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Abstract Introduction: Centiloid standardization was developed to establish a quantitative outcome measure
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of amyloid burden that could accommodate the integration of different amyloid positron emission
tomography radiotracers or different methods of quantifying the same tracer. The goal of this study
was to examine the use of Centiloids for establishing amyloid classification cutoffs for differing
region-of-interest (ROI) delineation schemes.
Methods: Using ROIs from hand-drawn delineation in native space as the gold standard, we
compared standard uptake value ratios obtained from the 6 hand-drawn ROIs that determine
amyloid-positivity classification with standard uptake value ratio obtained from 3 different automated
techniques (FreeSurfer, Statistical Parametric Mapping, and superimposed hand-drawn ROIs in Pitts-
burgh Compound B template space). We tested between-methods reliability using repeated measures
models and intraclass correlation coefficients.
Results: We found high reliability between the hand-drawn standard method and other methods for
almost all the regions considered. However, small differences in standard uptake value ratio were
found to lead to unreliable classifications when the hand-drawn native space-derived cutoffs were
used across other ROI delineation methods.
Discussion: The use of Centiloid standardization greatly improved the agreement of Pittsburgh
Compound B classification across methods and may serve as an alternative method for applying cut-
offs across methodologically different outcomes.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Amyloid positron emission tomography (PET) data are
typically quantified using regions of interest (ROIs) delin-
eated on structural MRI images using manual, or more
recently, automated methods [1–7]. However, ROI
segmentation on magnetic resonance imaging (MRI)
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images can be challenging in populations with brain
structure abnormalities, such as Alzheimer’s disease (AD)
or Down syndrome (DS), particularly when automated
processing routines are employed [8]. Differences in ROI
delineation could substantially affect statistical outcomes
when quantifying [11C]Pittsburgh Compound B (PiB) PET
standardized uptake value ratio (SUVR), which play a
crucial role in studying the progression of AD in the elderly
[9,10], autosomal dominant AD mutation carriers [11], and
imer’s Association. This is an open access article under the CC BY-NC-ND
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DS populations [8]. Therefore, a standardized method of
ROI delineation would be useful in characterizing these dis-
ease populations when using SUVR outcomes.

ROIs manually defined in native space are particularly
robust, as trained manual raters can better account for struc-
tural abnormalities, poor signal-to-noise ratio, and motion
artifacts inMRI data. However, manual ROI tracings are sus-
ceptible to individual variability, and the process is time
consuming, especially for larger studies [12]. Often, the
task of manual ROI tracing for an imaging study is shared
by several analysts resulting in inter-rater differences be-
tween subjects for the same region in the same cohort. As
cohort sizes have increased in amyloid PET imaging studies,
automated ROI delineation techniques have become more
popular [3,6,13], yet the relative performance of these
automated techniques in an integrated standardized
framework remains unexplored.

The Centiloid Project was developed to standardize quan-
titative amyloid imagingmeasures on a 0–100 scale, with this
scale being anchored at zero by young controls and 100 by
AD patients. One of the major goals in the development of
the Centiloid scale was to facilitate direct comparison of re-
sults across different analysis methods and tracers [14]. The
goal of this work was to examine the use of Centiloid stan-
dardization [14] on [11C]PiB SUVR classification. This
was accomplished using an existing DS population dataset
[8] to provide a comparison between [11C]PiB SUVR out-
comes determined from hand-drawn in native space
(HDNS) ROI and 3 automated methods of ROI analysis.
SUVR threshold values for amyloid positivity have been pre-
viously described by our group based on tracing of 6 cortical
HDNS ROIs associated with amyloid b deposition in AD
[1,12].The hand-drawn native space method was compared
with the following automated methods: FreeSurfer [15,16],
Statistical Parametric Mapping (SPM) using the Wake
Forest University PickAtlas [17] extraction, and a hand-
drawnmethod in PiB template space. Although the Centiloid
method specifies a standard cortical1 striatum target region
and a whole-cerebellum reference region for initial analysis,
smaller ROIs are accommodated by either (1) generation of a
parametric Centiloid image for sampling smaller ROIs or (2)
linear regression [14]. Here, we apply the Centiloid standard-
ization linear regression approach to the global and striatum
ROIs to examine its impact on [11C]PiB SUVR classification.

