest
developments in sensing strategies for mycotoxin determination were critically discussed. Optical and
electrochemical sensing modes were compared. The sensing methods for single mycotoxin or multiple
mycotoxins in food samples were reviewed, along with the challenges and the future of antibody or
aptamer-based sensors. This work might promote academic studies and industrial applications for
mycotoxin sensing.
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1. Introduction

Mycotoxins are secondary toxic metabolites primarily produced by fungi in food production [1].
These mycotoxins include, but are not limited to, aflatoxins (AFs), zearalenone (ZEA), deoxynivalenol
(DON), ochratoxin (OTA) and T-2 toxin (a trichothecene mycotoxin). They are one major threat to the
life and health of humans and live stocks [2]. Aflatoxin B1 (AFB1) is one highly toxic food contaminant
and has been classified as a known human carcinogen (Group 1) [3]. ZEA and its metabolites can affect
the estrogen secretion, especially during the mammalian reproductive process [4]. OTA is proved to be
a nephrotoxic factor [5]. T-2 toxins can inhibit both the synthesis of protein and the synthesis of DNA
and RNA [6]. There have been enormous medical costs caused by mycotoxin-based diseases, while
mycotoxins are responsible for large economic losses in international trade [7]. Moreover, it is hard to
reduce the risk of mycotoxins’ general prevention and control strategies because mycotoxins occur
naturally and can contaminate the food throughout the food chain. Under certain temperature and
moisture, mycotoxins can be found in food process, transport and storage [8].

In order to ensure the food safety against mycotoxins, sensitive and reliable determination
strategies are requested [9]. There have been many efforts related to mycotoxin determination, based on
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lab-dependent methods and lab-independent methods [10–12]. For lab-dependent methods, typically,
there are high performance liquid chromatography and gas chromatography, along with fluorescent
detectors or mass spectrometry detectors [13,14]. These lab-dependent methods, as arbitrators, have
merits of high sensitivity and stability, while having disadvantages of the high cost of equipment,
labor and time. For lab-independent methods, they are more suitable for on-site monitoring of the
mycotoxin risk in food. Among several lab-independent determination methods, antibody or aptamer
based sensors have attracted more and more attention because of their advantages of high sensitivity
and specificity, high throughput, portability and reusability [15–17]. For example, microfluidic devices,
microarrays, and lateral flow strips can provide various sensing formats, depending on different
applications. Among them, lateral flow strips could be the most successful device by using the naked
eye or a reader [2]. For microarrays, it can allow the simultaneous determination of multiple targets
that benefit its high throughput. Microfluidic chips could be a promising alternative due to their
compact format that integrates series determination processes in one chip [18]. All of these sensing
formats have been extensively studied in the past years.

There have been several critical reviews on the topic of sensors with respect to food safety [19–21].
However, few works focused on mycotoxin sensing. In this work, we focus on mycotoxin sensing
based on antibodies or aptamers, with the aid of test strips, microarrays and microchips. The sensing
strategies and their applications were discussed in detail, respectively. This work is supposed to
provide updated information for the research and application of determination of mycotoxins based
on antibody or aptamer sensors.

2. Sensing Strategies

2.1. Optical Sensing

2.1.1. Fluorescence Sensors

Among diversified optical detection methods, fluorescence sensing methods are generally based
on fluorescence quenching and recovery. Nanomaterials play an important role with respect to the
enhancement of the sensitivity in the fluorescence recovery strategy. Colloidal gold nanoparticles [22],
dendrimers [19], quantum dots [23], and graphene oxide [24] have been employed in the mycotoxin
sensing [25]. In combination with nanoparticles, specific aptamers were also used to develop
fluorescence sensors for mycotoxin detection [26,27]. Specifically, the complementary sequence of the
aptamer was modified with a quencher and quenching was conducted by hybridization. Then, in the
presence of the mycotoxin, the aptamer was captured by mycotoxins forming a G-quadruplex. Thus,
the fluorophore-labeled aptamer was released from the quencher-modified complementary sequence
to provide a fluorescence signal [26,28]. Other fluorescence aptasensors can be based on a displacement
or competition assay [3,29,30]. The fluorophore-labeled aptamer is wrapped on the nanomaterials
(e.g., single-walled carbon nanotubes, graphene oxide) and fluorescence would be quenched via
energy transfer from the fluorescence tag to the nanomaterials. In the presence of the mycotoxin, the
fluorophore-labeled aptamer switched from a random coil to an anti-parallel G-quadruplex, resulting
in the fluorescence determination.

