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Abstract Apoptosis, especially the intrinsic mitochondrial cell death pathway, is regulated by the BCL-2
family of proteins. Defects in apoptotic machinery are one of the main mechanisms that cells employ to evade
cell death and become cancerous. Targeting the apoptotic defects, either by direct inhibition of BCL-2 family
proteins or through modulation of regulatory pathways, can restore cell sensitivity to cell death. This review
will focus on the aspects of BCL-2 family proteins, their interactions with kinase pathways, and how novel
targeted agents can help overcome the apoptotic blockades. Furthermore, functional assays, such as BH3
profiling, may help in predicting responses to chemotherapies and aid in the selection of combination therapies
by determining the mitochondrial threshold for initiating cell death.
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1. Targeted therapies fueled by the discovery of cancer
genome and signaling webs

In 2003, the human genome project was pronounced completed,
after thirteen years of U. S. National Institutes of Health (NIH)
leading multi-national research efforts. The “finish” period has
continued since the final version of sequences was published in the
journal Nature in 20041, and more detailed information for the
human genome has yet to be revealed. With the evolutionary
development of sequencing and computing technology, which lead
to a drastic decrease in costs for sequencing (from 100 million to
1000 dollars per genome2), and possible interpretation of the
results, the focus of current DNA sequencing is naturally oriented
towards human diseases. And cancer is one of them; the discovery
of important gene variants/mutations in cancer genome has
changed treatment regimens and benefits many cancer patients.
The most exciting examples are mutations uncovered in epidermal
growth factor receptor (EGFR) and BRAF in lung cancer3 and
melanoma4, respectively.

In parallel, proteomics is expanding its web to the most of the
signaling networks governing our physiological functions. New
nodes and loops continue to be discovered, and novel interventions
are being tested and exploited in disease treatments. In 2015, the
U. S. Food and Drug Administration (FDA) approved 45 novel
drugs, including four used to treat multiple myeloma5. About a
decade ago, most chemotherapies were limited to conventional
pan-cytotoxic drugs that targeted DNA or microtubules such as the
CHOP regimen (cyclophosphamide, hydroxydaunorubicin,
oncovin-vincristine and prednisone), which cured millions of
people of otherwise fatal diseases, but also were accompanied
by severe side effects due to damage to healthy tissues. At present,
targeted agents, newly approved or in clinical trials, are more
precise and bring the overall response rates to much higher levels
than before. This is true even for subgroups with adverse
prognostic features and those who respond poorly to conventional
therapies, especially in hematological cancers demonstrated at the
annual meeting of American Society of Hematology—ASH 2015
(Orlando, FL, USA). In April, 2016, following promising activity
in its clinical trials6,7, the selective BCL-2 inhibitor venetoclax
(AbbVie) was approved by the FDA8 for chronic lymphocytic
leukemia (CLL) with chromosomal abnormalities, and it becomes
the first-in-class direct inhibitor targeting BCL-2 family proteins
that has got approved. With so many novel agents and biomarkers
emerging, there is no doubt that cancer research and therapies have
entered a new era, in which hopefully more cancers will become
manageable in the near future.

Regardless of their categorization as conventional or targeted
therapies, most of chemotherapies kill cancer cells via the
apoptotic cell death pathway. In this review, the focus will be
on research progress made on this intrinsic mitochondrial cell
death pathway regulated by B-cell lymphoma 2 (BCL-2) family
proteins; on targeted therapies that have been developed to
intervene in its dysfunction in cancers; and how we can use
BH3 profiling, a functional assay measuring mitochondrial prim-
ing, to predict patient responses and provide guiding information
for potential combination therapies.
2. Apoptosis is regulated by BCL-2 family proteins

Apoptosis, which includes both extrinsic and intrinsic pathways, is
one of the most important forms of cell death in multicellular
organisms. The intrinsic cell death pathway is regulated mostly by
BCL-2 family proteins residing in or recruited to the mitochondria
after death insults imposed on cells9,10. The BCL-2 family
comprises both anti- and pro-apoptotic proteins. Anti-apoptotic
proteins include at least BCL-2, BCL-xL, MCL-1, BCL-w and
BFL-1. High expression of anti-apoptotic proteins, especially
BCL-211–14, BCL-xL15 and MCL-116–20, has been shown in
various types of cancers, and they play important roles in
tumorigenesis in different tumor models 9,21–25. Pro-apoptotic
proteins can be further divided into two subgroups, including
multi-domain proteins, like the death effectors/executioners BAX
and BAK; and BH3-only proteins, like activators BIM, BID and
PUMA, or sensitizers including BAD, NOXA, HRK and BMF.
Recently, BOK, a non-canonical BCL-2 family effector of
apoptosis, has been shown to mediate cell death triggered by
endoplasmic reticulum (ER)-associated degradation independent
of BAX and BAK, or when BAX/BAK are absent and cells are
overwhelmed by unfolded proteins26.