Of all the forms of AD, DS has one of the most homoge-
neous and best understood initiating events in the overpro-
duction of amyloid b due to 3 copies of chromosome 21
and the APP gene present in this chromosome. Adults with
DS are uniformly affected by AD pathology by their fourth
decade [18–20]. Furthermore, the early striatal pattern of
amyloid deposition in DS is similar to that in autosomal
dominant AD mutation carriers [21]. Adults with DS in their
seventh decade have a 70%–80% chance of developing clin-
ical dementia [22,23]. DS can be viewed in relation to AD as
one of amplified sensitivity to risk and protective factors that
moderate the relationship between amyloid b,
neurodegeneration, and clinical dementia. Thus, DS
provides a unique opportunity to study AD.
2. Methods

2.1. Subjects

A total of 83 adults with confirmed DS were recruited as
previously described [24]. Participants were assessed for de-
mentia using the Dementia Scale for Down Syndrome [25].
Three individuals who received a cognitive cutoff score. 3
(indicating dementia) were removed from this analysis.
Thus, 80 subjects underwent the image processing described
in the following.

2.2. Data acquisition

For PET scans, [11C]PiB scans were acquired on Siemens
ECAT HR 1 PET scanners at both sites using a nominal
dose of 15 mCi of radiotracer. Preprocessing of dynamic
[11C]PiB data was performed in AIR, version 3.0 [26]. Dy-
namic PET data were corrected for inter frame motion and
averaged over 50–70 min after injection. Parametric
SUVR images were generated using a cerebellar gray matter
ROI. For MRI scans, T1-weighted MRIs were acquired on a
3.0 T GE SIGNA 750 at the University of Wisconsin-
Madison site and on a 3.0 T Siemens Magnetom Trio at
the University of Pittsburgh Medical Center site. The
SIGNA 750 acquisition used high-resolution volumetric
spoiled gradient sequence (TI/TE/TR 5 450/3.2/8.2 ms,
flip angle 5 12�, slice thickness 5 1 mm no gap, matrix
size 5 256 ! 256 ! 156), whereas the Magnetom Trio
acquisition used a magnetization prepared rapid acquisition
gradient echo sequence (TI/TE/TR5 900/2.98/2300 ms, flip
angle 5 9�, slice thickness 5 1.2 mm, matrix
size 5 160 ! 240 ! 256).

2.2.1. ROIs hand-drawn in native space
HDNS ROIs were generated as previously described

[1,12]. MR images were manually skull-stripped and reor-
iented such that the axial image planes were parallel to the
anterior-posterior commissure line. [11C]PiB images were
registered to skull-stripped MRIs using AIR, version 3.0,
and MRI images were resliced to PET resolution.

Manual ROI tracing was performed on skull-stripped MR
images in PET native space using ROI Tool software
(Siemens Medical Systems, Knoxville, TN). HDNS ROIs
included the anterior cingulate gyrus (ACG), anterior ventral
striatum (AVS), frontal cortex (FRC), lateral temporal cortex
(LTC), parietal cortex (PAR), precuneus cortex (PRC), and
cerebellar gray matter. A global region (GBL) was created
by generating a voxel-weighted average of the 5 cortical
ROIs and the striatal ROI.

2.2.2. ROIs hand-drawn in MNI space
Spatial normalization of standardized uptake value PET

images was performed using a DS-specific PET template
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created using a 2-pass method, as previously described by
our group [24]. The utilization of this PiB-based template al-
lows the inclusion of subjects without an accompanying
MRI (e.g., due to the excessive motion artifact). Normalized
images were visually inspected and qualitatively assessed on
cortical outline and striatal placement. No images were
removed because of poor spatial normalization via the DS-
specific PET template.

Hand-drawn in MNI (Montreal Neurological Institute)
(HDMNI), ROIs were created in ITK-SNAP, version 3.4.0,
on a subset of normalized T1 MRIs and combined into a sin-
gle mask for each ROI to ensure a proper fit despite any dif-
ferences that may have persisted after spatial normalization.
ROI masks were closely inspected for each subject.

2.2.3. ROIs from SPM using PickAtlas and MNI space
PickAtlas and MNI (PAMNI) ROIs were defined from the

Talairach Daemon database in MNI space (described previ-
ously) provided in the Wake Forest University PickAtlas
toolbox in SPM (NS.fil.ion.ac.uk/spm/software/). The binary
masks were dilated (4 mm Gaussian smoothing and subse-
quent thresholding at 0.3) to account for differences that
may have persisted after spatial normalization and were
closely inspected for each subject.

2.2.4. FreeSurfer ROIs in native space
Preprocessed [11C]PiB images were registered and re-

sliced to native-space MRI images using PMOD, version
3.709. FreeSurfer (5.1.0) was used to process native-space
MRI images [15,16]. Grey matter–specific ACG, FRC,
LTC, PAR, and PRC FreeSurfer ROIs were generated by
combining standard FreeSurfer atlas neocortical regions
[27]. The Imperial College London Clinical Imaging
Centre atlas ventral striatum region [28] was transformed
to native-space MRIs using the subject-specific FreeSurfer
talairach.m3z transform to generate the native-space
FreeSurfer AVS ROI. Cerebellar grey matter was used as
reference region to calculate regional and global SUVR
values.