Fluorescent strip sensors have been developed for mycotoxin sensing [31]. They possess the
advantages of easy operation, reduced determination time, low cost, portability and disposability [2,32].
They contain several typical parts, that is, base support, sample pad, conjugate pad, incubation-detection
pad and absorbent pad [33]. By using capillary force, the mycotoxin can be sensed on the test line.
Compared with the traditional nano-gold based test strip, fluorescent strip sensors allow higher
sensitivity and reliability.

Some fluorescence sensing assays are based on fluorescence resonance energy transfer (FRET) [24].
In this manner, one chemical group serves as a donor to provide energy and the other one acts as
an acceptor to accept the transferred energy. In order to achieve FRET, the excitation of the acceptor
and the emission of the donor should have a big overlap. When the distance between donor and
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acceptor is close enough, the energy will transfer from the donor to the acceptor. More interestingly,
the acceptor and donor in the FRET system can be designed in a biunique or one-to-multiple manner,
providing the potential application of multiple mycotoxin sensing methods.

2.1.2. Surface Plasmon Resonance Sensor

Surface plasmon resonance (SPR) allows the rapid and real-time analysis of a unique reusable
sensing platform without any cleanup steps. As a label-free sensing technique, it is based on the
changes in the refractive index of a material covering a metal surface [34,35]. SPR sensing can be
used in the competitive inhibition assay and sandwich assay to determine mycotoxins. In competitive
inhibition format, mycotoxin–protein conjugates (antigen) can be loaded on the activated SPR chip
surface [36,37]. After the injection of sample-antibody mixture solution, the competition can be
found between immobilized antigen and free mycotoxin in the sample. If mycotoxin is absent, the
antibody combines with the immobilized antigen on the SPR chip surface. The concentration of
mycotoxin in the extract solution is inversely proportional to the antibodies tethered to the sensor chip.
In a similar fashion, other microchip formats have been widely used in sensing mycotoxins due to their
advancements of fabrication [38]. It may be owed to the rapid development of emerging materials and
easy fabrication of microchips, including glass, polymers and even paper [39,40]. In sandwich format,
the antibody was added to the sample to recognize and react with the target to form the primary
complex [34,41,42]. In the second step, the primary complex was injected to the sensor chip to generate
the sandwich complex for the signal.

2.1.3. Optical Waveguide Light Spectroscopy (OWLS) Sensor

As a label-free fluorescent sensing method, this method can precisely record the resonance angle
of polarized laser light, after it is diffracted by a grating and incoupled into a thin waveguide [43].
OWLS can measure mycotoxin antigen adsorption [44] and have recently been employed to detect
mycotoxins in milk samples [45]. The basic principle of OWLS is that linearly polarized light (He-Ne
laser) is coupled into an optical waveguide via an optical grating and the incoupling only occurs at
two well defined angles. These incoupling angles depend on the refractive index change within the
evanescent field generated above the covered waveguide surface. By varying the incidence angle
of the light, various mode spectra were obtained and these incoupling angles and incoupling light
intensity are monitored for the determination.

Usually, an OWLS measurement system includes an optical grating, a readout instrument
containing data collection software, a temperature controller and a flow injection analyzer. The OWLS
could be used for various target determinations by immobilizing substrates specific to the target of
interest on waveguide surface. High sensitivity and selectivity detection methods could be developed
by combining immuno-recognition with specific and sensitive waveguide surface [46].