The interactions within the BCL-2 family members are com-
plex, and the interplay of anti- and pro-apoptotic proteins
determines cell fate (see Fig. 1). The activation of BAX, BAK
or BOK (in some circumstances)26 can lead to their oligomeriza-
tion, which forms pores in the mitochondrial outer membrane and
resulting the release of cytochrome c27,28. Thus mitochondrial
outer membrane permeabilization (MOMP) is generally considered
a point-of-no-return, and triggers downstream caspase activation,
proteolysis and DNA fragmentation. Different apoptotic block-
ades, resulting from BCL-2 family protein interactions, in which
pro-death signals were sequestered or counteracted by anti-
apoptotic proteins, have been observed in cancer cells as a means
for cells to evade apoptosis29.

Apoptosis is initiated at mitochondria; however, the regulation
of BCL-2 family proteins is tightly controlled by upstream
signaling networks, from receptors on cell surface to transcription
factors residing in the nuclei. There are usually two sets of
regulations when cells face death insults. One is to upregulate
pro-death signals and the other is to downregulate anti-death
factors. For example, pro-apoptotic protein BIM-EL is kept low
through phosphorylation (by extracellular signal-regulated kinase
—ERK30) mediated degradation when cells are stimulated with
growth signals, but its protein level can be stabilized and increased
when the ERK pathway is inhibited. BIM can be induced
transcriptionally by transcription factor FOXO3A31,32 when it is
translocated to nuclei after PI3K/AKT inhibition. AKT can
phosphorylate BAD33,34 and BAX35,36, and regulate their pro-
apoptotic functions. BID37, PUMA38, NOXA39 and BAX40 are
targets of p53 transcription factor, and their induction by p53 in
response to DNA damage or other death insults keep cells in
balance between cell cycle arrest and cell death. Besides p53,
PUMA can also be transcriptionally regulated by FOXO3A41. On
the other hand, for anti-apoptotic proteins, BCL-242, BCL-xL43 and
BFL-144 are target genes of NF-κB signaling, which is consistent
with the pro-survival function of the NF-κB pathway. The anti-
apoptotic function of these proteins also can be modulated by
phosphorylation45–47. Nevertheless, the best example of phosphor-
ylation and its sub-sequential effects on apoptosis lies in MCL-1.
This short half-life protein can be rapidly degraded via the
proteasome pathway after phosphorylation by glycogen synthase
kinase-3 (GSK-3) in the AKT pathway48,49. The mutation of E3
ligase FBW7 and resulting stabilization of MCL-1 protein
is critical in tumorigenesis of T- acute lymphocytic leukemia



Figure 1 The schema of the BCL-2 family proteins and their regulation by signaling pathways and targeted therapies.
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(T-ALL)50, and determines the sensitivity of cancer cells to anti-
microtubule drugs51.

Thus far, the genetic mutations harbored by BCL-2 family
proteins are uncommon (more indeed will be discovered when
more cancer genomes are sequenced), but other chromosomal
abnormalities exist, which can lead to the upregulation of BCL2
family proteins. For instance, the amplification of MCL-1 gene
locus is often associated with a variety of tumors, including breast
cancer and non-small cell lung cancer (NSCLC)22. Chromosomal
(t14;18) translocation in follicular lymphoma39,52,53 and diffuse
large B cell lymphoma54 is critical for BCL-2 overexpression and
oncogenesis in those types of cancers. Other means that cancer
cells employ to counteract cell death include microRNAs. It has
been discovered that they can negatively regulate anti-apoptotic
proteins. For example, miR-15a and miR-16-1 regulate BCL-2 in
CLL55, let-7 family56, miR-49157 and miR-133a58 for BCL-xL
(miR-133a can also target MCL-1), and miR-19559 for BFL-1.
Downregulation of these inhibitory microRNAs would elevate
anti-death proteins, which then initiate tumorigenesis or drug
resistance.
3. Modulating the apoptotic machinery with kinase
inhibitors

