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Abstract

The freshwater family Siluridae occurs in Eurasia and is especially speciose in South and Southeast Asia, representing
an important aquaculture and fishery targets. However, despite the restricted cytogenetic data, a high diploid number
variation (from 2n=40 to 92) characterizes this fish group. Considering the large genomic divergence among its spe-
cies, silurid genomes have experienced an enormous diversification throughout their evolutionary history. Here, we aim
to investigate the chromosomal distribution of several microsatellite repeats in 12 Siluridae species and infer about their
possible roles in the karyotype evolution that occurred in this group. Our results indicate divergent patterns of
microsatellite distribution and accumulation among the analyzed species. Indeed, they are especially present in signifi-
cant chromosome locations, such as the centromeric and telomeric regions, precisely the ones associated with several
kinds of chromosomal rearrangements. Our data provide pieces of evidence that repetitive DNAs played a direct role in
fostering the chromosomal differentiation and biodiversity in this fish family.
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Introduction

The freshwater family Siluridae ranges in Eurasia, but

containing the higher number of species in South and South-

east Asia (Bornbusch, 1995; Kottelat, 2013), with 103 rec-

ognized species (Fricke et al., 2019), thus representing

important aquaculture and fishery targets. Silurid species

show a significant size diversity, such as Silurus glanis,

reaching over 300 kg in weight and 2m in size (Linhart et al.,

2002) and Silurus soldatovi, that reaches 400 kg in weight

and up to 4m in size (Berg, 1964), while others are much

smaller, being used as ornamental fishes (Ng et al., 1994;

Chapman et al., 1997; Ng and Ng, 1998;) or biological indi-

cators (Ng and Lim, 1992; Ng and Ng, 1998). The mono-

phyletic status of Siluridae is supported and confirmed by

both morphological and molecular data (Bornbusch, 1995;

Hardman, 2005), and, altough their phylogenetic position

was doubtful for many years (Bornbusch, 1995; Hardman,

2005; Sullivan et al., 2006), a recentl study placed this fam-

ily in the root of taxon Siluroidea (Kappas et al., 2016).

Cytogenetical studies in Siluridae are still mostly re-

stricted to conventional cytogenetic protocols, with some ex-

ceptions where the molecular cytogenetic approach has been

used (Verma et al., 2011; Ditcharoen et al., 2019). However,

despite the restricted cytogenetic data, a high 2n variation

characterizes this fish group, ranging from 40 in Silurichthys
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phaiosoma (Ditcharoen et al., 2019) to 92 in Kryptopterus

cryptopterus (Donsakul and Magtoon, 1996) and Kryptop-

terus geminus (Ditcharoen et al., 2019). It is also known that

Phalacronotus is the only genus that maintains the diploid

number conservation with 2n = 64 in all analyzed species,

while other genera in this family display a substantial varia-

tion (Ditcharoen et al., 2019). On the mapping of highly re-

petitive sequences, the high 2n variation also appears to be

followed by a large variation of ribosomal DNAs loci among

silurid species (Ditcharoen et al., 2019). Considering the ex-

tensive genomic reorganization, as revealed by CGH (com-

parative genomic hybridization), it is evident that silurid

genomes have experienced an enormous diversification

throughout their evolutionary history (Ditcharoen et al.,

2019).

Microsatellites are repetitive DNA sequences, varying

from one to six nucleotides, found in genomes of all euka-

ryotic organisms (Cioffi and Bertollo, 2012; López-Flores

and Garrido Ramos, 2012). These repeats can also be associ-

ated with coding regions of structural genes and between

other repetitive sequences (Tautz and Renz, 1984), contrib-

uting to the functional and structural organization of the ge-

nome (Schueler et al., 2001). Fish genomes usually have

microsatellites distributed throughout telomeric and centro-

meric regions of autosomal and sex chromosomes, associ-

ated with other repetitive DNA sequences (Cioffi and

Bertollo, 2012). Additionally, repetitive DNAs have an im-

portant role in speciation, differentiation of sex-specific re-

gions, and promotion of biodiversity (Vicari et al., 2005;

Cioffi et al., 2009; Sember et al., 2018). Therefore, here we

analyzed the chromosomal location several microsatellites

repeats to explore the intergenomic divergence at the chro-

mosomal level in 12 Silurid species; the sampling resembles

the one previously analyzed by Ditcharoen et al. (2019) with

different cytogenetic methods. Indeed, our recent result pro-

vided new insights into the karyotype differentiation of this

fish group, with a better understanding of the chromosomal

organization of repetitive DNAs and uncovering chromo-

some homologies and differences among the studied species.