2.2. Electrochemical Sensing

2.2.1. Amperometric Sensor

Amperometric immunosensors have become a widely-used technique for the detection of
contaminants in food, mainly based on the ELISA technique [47]. With the advantages of
rapid, sensitive and selective quantification, this method has been employed in the determination
of mycotoxins in real agro-food matrices without complex sample preparation. For example,
immunosensors based on chrono-amperometric measurement have been developed for OTA detection
in this assay, reference and counter electrodes were designed on a polyester film, and working electrode
was then activated for the further manufacture. After capture probe immobilization, the measurement
was performed based on the relationship between anodic peak current of the oxidation product of
OTA generated in enzymatic reaction [48,49]. Arevalo et al. constructed a microfluidic electrochemical
immunosensor for citrinin (CIT) detection in rice samples [50]. This immunosensor contains two parts
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(as shown in Figure 1). The stainless-steel top body, as the counter electrode, included internal holes
and channel for communication with reference electrode. Another part was the insulating bottom as the
working electrodes. The current generated from the oxidation product was used for the quantification
of the CIT in the rice sample with no sample pre-treatment.
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Figure 1. (A) Schematic representation of the citrinin immunosensor based on electrochemical detection
using competitive assays; (B) schematic representation of the microfluidic immunosensor cell [18]
(Reprinted from reference [50], Copyright (2011), with permission from Elsevier).

2.2.2. Potentiometric Sensor

Both differential-pulse voltammetry (DPV) and cyclic voltammetry (CV) are employed in
mycotoxin sensing. Differential-pulse voltammetry (DPV) is used to reduce the effect of the charging
current in the sample measurement by detecting the current before potential change. DPV can
serve to sense both single mycotoxins and multiple mycotoxins [51,52]. Another application used an
electrochemical aptamer-sensor for OTA detection in real wheat starch samples achieving an LOD of
1.0 pg/mL [53]. DPV was generated with the signal amplification, which was achieved by the formation
and simultaneous release of the aptamer-OTA conjugate with exonuclease digestion. Then, signal
variance prior to and after the OTA addition, was detected for OTA quantification. Cyclic voltammetry
(CV) method has also been used for mycotoxin measurements [54]. Integrating magnetic bead-based
immunoassay on microfluidic chips, Hervas et al. made a double-T microchip for ZEA monitoring
of infant foods [18]. An example is shown in Figure 2. In this CV based assay, there is a negative
correlation between the signal and the mycotoxin concentration. Based on competitive binding
between the ZEA and enzyme-labeled derivatives to a specific antibody, quantitative detection was
achieved by the addition of electrochemical mediators and enzymatic substrates. Using both channels
as immunologic and enzymatic reaction chambers, non-specific adsorption can be avoided.
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Figure 2. Microfluidic layout and immunoassay principle (IRC = immunological reaction chamber
and ERC = enzymatic reaction chamber) [18] (Reprinted from reference [18], Copyright (2011), with
permission from The Royal Society of Chemistry).

2.2.3. Impedimetric Sensors

The impedimetric immunosensors are used for mycotoxin sensing because of the capability
of identifying and separating various contributions from the dielectric and electric response of the
material [55]. By using an impedimetric sensing method, an immunoelectrode was fabricated via
the co-immobilization of BSA and the antibody onto a gold substrate, followed by a self-assembled
monolayer of 11-amino-1-undecanethiol (AUT) [55]. In the presence of mycotoxin, the value of
transfer resistance was positively correlated with the increased concentration, allowing the sensitive
detection for the OTA. Based upon the relationship between analyte concentration and charge transfer
resistance (RCT) values obtained from electrochemical impedance spectroscopy (EIS), a high sensitivity
impedimetric immunosensor was fabricated for OTA sensing in coffee samples [55]. The AUT modified
gold surface was beneficial to the immobilization of antibody. Thus, it can improve the sensitivity by
enhancing the electron transfer

3. Applications

3.1. Aflatoxin Sensing

Aflatoxin, a highly toxic metabolite of Aspergillus flavus and Aspergillus parasiticus species, has
drawn greater attention due to its cytotoxicity and carcinogenicity. AFB1 is the most common aflatoxin,
most likely to be found in cereal grains. AFM1 can be found in the milk of dairy cows fed a diet
contaminated with AFB1.