As illustrated above, the regulation of BCL-2 family proteins is
tightly connected with pro-survival signaling networks, including
NF-κB, phosphatidylinositol-3-kinase (PI3 kinase, PI3K), and
other pathways which serve as barometers for the abundance of
nutrients in the microenvironment. In the last decade or so, the
roles of these pro-survival pathways have been illuminated by
cancer genome sequencing, proteomics and other systematic
approaches. As such, kinase inhibitors have been developed to
inhibit those pathways. Some of these inhibitors have brought in
important clinical applications.
Indeed, each type of cancers has selected unique pathways
during their tumorigenesis, and specific inhibitors will be required
to target the unique pathway and trigger cell death accordingly.
Erlotinib and gefitinib are inhibitors targeted the activating
mutations in EGFR3 discovered in some of NSCLC patients.
The pro-apoptotic proteins BIM and PUMA are induced by EGFR
inhibition and trigger downstream apoptotic signaling in these
cells60–62. In BRAF-mutant melanoma, BIM, PUMA, and BMF
are reported contributing to the apoptosis induced by BRAF and/or
MEK inhibitor treatments63. BIM and BAD trigger the apoptotic
response to imatinib treatments in chronic myelogenous leukemia
(CML)64. Conversely, downregulation of the anti-apoptotic MCL-1
protein by PI3K-mTORC1 inhibition can act together with BIM
induction in EGFR-mutant cells to induce tumor regression65.

Most recently, inhibitors against Bruton's tyrosine kinase
(BTK), which is downstream of the B-cell receptor (BCR)
pathway, have shown promising clinical activity in B-cell malig-
nancies. Ibrutinib (developed by Pharmacyclics) is the first
generation BTK inhibitor, and was approved by the FDA for
mantle cell lymphoma (MCL) in 2013 and for CLL in 201466. A
71% overall response rate was reported in the original clinical trial
for CLL and small lymphocytic lymphoma (SLL), which was
independent of clinical and genetic risk factors such as 17p
deletion67. However, ibrutinib has relatively poor selectivity.
Besides BTK, it also can inhibit other kinases such as
interleukin-2-inducible T-cell kinase (ITK)66. Second generation
BTK inhibitors were designed for better selectivity for BTK to
avoid off-target effects. A recent report for a phase I–II clinical
trial for one of such second generation inhibitors, acalabrutinib
(ACP-196, Acerta Pharma), has demonstrated robust clinical
activities68. In that trial with acalabrutinib, a 95% overall response
rate was achieved in relapsed CLL patients, and it is also
efficacious in patients bearing 17p deletion (100%), a subgroup
that has been associated with poor prognosis.



Figure 2 Targeted therapies can modulate the mitochondrial priming probed by BH3 profiling. MOMP, mitochondrial outer membrane
permeabilization.
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Despite their encouraging clinical activities, it is still unclear
how ibrutinib or acalabrutinib kill cancer cells. They may trigger
the PI3K-mTOR pathway and upregulate pro-apoptotic BH3-only
proteins like BIM69. The real mechanism of actions for these BTK
inhibitors has yet to be fully understood since these agents don't
elicit cell death quickly in vitro66 (as opposed to the BCL-2
inhibitors described below). Lymphocytosis has been observed for
ibrutinib67 and acalabrutinib68, suggesting that these agents may
inhibit the interaction between cancer cells and microenvironment,
and displace cancer cells from protective compartments, which in
turn generates pro-death signals like BIM and kills cells.

Taken together, indirect induction of BH3-only proteins or
reduction of anti-apoptotic proteins by kinase inhibitors can play a
central role in inducing cell death in cancers driven by constitu-
tively activated oncogenic kinases, such as BCR-ABL, EGFR,
BRAF, KRAS, BTK, some of which are described here.
4. Direct modulation of the apoptotic pathway with
inhibitors for BCL-2 family proteins

The main concern for kinase inhibitors is feedback inhibition
within the same or proximal pathways, which would hinder the
effectiveness of these agents in killing cancer cells. Agonists or
inhibitors of BCL-2 family proteins, act directly on apoptotic
machinery. Such modulators can overcome the problems of
inhibiting kinase pathways, and have thus been explored and
developed by pharmaceutical companies.