Material and Methods

Twelve silurid species were collected in the river bas-

ins of Thailand (Figure 1, Table 1). All individuals were de-

posited in the fish collection of the Cytogenetic Laboratory,

Department of Biology, Faculty of Science (Khon Kaen

University). The procedures followed ethical protocols and

anesthesia was conducted with clove oil before euthanasia,

as approved by the Institutional Animal Care and Use Com-

mittee of Khon Kaen University, based on the Ethics of Ani-

mal Experimentation of the National Research Council of

Thailand IACUC-KKU-10/62.

Chromosomes were obtained by the classical air-

drying method from kidney cells (Bertollo et al., 2015). The

preparations were then dropped onto clean glass slides at 55

°C and stained with Giemsa 5%. The hybridization proce-

dure was taken under high stringency conditions (Yano et

al., 2017), with six microsatellites as probes [(CA)15,

(CAC)10, (CAT)10, (GC)15, (CGG)10, (A)30] directly labeled

with Cy-3 during the synthesis (Kubat et al., 2008). These

sequences were selected from a pool of microsatellite re-

peats since they are commonly accumulated in several fish

genomes (e.g. Nanda et al., 1990; Vanzela et al., 2002; Mar-

tins, 2007; Cioffi et al., 2011; Cioffi and Bertollo, 2012;

Poltronieri et al., 2014; Cioffi et al., 2015; Pucci et al., 2016;

Ráb et al., 2016; Sassi et al., 2019; Supiwong et al., 2019)

We performed at least three repetitions for each exper-

iment and analyzed at least 30 metaphases per experiment to

check the consistency of the results. Images were captured

using an Olympus BX50 microscope (Olympus Corpora-

tion, Ishikawa, Japan) with CoolSNAP and processed using

Image-Pro Plus 4.1 software (Media Cybernetics, Silver

Spring, MD, USA).

Results

The microsatellite (CA)15 revealed a telomeric pattern

of accumulation in all chromosomes of all species (Figure

2), except for Kryptopterus geminus, where small telomeric

signals occured in addition to strong centromeric ones in

some other chromosomes. Similarly, the microsatellite

(CAC)10 also had a telomeric distribution on chromosomes

(Figure 3), but again with an exception, in this case for

Silurichthys phaiosoma which had only strong centromeric

and telomeric signals in two acrocentric pairs, a larger and a
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Figure 1 - Map of Thailand highlighting the collection sites of Silurid

fishes studied herein. The numbers represent the different species sampled

as shown in Table 1. The map was produced using the software QGis 3.4.4

(https://qgis.org), Inkscape 0.92 (https://inkscape.org), and Adobe

Photoshop CC 2015 (San Jose, CA, USA).



smaller one, respectively. However, separate scattered sig-

nals were also observed in several other chromosomes. As to

the microsatellite (CAT)10, all species have scattered telo-

meric hybridization signals (Figure 4). In turn, a very diverse

distribution pattern was observed for the microsatellite

(GC)15 (Figure 5), where a dispersed distribution of small

signals occurred in all chromosomes of Belodontichthys

truncatus, Kryptopterus bicirrhis, K. geminus and K. macro-

cephalus. However, in Micronema cheveyi, Ompok fumidus,

O. siluroides, Phalacronotus apogon, P. bleekeri, and Wal-

lago attu, hybridization signals occurred in the centromeric

and telomeric regions of almost half chromosomes of the

complement. Yet, in Kryptopterus limpok and Silurichthys

phaiosoma only a single pair of chromosomes were labeled

in the centromeric region with such probe. The microsa-

tellite (CGG)10 had a very contrasting distribution compared

to the other microsatellites. In this case, only one chromo-

some pair has telomeric signals in the p arms, in all twelve

species analyzed (Figure 6). The microsatellite (A)30 was the

only one not found in any of the examined species (data not

shown).