Many reports focused on the electrochemical immunosensing of AFB1, including impedance [56]
and impedimetric immunosensors [57]. Based on the modified electrodes, Lin et al. [58] reported
an enzymatic hydrolysate-induced displacement reaction with multifunctional silica beads doped with
HRP-thionine conjugate for AFB1 sensing in peanut samples. The principle was the competitive-type
displacement reaction on the basis of the affinity difference between enzymatic hydrolysate (glucose)
and its analogue (dextran) for concanavalin A (Con A) binding sites. After the immobilization,
the multifunctional silica beads on a dextran-modified sensing interface, a competitive-type
immunosensing, was conducted by using Au-functionalized with AFB1-BSA conjugate and invertase
as a tag. This group reported another non-conventional competitive electrochemical immunosensing
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of AFB1 within 5 min via a competitive-type immunosensing method [59]. Based on a target-induced
displacement reaction with antibody-functionalized mesoporous carbon nanoparticles, the mesoporous
carbon electrode was modified with electroactive thionine molecules and then a polyclonal anti-AFB
antibody, allowing good electrochemical responses for AFB1 at 0.003 ng/mL.

A test strip was successfully used in aflatoxin sensing by proper readers, and offered promise
for rapid, sensitive, and cost-effective quantitative detection aflatoxins sensing [60]. Shim et al. [61]
investigated an aptamer-based test strip for AFB1 sensing. A competitive sensing format was conducted
with biotin-modified aptamer specific to AFB1 and streptavidin/anti-Cy5 antibody in corn sample.
After a 30-min sensing, LOD was found to be 0.3 ng/g. AFB1 was detected in rice with test strips by
using gold nanoflowers as a signal amplification probe and a portable optical strip reader [62]. A linear
range of 0.5–25 pg/mL with a half maximal inhibitory concentration at 4.17 pg/mL that was 10 times
lower than that (41.25 pg/mL) of the traditional gold nanospheres on test strips.

Field-effect based sensors have attracted considerable attention. Ah et al. [63] demonstrated
an interesting sensor based on the Si field-effect transistor (FET) for AFB1 sensing. The signal was
enhanced by Au nanoparticle charges under dry sensing conditions during an indirect competitive
immunogold assay. Another recent example [64] was based on a graphene field effect capacitive
immunosensor for AFB with a lower LOD of 0.1 fg/mL. It was proven that quantum capacitance
of reduced graphene oxide and effective electrical double layer capacitance dramatically improved
the sensitivity. Its sensitivity was greater than 1.5 times that of previous reports [65]. Park et al. [66]
developed a CMOS compatible Si photosensitive immunosensor with competitive assay approach
based on a CMOS compatible Si photodiode integrated circuit. The signal of open circuit voltage was
transferred to a drain/source current of the FET by the connection of photodiode and FET gate.

Some typical solution-based optical sensing methods were introduced, including labeled (such as
FRET, carbon-dots fluorescence, etc.) and label-free methods (such as electrochemical quartz crystal
microbalance, SPR, etc.). Li et al. [67] illustrated a label-free FRET immunosensor for mycotoxin
determination. The intrinsic fluorescence of tryptophan residues in AFB1 antibodies at 280 nm was
quenched upon binding of specific AFB1 ligands. The Fab fragment was effective quenched by AFB1,
while emission from intact anti-AFB1 was only partially quenched by this mycotoxin. Wang et al. [22]
used an aptamer sensor based on fluorescent nitrogen-doped carbon dots on AuNPs for AFB1 sensing.
Using electrostatic interactions, the prepared N,C-dots were assembled on aptamer/AuNPs. With the
aid of a portable reader, time-resolved fluorescence test strips were used for sensing aflatoxins [68]
and AFM1 [69] in food within 12 min, with LODs of 0.16 µg/kg, and a linear range of 0.48–30.0 µg/kg.

For AFM1 immunosensing, many works focused on the electrochemical method. A DNA-based
immunosensor was developed by Banitaba and coworkers [70]. The gold electrodes were
modified layer-by-layer with a thiol-modified single stranded DNA (ss-HSDNA) probe that
specifically bound AFM1, a self-assembled monolayer of cysteamine and gold nanoparticles.
With K3[Fe(CN)6]/K4[Fe(CN)6], it showed the linear range of 1–14 ng/mL with an LOD of 0.36 ng/mL.
Another strategy to improve the sensitivity was to use DNA-aptamer recognition and electrochemical
impedance spectroscopy detection, allowing a linear range of 20 to 1000 ng/kg with an LOD of
1.15 ng/L [71].