One new approach to modulate BCL-2 family proteins is to
enhance the pro-apoptotic functions. Stapled peptides based on
BH3-only proteins, constructed using non-natural amino acids
designed to protect peptides from proteolysis, have been tested in
the pre-clinical setting70,71. Further clinical development of these
modified peptides is necessary in order to benefit patients, as they
may have difficulty entering cancer cells.

For inhibitors of the anti-apoptotic proteins, early attempts
included using natural products identified from chemical library
screening (like gossypol and other natural polyphenols) for their
inhibitory effects on BCL-2 and BCl-xL72. However, none of
these compounds have become drugs for clinical usage. Novel
agents, based on medicinal chemistry and/or structure-activity
relationship, have since been developed. These inhibitors include
the antisense oligonucleotide oblimersen (Genasense, by Genta),
the pan-inhibitor obatoclax (by Teva) and the ABT737/ABT263
(navitoclax)/ABT199 (venetoclax) series (by AbbVie). Oblimersen
is a single-stranded 18-mer DNA molecule complementary to
BCL-2 mRNA, and it had been shown to inhibit BCL-2 protein
expression, presumably by inducing degradation of BCL-2 mRNA.
Despite some evidence of benefits in phase I studies of CLL,
myeloma and melanoma, oblimersen was not effective in a phase
III study in myeloma, and only modestly beneficial when added to
fludarabine in a phase III study of CLL73. Thus oblimersen did not
receive FDA approval and further development of the drug was
not pursued. Obatoclax (GX-15-070) is considered a pan-inhibitor
to the BCL-2 family since it can bind to the BH3 domain of BCL-2,
BCL-xL and MCL-174. Clinical trials for obatoclax showed
only modest efficacies for CLL75, but no benefit for myelofibro-
sis76 or small cell lung cancer (SCLC)77. Furthermore, the
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neurological side effects limited its further clinical development77,
and the drug was not approved by the FDA.

The most potent and selective BCL-2 inhibitors are those
developed by AbbVie. As mentioned above, the first-in-class
BCL-2 inhibitor venetoclax has just been approved by the
FDA8. ABT737, the first generation BCL-2 inhibitor by AbbVie,
is a BH3-mimetic of the BAD BH3-only protein78. ABT263
(navitoclax) is an orally bioavailable counterpart of ABT73779.
Both molecules can inhibit BCL-2, BCL-xL and BCL-w with a
binding affinity on the order of 10 to 10,000 times greater than
other molecules, including obatoclax80. These are large (nearly
1000 Da) compounds that mimic the amphipathic BH3 domain's
α-helices. As such, they compete for the BH3-binding sites on
anti-apoptotic proteins, freeing pro-apoptotic proteins from seques-
tration. These freed pro-apoptotic proteins then activate BAX/
BAK, which in turn form the outer mitochondrial membrane
pores, triggering downstream caspase activation and cell death
(Fig. 2). ABT737 has poor oral bioavailability and has been
limited to pre-clinical research. Navitoclax, however, has been
limited in progressing through clinical trials due to thrombocyto-
penia, an on-target effect on BCL-xL that is required for platelet
function81. Even with that stated, specific BCL-xL inhibitors like
WEHI-53982, A-1155463 and A-133185283,84 are also under
development. Perhaps, with better dose management, supportive
care, and combination therapy, BCL-xL inhibitors can still bring
benefits to patients with BCL-xL-dependent cancers85,86, which
are more common in solid tumors87.

The problem of thrombocytopenia triggered by navitoclax led to
the reengineered development of venetoclax, an inhibitor with
better selectivity for BCL-2. It has reduced affinity for BCL-xL by
three orders of magnitude88. Venetoclax rapidly kills malignant
cells through the intrinsic mitochondrial apoptosis pathway, and is
selective for cells dependent on BCL-2, but not those dependent
on BCL-xL88. In preclinical models, the drug exhibited efficacy
against a wide variety of tumor types, including leukemia, non-
Hodgkin lymphoma (NHL), and myeloma, with no significant
thrombocytopenia observed in in vivo models89.