Discussion

The role of repetitive DNAs in the genome evolution

has been documented for different fish groups (Cioffi et al.,

2010; Cioffi and Bertollo, 2012; Terencio et al., 2013; Yano

et al., 2014; Cioffi et al., 2015; Moraes et al., 2017, 2019;

Sassi et al., 2019). Worthy of note is the great evolutionary

diversification that Siluriformes fishes have experienced, es-
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Table 1 - Species analyzed, collection sites and the number of analyzed individuals (n).

Species Locality n

1. Belodontichthys truncatus Chao Phraya Basin 04f; 04m

14°52’17.3"N 100°24’32.3"E

Ton Pho, Mueang Sing Buri District, Sing Buri

2. Kryptopterus bicirrhis To Daeng peat swamp forest 07f; 08m

6°04’34.0"N 101°57’46.0"E

Puyo, Su-ngai Kolok District, Narathiwat

3. Kryptopterus geminus Chao Phraya Basin 08f; 11m

14°52’17.3"N 100°24’32.3"E

Ton Pho, Mueang Sing Buri District, Sing Buri

4. Kryptopterus limpok Songkhram Basin 07f; 10m

17°59’37.8"N 103°26’54.2"E

Dong Mo Thong Tai, Ban Muang District, Sakon Nakhon

5. Kryptopterus macrocephalus To Daeng peat swamp forest 06f; 06m

6°04’34.0"N 101°57’46.0"E

Puyo, Su-ngai Kolok District, Narathiwat

6. Micronema cheveyi 14°52’17.3"N 100°24’32.3"E 09f; 10m

Ton Pho, Mueang Sing Buri District, Sing Buri

7. Ompok fumidus To Daeng peat swamp forest 05f; 07m

6°04’34.0"N 101°57’46.0"E

Puyo, Su-ngai Kolok District, Narathiwat

8. Ompok siluroides To Daeng peat swamp forest 04f; 05m

6°04’34.0"N 101°57’46.0"E

Puyo, Su-ngai Kolok District, Narathiwat

9. Phalacronotus apogon Chi Basin 06f; 05m

16°13’35.5"N 103°19’30.6"E

Tha Khon Yang, Kantharawichai District, Maha Sarakham

10. Phalacronotus bleekeri Chi Basin 07f; 04m

16°13’35.5"N 103°19’30.6"E

Tha Khon Yang, Kantharawichai District, Maha Sarakham

11. Silurichthys phaiosoma To Daeng peat swamp forest 04f; 06m

6°04’34.0"N 101°57’46.0"E

Puyo, Su-ngai Kolok District, Narathiwat

12. Wallago attu Songkhram Basin 03f; 04m

17°59’37.8"N 103°26’54.2"E

Dong Mo Thong Tai, Ban Muang District, Sakon

f: female. m: male.



pecially at the chromosomal level. Here, six mono-, bi- and

tri-nucleotide microsatellite sequences were mapped on

chromosomes of twelve Siluridae species. Except for (A)30-,

which was not found to occur in any of the analyzed species,

all other probes generated ell visible hybridization patterns.

However, highly divergent distributions have been found,

even among congeneric species, as observed in Kryptop-

terus. Accordingly, this genus displays different 2n, karyo-

types and an extensive variation of their repetitive DNA con-

tent (Ditcharoen et al., 2019). On the other hand, the Phala-

cronotus species had a similar distribution pattern among

chromosomes, probably linked to their chromosomal-con-

served characteristics, since they share similarities in both

karyotype and genome features (Ditcharoen et al., 2019). It

is also remarkable that the same kind of microsatellite did

not present the same pattern among silurids. Indeed, very

different hybridization patterns for the same microsatellite

occur among distinct species, as for the (CA)15, (GC)15 and

4 Ditcharoen et al.

Figure 2 - Hybridization pattern of the (CA)15 microsatellite probe (in red) on metaphase chromosomes of Belodontichthys truncates (1); Kryptopterus

bicirrhis (2); Kryptopterus geminus (3); Kryptopterus limpok (4); Kryptopterus macrocephalus (5); Micronema chevevi (6); Ompok fumidus (7); Ompok

siluroides (8); Phalacronotus apogon (9); Phalacronotus bleekeri (10); Silurichthys phaiosoma (11) and Wallago attu (12). Scale bar = 5 �m.