3.2. Zearalenone Sensing

ZEA is primarily the product of Fusarium graminearum, Fusarium culmorum, Fusarium cerealis, and
Fuarium equiseti species growth on cereal crops, such as wheat, corn, barley and so on. ZEA is a known
estrogen agonist and can cause reproductive abnormalities [72].

Photoluminescent semiconductor quantum dot (QD) has received much attention for ZEA sensing.
Using CdSe/ZnS core/shell QD, a non-instrumental qualitative fluorescent-labeled immunosorbent
assay (FLISA) was developed for ZEA sensing in raw wheat samples [73]. The introduction of
QD significantly enhanced its sensitivity, resulting in LOD of 0.03 ng/mL. Compared to traditional
CdSe/ZnS QD, quantum-dot submicrobead (QB) with carboxyl groups has approximately 2800 times
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brighter luminescence, suggesting a higher sensitivity. Based on the QBs, an immunochromatographic
assay (ICA) for ZEA sensing in corn samples was reported. The QB-ICA-based assay obtained an LOD
of 0.0625 ng/mL, which is 5.6 times higher than that of the previously reported AuNP-ICA assay.
Recently, based on CdSe/ZnS QDs, molecular imprinted optosensing material (MIOM) was used
for ZEA sensing in corn, rice and wheat flours [3]. In order to conduct a safer sensing method,
cyclodo-decanyl-2,4-dihydroxybenzoate (CDHB) was used as an alternative to a ZEA template.
The quantification sensing method was obtained by the inverse linear relation between the fluorescence
intensity of MIOM and ZEA concentration. Despite a time-consuming sample pretreatment, MIOM
was used for ZEA determination for the first time.

There are only a few studies on microfluidics for ZEA determination. A sensitive microfluidic
immunosensor based on direct competitive immunoassay was constructed for rapid quantification
of ZEA in feedstuff [74]. The analyst in the sample was capable to compete with ZEA-horseradish
peroxidase (HPR) to bind to the anti-ZEA antibody. A double-T microchip layout electrochemical
immunoassay was developed for the discrimination of ZEA in contaminated infant food samples [18].
The double-T layout served as chambers for the immunological and enzymatic reactions.
By comparison with a calibration curve, the integrated sensor greatly simplified the operation
procedure and reduced the reaction time. Combining a microfluidic chip with electro-kinetics in
a magnetic bead-based electrochemical immunoassay, this “lab-on-a-chip” immunoassay was able to
determine ZEA in both solid and liquid food samples.

Lei et al. demonstrated a label-free amperometric immunosensor based on mesoporous carbon
(MC) and Au@AgPt nanorattles (Au-core and imperfect AgPt-shell structure) for ZEA ultrasensitive
determination [75]. Au@AgPt nanorattles was immobilized on the MC and significantly enhanced the
electron transfer capacity because of the synergistic effect of the Au, Ag and Pt nanoparticles. Anti-ZEA
antibody was loaded onto Au@AgPt and cyclic voltammetry and square wave voltammetry were
employed for ZEA measurement. The decreased peak current is proportional to ZEA concentration.

3.3. Ochratoxin A Sensing

OTA is produced by Aspergillus ochraceus and other srtains of Aspergillus niger and
Penicillium verrucosum [55]. OTA is a Class 2B carcinogen and it has immunotoxicity and mutagenic
effects [76,77].