As a single agent, venetoclax has recently demonstrated robust
clinical efficacy. A paper published by Roberts and colleagues6

reports results of a phase I clinical trial for relapsed CLL, which
depends on BCL-2 for survival90. Among the 116 patients who
received venetoclax, 92 (79%) of them had a response. Even more
encouraging is the response rate (from 71% to 79%) among
patients from the subgroups with an adverse prognosis, including
those with resistance to fludarabine, those with chromosome 17p
deletion and those with unmutated IGHV (Immunoglobulin heavy
chain variable region). In the phase-II trial reported by Stilgen-
bauer and colleagues7, an overall response rate of nearly 80% was
also achieved among patients with 17p deletion, marking veneto-
clax a promising new treatment option for patients with poor
prognostic features.

Neither navitoclax nor venetoclax inhibits MCL-1, the anti-
apoptotic protein that not only plays critical roles in multiple
myeloma91, mantle cell lymphoma16 and some solid tumors18,24,92,
but is also involved in drug resistance to ABT73793,94, anti-
tubulin51 chemotherapy and other cancer drugs. Currently, specific
MCL-1 inhibitors for clinical applications are lacking. However,
its short half-life feature has been exploited in the setting of kinase
and cell cycle inhibition, which can lead to either translational or
transcriptional repression of MCL-1 protein or transcript, as seen
following treatment with PI3K-mTOR inhibitors or cyclin-
dependent kinase (CDK) inhibitors like flavopiridol95 and
roscovitine96.

As described above, obatoclax is a pan-BCL-2 inhibitor that can
inhibit MCL-1 as well as BCL-2, BCL-xL and BCL-w, but the
clinical activity of this agent has been disappointing due to modest
anti-cancer activity and neurological toxicity. Besides obatoclax,
apogossypol derivative BI97C1 (sabutoclax) has been reported to
inhibit BH3 peptide binding to BCL-2, BCL-xL and MCL-197.
Apogossypolone is a third generation gossypol derivative,
designed to effectively target MCL-1. One of the structure
derivatives is BI97D6, which has displayed a higher selectivity
for MCL-1 over BCL-2 or BCL-xL, and can overcome ABT737
resistance by acting on MCL-198. However, these inhibitors lacked
the potency to induce similar extents of death in BCL-2, BCL-xL
or MCL-1 dependent cells, indicating that they are weak inhibitors
for BCL-2 family proteins87. By analogy to the development of
ABT737, several groups have generated specific small molecule
inhibitors for MCL-199. Advances in pre-clinical models raise the
possibility that potent and selective MCL-1 inhibitors may be
available for clinical examination in the near future.

The inhibitors described in this section have been developed
aiming to antagonize the up-regulation of ant-apoptotic proteins
during tumorigenesis, such as BCL-2, BCL-xL or MCL-1. The
effectiveness of these types of inhibitors depends on the functional
intact of death executioners BAX/BAK or BOK, and depends on
the overall priming of cells, which can be fluctuated by co-
expression levels of BCL-2 family proteins. Resistant or refractory
to killing can occur if anti-apoptotic factors can't be overcome by
the inhibitors. A new type of peptide, amphipathic tail-anchoring
peptide (ATAP) derived from BFL-1, a bifunctional BCL-2 family
member, can bear pore forming property, trigger MOMP and
release cytochrome c independent of BAX/BAK and other BCL-2
family proteins, even other cellular factors100. This unique feature
relies on its intrinsic mitochondrial targeting sequence101. Once
linked to an internalized RGD peptide, selective targeting for
ATAP to tumor cells can be achieved and their ability to kill
cancer cells has been demonstrated in prostate cancer cell lines and
their xenograft models102. While these data suggest modified
ATAP peptides can potentially be therapeutic agents, the mechan-
ism of action of this type of peptides, especially their connection
with BCL-2 family or other mitochondrial proteins, and the
determinants of future patient response, remain to be identified.