(CAC)10 probes, for example, although mostly restricted to

centromeric and telomeric regions, where a significant frac-

tion of repetitive DNA is localized (Cioffi and Bertollo,

2012).

Additionally, the preferred telomeric and centromeric

locations of microsatellites among silurids are, of course, of

significance. For instance, this distribution pattern is found

in some Siluriformes such as in the Neotropical catfishes

Imparfinis schubarti (Heptapteridae), Steindachneridion

scriptum (Pimelodidae), and Rineloricaria latirostris (Lori-

cariidae) in which a remarkable accumulation of both (GA)15

and (A)30 microsatellites in telomeric regions occurs (Van-

zela et al., 2002; Supiwong et al., 2014). A similar distribu-

tion is also present in the chromosomes of the zebrafish,

Danio rerio, showing (CA)n and (GT)n repeats clustered in

the centromeric and telomeric regions (Shimoda et al., 1999;

Supiwong et al., 2014) and the wolffish, Hoplias mala-

baricus, where 12 different microsatellite repeats, including
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Figure 3 - Hybridization pattern of the (CAC)10 microsatellite probe (in red) on metaphase plates of Belodontichthys truncates (1); Kryptopterus bicirrhis

(2); Kryptopterus geminus (3); Kryptopterus limpok (4); Kryptopterus macrocephalus (5); Micronema chevevi (6); Ompok fumidus (7); Ompok siluroides

(8); Phalacronotus apogon (9); Phalacronotus bleekeri (10); Silurichthys phaiosoma (11) and Wallago attu (12). Scale bar = 5 �m.



(CA)15 and (GA)15, showed strong hybridization signals at

subtelomeric and heterochromatic regions of several auto-

somes, in addition to a strong accumulation on the sex chro-

mosomes (Cioffi et al., 2011, Supiwong et al., 2014). In fact,

for most of these species, the 18S rDNA repeats are found in

the short arms of a single chromosome pair (Ditcharoen et

al., 2019), and this region matches the position of the

(CGG)n marks found in our experiments. Similarities of

both microsatellite and ribosomal DNA location do not seem

to be a rare event among fishes, as they are also found in

other species, such as Lebiasina bimaculata (Sassi et al.,

2019) and Hepsetus odoe (Carvalho et al., 2017), for exam-

ple. Indeed, G+C rich motifs are common in exons of all ver-

tebrates (Chistiakov et al., 2006). Since higher recombina-

tion rates can be found near the telomeric region

(Jensen-Seaman et al., 2004), the physical proximity of

microsatellite and rDNA repeats could favor the evolution-

ary spreading of both sequences together, as triplet se-

6 Ditcharoen et al.

Figure 4 - Hybridization pattern of the (CAT)10 microsatellite probe (in red) on metaphase plates of Belodontichthys truncates (1); Kryptopterus bicirrhis

(2); Kryptopterus geminus (3); Kryptopterus limpok (4); Kryptopterus macrocephalus (5); Micronema chevevi (6); Ompok fumidus (7); Ompok siluroides

(8); Phalacronotus apogon (9); Phalacronotus bleekeri (10); Silurichthys phaiosoma (11) and Wallago attu (12). Scale bar = 5 �m.



quences are particularly able to stabilize, by hairpin, some

alternative structures generated from DNA polymerase slip-

page (Sinden, 1999). Reinforcing the above considerations,

Silurichthys phaiosoma has a very particular distribution of

the (CAC)n repeats, accumulated in the centromeric and

telomeric regions of two acrocentric pairs, respectively. Ac-

cordingly, this species also presents a unique pattern of 5S

rDNA distribution concerning the other silurids, with the

spreading of multiple loci in the karyotype. Besides, a 5S

rDNA site is found in the telomeric region of the long arms

of the 18th chromosome pair (Ditcharoen et al., 2019), the

same one that harbors a conspicuous (CAC)n site.