Microfluidics, microarray and test strip techniques have been used for OTA immunosensing.
Coupling with optical sensing stratergy, some immunosensors were reported. Based on indirect
competitive immunoassay format, a regenerable glass immuno-biochip was developed using an
automated microarray chip reader with chemiluminescence detection [78]. All assay steps of this
immunosensor are automatized, which has potential for on-the-spot determination. The OTA conjugate
was functionalized with a water-soluble peptide for covalent immobilization on a glass biochip
by means of contact spotting. It allowed for at least 20 assay-regeneration cycles. Besides using
chemiluminescence, an integrated microfluidic device based on indirect competitive immunoassay
was developed for OTA quantification in wine samples. All the processes of extraction, concentration,
detection and quantification can be performed in the integrated microfluidics [79]. Using competitive
immunoassay format, an example based on aptamerstrip was developed for semi-quantitative OTA
detection [80]. The sensitivity of the aptamer-based strip was better than that of conventional
antibody-based strips within 10 min. The microfluidic aptamer immunosensor was further combined
with an embedded SERS (surface-enhanced Raman spectroscopy) 2D platform for OTA sensing [81].
Specially, a microfluidic system for rapid and sensitive quantification determination of OTA in apple
samples within 16 min was based on 3-aminopropyl-modified magnetic nanoparticles [82].

The energy transfer principle has attracted high interest. By using energy transfer, several reports
reported were based on chemiluminescence resonance energy transfer (CRET) [83] or FRET [84].
For example, using the intrinsic fluorescence properties of anti-OTA antibody and OTA, a label-free,
direct and noncompetitive homogeneous FRET immunosensor was developed [84]. In this system, the
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FRET signal generated by the OTA and anti-OTA binding was employed for the quantification and
an LOD of 1 ng/mL was obtained. In order to improve the sensitivity, a FRET-based dual-emission
ratiometric fluorescent aptasensor was based on a dual mode of fluorescent sensing (green-emitting
CdTe QDs as donor) and onsite visual screening (red-emitting CdTe QDs) for the first time [85].
The green-QDs and gold nanoparticle (as accepter) were close enough with green-emitting CdTe QDs
during the hybridization reaction, inducing FRET, and an LOD of 1.67 pg/mL was obtained.

SPR or localized SPR (LSPR) can be used for OTA sensing. An aptamer biosensor chip was
developed based on SPR for OTA detection in wine and peanut oil [35]. The quantification was based
on the straightforward direct binding assay. A regeneratable LSPR aptasensor for OTA sensing was
based on a gold nanorod (GNR) and an OTA aptamer [86]. During OTA binding with aptamer, it was
recorded by using a longitudinal wavelength shift of the LSPR peak in accordance with a change in
the local refractive index near the GNR surface, due to the accumulation of OTA and G-quadruplex
structures of OTA aptamers. The reuse of this LSPR aptasensor over seven times was achieved by
heating in methanol at 70 ◦C to remove OTA.

The single-walled carbon nanotubes [29] (SWCN) and graphene oxide [30] were used for
the turn-off sensing method. PVP-protected graphene oxide provided a lower detection limit by
two orders of magnitude in comparison with bare graphene oxide [30]. On the other side, as
a turn-on method, based on the basis of Tb3+, structure-switching aptamer and magnetic beads (MBs),
a turn-on fluorescent aptasensor was developed for the label-free determination of OTA in wheat [87].
The OTA-aptamer G-quadruplex released two single-stranded signal probes. The single-stranded
oligonucleotides greatly enhanced the emission of Tb3+ in solution, thus improving the sensitivity
to 20 pg/mL. Magnetic nanoparticles were introduced as a purification process to enhance the
sensitivity. A sensitive magnetic-fluorescent-targeting aptasensor was manufactured for one-step
detection of OTA [88]. The magnetic-fluorescent-targeting was fabricated by the hybrid reaction
between aptamer immobilized on the magnetic beads and the complementary sequence modified
fluorescent nanoparticles. In the presence of OTA, fluorescent particles would be partially released
due to the competitive binding between OTA and specific OTA aptamer. For wider linear range
and higher sensitivity, Yao et al. [89] developed a biosensor for the OTA measurement integrating
magnetic nanoparticles with rolling circular amplification (RCA). Magnetic nanoparticles were used to
decrease the signal via efficient separation, and RCA was used for the signal amplification. In addition,
the introduction of magnetic nanoparticles can not only enhance the detection sensitivity but also
avoid the time-consuming washing steps. Interestingly, to avoid weak restoration to the original
DNA conformation after repeated uses, a portable optical OTA aptasensor was reported based on
a reversible ligand-grafted biosensing surface [90].