5. Combination therapies and predicting patient response
with BH3 profiling

Despite the high response rates reported in recent clinical trials in
CLL for the second generation BTK inhibitor acalabrutinib
(95%)68 and BCL-2 inhibitor venetoclax (79%)6, the complete
response (CR) rate is low. All responses for acalabrutinib are
partial, and only 20% CR is achieved by venetoclax. Furthermore,
resistance to mono-therapy will inevitably occur103. This raises the
question of what should be combined with these novel agents in
order to achieve better efficacy in treating patients. Answering this
question is even more important in liquid cancers with less optimal
response, or in solid tumors, which have been in general very
refractory to the BCL-2 inhibitors described here (with the



Regulating BCL-2 family proteins to kill cancers 23
exception for some SCLCs that are dependent on BCL-2 for
survival)87.

For liquid cancers, another example supporting the need for
combination therapy comes from the clinical trial with elderly
acute myelogenous leukemia (AML) patients. Used as a single
agent in elderly AML patients, venetoclax had only achieved a
modest response rate (19% objective response rate including 6%
CR104). Indeed, AML is a much different disease than CLL, and
AML in the elderly is known to have a poor response to the
standard induction therapies like cytarabine and daunorubicin due
to its more aggressive disease biology and toxicity from these
therapies. However, combining venetoclax with hypo-methylating
agents (decitabine or azacitidine) has led to overall response rates
of 75% (combining with decitabine) and 70% (with azacitidine) in
treatment-naïve elderly patients (Z 65 years), who were not
eligible for standard therapies105. Thus the combination therapies
have greatly improved the drug's efficacy.

So, what should be combined? Since BCL-2 family members
play such a central role in regulating intrinsic mitochondrial cell
death, they may have the potential to serve as biomarkers -
predicting treatment responses or guiding the choice of combina-
tion therapies. A functional assay developed by the Letai group
known as BH3 profiling measures mitochondrial priming resulting
from the interaction of BCL-2 family proteins29,90. Using synthetic
BH3 peptides based on the BH3 domains of the BH3-only
proteins, cells can be profiled to measure their distance from the
apoptotic threshold106,107 (Fig. 2). Highly primed cells, containing
mitochondria that can be permeabilized with relatively low doses
of BH3 peptides, are those that are very close to the threshold of
apoptosis. BH3 profiling, or dynamic BH3 profiling108 (DBP, a
variant of BH3 profiling focusing on priming changes after drug
treatments), have been tested in various preclinical models109–112.
Using pretreatment samples from patients on the venetoclax trial
(M12-175), we performed BH3 profiling and found that the extent
of mitochondrial depolarization induced by a BIM BH3 peptide
in vitro was correlated with percentage reduction of CLL in the
blood and bone marrow in vivo, while the lethal concentration
(LC50) derived from standard cytotoxicity assays was not; and the
mitochondrial responses to peptides were independent of 17p
status113. These data support further assessment of BH3 profiling
as a predictive biomarker for this novel agent and other therapies.

In addition to baseline BH3 profiling of patient samples, DBP
can be even more useful in assessing mitochondrial priming
or apoptotic threshold changes after therapeutic intervention.
Theoretically, two drugs from distant pathways would be less
likely to develop overlapping resistance or feedback inhibition.
Using DBP, we explored the possible combination of ibrutinib
with venetoclax, and the mechanism underlying the efficacy of this
combination. We have discovered that even though ibrutinib does
not elicit frank cell death, it can increase mitochondrial BCL-2
dependence, and sensitize CLL cells to the BCL-2 inhibitor
venetoclax114. Thus, by increasing our understanding of the
mechanism of action of novel agents on apoptosis, BH3 profiling
can provide guiding information on what compounds to combine
to achieve enhanced drug efficacy.
6. In conclusion

Cancer therapy has entered a new era, with huge data sets
generated over the last decade from cancer genome sequencing
and other big data molecular approaches using cancer patient
samples. This provides a greater opportunity to understand the
cause of tumorigenesis, and uncover novel therapeutic targets.
Nonetheless, the overwhelming information could also hinder the
process of turning these discoveries into clinical benefits. The
ultimate goal for any therapy is to kill cancer cells, and to cure
patients115. With apoptosis converging on the BCL-2 family to
execute the killing decision, understanding BCL-2 family proteins,
their interactions and their context within other singling networks,
will shed light on the effectiveness of chemotherapies and optimal
combinations. The continued development of our BH3 profiling
system and other biomarkers116 (for instance, DR_ MOMP)117,118,
perhaps can help to provide guiding information in patient and
drug selection in the future.
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