It is known that eukaryotic centromeres are usually

composed of AT-rich DNA (Blackburn and Szostak, 1984)

and is commonly rich in heterochromatin, with a complex

composition of several repetitive in tandem DNAs (López-

Florez and Garrido-Ramos, 2012). Although (AC)n repre-

sents the most common microsatellites (Chistiakov et al.,
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Figure 5 - Hybridization pattern of the (GC)15 microsatellite probe (in red) on metaphase plates of Belodontichthys truncates (1); Kryptopterus bicirrhis

(2); Kryptopterus geminus (3); Kryptopterus limpok (4); Kryptopterus macrocephalus (5); Micronema chevevi (6); Ompok fumidus (7); Ompok siluroides

(8); Phalacronotus apogon (9); Phalacronotus bleekeri (10); Silurichthys phaiosoma (11) and Wallago attu (12). Scale bar = 5 �m.



2006), it is noteworthy the predominance of (GC) rich

microsatellites in the heterochromatic regions of fishes

(Artoni and Bertollo, 1999; Kavalco et al., 2005; Oliveira et

al., 2015; Sassi et al., 2019). Accordingly, at least six Silu-

ridae species now investigated (Micronema cheveyi, Ompok

fumidus, O. siluroides, Phalacronotus apogon, P. bleekeri,

and Wallago attu) have (GC)n pericentromeric signals for

almost half chromosomes, in addition to other species, like

Kryptopterus limpok and Silurichthys phaiosoma, that have

a single labeled chromosome pair but also in this same

region. These findings suggest an association and accumula-

tion of such sequences in this relevant chromosome region,

as observed in several other fish species (reviewed in Cioffi

and Bertollo, 2012).

Repetitive DNA sequences could act as primary driv-

ing forces in speciation (reviewed in Biémont and Vieira,

2006). These sequences are highly associated with hetero-

chromatic regions, thus contributing to gene activation and
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Figure 6 - Hybridization pattern of the (CGG)10 microsatellite probe (in red) on metaphase plates of Belodontichthys truncates (1); Kryptopterus bicirrhis

(2); Kryptopterus geminus (3); Kryptopterus limpok (4); Kryptopterus macrocephalus (5); Micronema chevevi (6); Ompok fumidus (7); Ompok siluroides

(8); Phalacronotus apogon (9); Phalacronotus bleekeri (10); Silurichthys phaiosoma (11) and Wallago attu (12). Scale bar = 5 �m.



structural maintenance of chromosomes (Dernburg et al.,

1996). Therefore, great variations in the amount and position

of these sequences could create fertility barriers by fostering

the occurrence of chromosomal rearrangements (Cioffi and

Bertollo, 2012). Indeed, the distribution of microsatellite

motifs in fish genomes could be biased to some specific

noncoding regions, as found in the Asian swamp eel Mono-

pterus albus (Li et al., 2017). Additionally, closely related

fish species involved in recent speciation events could pres-

ent a differential pattern in the distribution and quantity of

microsatellite sequences on chromosomes, as demonstrated

for naked catfishes (Supiwong et al., 2014), channid fishes

(Cioffi et al., 2015) and Siluridae species in this paper.

Our results indicate that microsatellite sequences have

divergent patterns of distribution and accumulation among

Siluridae fishes, probably fostering the chromosomal differ-

entiation and biodiversity in this fish family. Indeed, they are

especially present in especific chromosome locations, such

as the centromeric and telomeric regions, precisely the ones

that are associated with several kinds of chromosomal rear-

rangements. In addition to their probable roles during chro-

mosomal diversification, it is also highlighted that micro-

satellites can have a close association with other important

classes of repetitive sequences, like ribosomal DNAs. This

association can represent a good strategy for increasing

biodiversity, facilitating a combined distribution of distinct

DNA sequences along with the evolutionary divergence.
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