An aptamer-based competitive electrochemical sensor was described for OTA determination
in wheat samples [51]. Magnetic beads were used for separation and immobilized on disposable
screen-printed carbon electrodes (SPCEs). Then, the reaction between the enzymatic product and
substrate was detected with differential-pulse voltammetry. An antibody-based photoelectrochemical
OTA sensor was fabricated by assembly of CdSe QDs sensitized anatase TiO-functionalized electrode
via the layer-by-layer method [91]. With ascorbic acid as an efficient electron donor, the photogenerated
holes under visible-light irradiation were scavenged. The sensitivity was significantly enhanced due
to the band alignment of CdSe and TiO2 in electrolytes.

3.4. Deoxynivalenolsensing

DON is a mycotoxin produced from Fusarium graminearum and F. culmorum [92]. The ingestion of
DON is associated with acute gastroenteritis and vomiting effects.

Some reports focused on the electrochemical immunosensor for DON sensing [93]. Based on the use
of immunomagnetic beads (IMBs) coupled with recombinant anti-DON Fab fragment, Romanazzo [94]
developed an enzyme-linked-immunomagnetic-electrochemical (ELIME) method for DON detection
in cereal and cereal-based food samples. The recombinant anti-DON Fab fragment was used
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as recognition element and the eight magnetized screen-printed electrodes were employed as
electrochemical transducers. Magnetic beads were functionalized by the DON conjugates (conjugate
DON with N,N2 disuccinimdyl carbonated and carbamylated human serum albumin). After the
competitive reaction, bound Fab fragment was loaded onto the magnetized working electrode.
Enzyme substrate was then added to sense DON. Despite the cross-reactivity of 3-Ac-DON, it met
the sensing requests of the DON-contaminated food samples. Based on real-time electrochemical
profiling (REP), an electrochemical immunosensor was fabricated coupled with microfluidics system
for DON determination in wheat grain [95]. The integrated microfluidic system can allow multiplexed
amperometric sensing. In the addition of substrate, the DON concentration was proportional to the
current response with the horse radish peroxidase as a label. Compared to the conventional ELISA,
this system is faster, has the potential to be automated, and is a more user-friendly testing method.

Test strips were successfully used for DON sensing [96]. They contain four-parameter models
and the whole test procedure occurred within 10 min, providing an LOD of 0.3 mg/kg and detection
range of 0–5 mg/kg in wheat samples. This immunosensor exhibits adequate reproducibility and
repeatability, which has potential to be applied as an HACCP (hazards analysis and critical control
points) tool in the cereal food industry. The optical sensors were well investigated, including SPR and
OWLS sensors. Maragos illustrated an immunosensor based on a biolayer interferometry coupled
with colloidal gold signal amplification [97].

3.5. Multiple Mycotoxin Sensing

Some fungi can produce multiple mycotoxins, and food can be contaminated by multiple fungal
species at the same time. Thus, the co-contamination in food becomes a major concern in food safety,
requiring simultaneous sensing methods [98].

Different optical detection technologies, containing fluorescence, chemiluminescence and SPR,
have been developed for the multiple toxins determination. The chemiluminescent method was
employed for the rapid, easy-to-use and high sensitive sensing multiple mycotoxins. A multiplex
enzyme-catalyzed chemiluminescent sensor was developed for sensitive quantification of AFB1

and type-B-fumonisins in maize flour samples [99]. It integrated the indirect competitive test strip
format with a lenseless “contact” imaging configuration, and a charge-coupled device (CCD) camera.
This proposal demonstrated an LOD of 6 µg/kg and 1.5 µg/kg for type-B-fumonisin and AFB1

within 30 min, respectively. An automated flow-through immunosensor was manufactured with a
dedicated chemiluminescence readout, for the measurement of AFs, OTA, FB1 and DON in cereal
samples [100]. Using this immunosensor, all procedures containing extraction, dilution, measurement
and surface regeneration could be completed within 19 min. The microarray was able to be reused at
least 50 times. Hu and his coworkers [101] illustrated a high-throughput fluorescent immunosensor
combing nonfouling polymer brush with competitive immunoassay for the detection of AFB1, OTA
and ZEA. Due to the low nonspecific protein absorption of the brush and the uniform protein loading,
LOD of AFB1, OTA and ZEA were 4, 4, and 3 pg/mL, respectively.

Nanoparticles were used as the fluorescent probe for the fluorescence sensing of multiple
mycotoxins. Wu et al. [102] demonstrated a competitive fluorescence immunoassay using
antibody-modified upconversion nanoparticles as multicolor signal probes for the simultaneous
detection of AFB1 and OTA in maize samples. The use of antigen-functionalized magnetic nanoparticles
(MNPs) greatly improved the sensitivity and selectivity. The sensor provided an LOD of 0.01 ng/mL
for AFB1 and OTA, similar to results from a commercially available ELISA kit. Besides upconversion
nanoparticles, quantum dots were widely used as fluorescent labels. Using quantum dots with different
fluorescent spectrums, multiple targets can be simultaneously detected by scanning at different
wavelengths. An immunochemical sensing technique based on fluorescent immunosorbent assay
(FLISA) was developed for simultaneous screening of multiple mycotoxins (DON, ZEA, AFB1, T-2 and
FB1) in cereal [23]. The cut-off values were 500, 100, 2 and 100 µg/kg for DON, ZEA, AFB1 and T-2
toxins, respectively. Fluorescence-labeled aptamer was also used for the multiple mycotoxin detection
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based on the fluorescence recovery. By utilizing an aptamer-photonic crystal encoded suspension
array, Sun et al. [103] reported a simple assay for the measurement of OTA and FB1. Different aptamer
probes were immobilized on the array, and various fluorescence labeled complementary sequences
hybridized to the corresponding aptamer to generate double DNA sequences. With the addition of
mycotoxins, the fluorescence-labeled complementary sequence would be released from the double
DNA hybrid, leading to the regeneration of the fluoresence. The LOD and linear detection range were
0.25/0.16 pg/mL and 0.01–1/0.001–1 ng/mL for OTA and FB1, respectively.

Immunosensing based on SPR has been extensively used in mycotoxin determinations as
well [104]. Meneely et al. [105] developed a simple, rapid, specific and sensitive screening assay
based on SPR for the simultaneous detection of T-2 and HT-2 toxins in breakfast cereals, wheat and
maize-based baby food. Only a simple extraction procedure was requested for sample preparation.
LODs were reported as approximately 25 µg/g for baby food, breakfast cereal and wheat. Competitive
inhibition immunoassay was conducted with SPR for rapid screening of multiple mycotoxins. Via the
immobilization mycotoxin-labeled BSA on the sensor chip, Tomoyuki and coworkers [37] fabricated
a SPR immunosensor with a simple fabrication within 600 s, including immobilization, activation and
blocking. By using a continuous flow microspotter device, a microarray was fabricated and obtained
for ZEA and DON sensing in maize and wheat samples [36]. Two syringe pumps were used in the
microarray either to deliver the sample extraction or to flush/flow the analyte solution through the
chip surface.

4. Conclusions

Either antibodies or aptamers can be employed in the mycotoxin determination in foods using
advanced sensors. In comparison to antibodies, aptamers possess high sensitivity and specificity,
chemical stability, easy synthesis and regeneration. These studies demonstrated the potential
of mycotoxin determination with an ultra high sensitivity. An important issue for mycotoxin
determination in food samples is the matrix effect. There will be a challenge to reduce the matrix
effect by using a simplified sample preparation, especially in determination of multiple mycotoxins.
A generally simple and effective sample process would improve its reliability. Various determination
formats, including microarrays, test strips, and microfluidic chips were developed. Microfluidic and
microarray devices have huge potential for the construction of low-cost and reusable devices. Despite
the wide range of applications in multiple mycotoxin determination, microfluidic and microarray
sensors might lag in their commercialization. The high throughput and multiple-use properties of
microfluidic and microarray sensors pave the way to the fabrication of an integrated sensing system.
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