FreeSurfer in native space (FSNS) ROIs were manually in-
spected and edited, where appropriate. Nine subjects failed
FreeSurfer processing and were not further included.

2.2.5. Centiloids (CLMNI)
The level-1 Centiloid replication analysis was first per-

formed as prescribed [14]. A linear correlation between
replication results and the original Centiloid values yielded
an R2 of 0.999.

After the prescribed Level-2 Centiloid method calibration
procedure, 50–70min PiB SUVR images from the DS cohort
were registered to corresponding MR images using SPM,
version 12 (SPM12). Subject MR images were normalized
to MNI space using the unified segmentation method in
SPM12 [29], and the resulting forward transformations
were applied to registered [11C]PiB PET images. Four sub-
jects failed the segmentation and normalization process, in
addition to the 9 subjects who failed FreeSurfer processing,
thus excluded from subsequent analyses.

Normalized [11C]PiB images were sampled with the Cen-
tiloid Cortex (CTX) ROI (which includes striatum) and
whole-cerebellum reference ROI to generate the standard
Centiloid CTX SUVR values. A Centiloid-based AVS ROI
was also generated by masking out all contiguous voxels
in the Centiloid CTX ROI outside the striatum and used to
calculate a “nonstandard” Centiloid AVS SUVR. The Centi-
loid CTX ROI was not further broken into cortical regions,
thus only CTX and AVS SUVR values are presented for
the Centiloid method and subsequent conversions.

Centiloid calibration for each of the other ROI methods
was performed as described in [14]. Briefly, linear regression
was performed between each set of nonstandard ROImethod
GBL SUVRs and the standard set of Centiloid CTX SUVRs
across all subjects, generating a slope and intercept between
the nonstandard ROI method GBL SUVR and standard Cen-
tiloid CTX SUVR, as described by Equation 2.2.3.2a found
in the study by Klunk et al. [14]. Subject nonstandard GBL
SUVR values were then converted to standard Centiloid
CTX SUVR values using the nonstandard ROI method–
specific slope and intercept. Subsequently, the converted
CTX SUVR values were converted to Centiloid units using
Equation 1.3b in the study by Klunk et al. [14].

Method-specific AVS SUVR values were analogously
converted to Centiloid units using the same nonstandard
ROI method–specific slope and intercept [14], Section
2.2.2 and 3.3.

2.2.6. PiB(1) classification
The average age for the n 5 67 adults was 37.4 (standard

deviation5 7.19), and there were 33 female and 34 male sub-
jectswith 54 (81%) apolipoprotein E (APOE) 4 noncarriers and
10 (15%) APOE4 carriers.

Using methods previously published by our group, we
classified subjects as PiB(1) and PiB(2) based on sparse
k-means SUVR cutoffs determined from HDNS SUVR
values for each of the six composite ROIs and the GBL
ROI [30]. These regional cutoff values are method specific
and only directly applicable to the HDNS data. However,
we applied these cutoffs without conversion across each of
the ROI delineation methods, purely for comparison among
ROI delineation methods.

The HDNS AVS and GBL SUVR cutoff values were con-
verted to Centiloid SUVR units using the HDNS SUVR-to-
Centiloid SUVR regression described previously and then
converted to Centiloid units using the standard Centiloid
equation Equation 1.3b in the study by Klunk et al. [14].
Centiloid unit cutoffs were then applied to all AVS and
GBL Centiloid unit values across all methods.
2.3. Statistical methods

Descriptive statistics were calculated for all measure-
ments (Table 1). Basic frequencies were also performed to



Table 1

Descriptive statistics for each ROI

ROI HDNS (N 5 67) HDMNI (N 5 67) PAMNI (N 5 67) FSNS (N 5 67) Centiloid SUVR (N 5 67)

ACG 1.35 (0.27) 1.30 (0.28) 1.29 (0.27) 1.32 (0.22) NA

FRC 1.27 (0.28) 1.21 (0.17) 1.19 (0.29) 1.16 (0.25) NA

PAR 1.29 (0.24) 1.10 (0.21) 1.24 (0.30) 1.30 (0.26) NA

PRC 1.38 (0.31) 1.45 (0.31) 1.30 (0.31) 1.14 (0.20) NA

AVS 1.45 (0.51) 1.39 (0.45) 1.34 (0.39) 1.33 (0.38) 1.22 (0.46)

LTC 1.29 (0.23) 1.20 (0.15) 1.21 (0.21) 1.11 (0.18) NA

GBL 1.31 (0.27) 1.27 (0.22) 1.23 (0.28) 1.17 (0.21) 1.15 (0.23)

AVS* (Centiloid) 23.22 (38.50) 24.49 (40.88) 21.67 (28.49) 29.20 (38.15) 19.68 (43.41)

GBL* (Centiloid) 13.19 (20.20) 13.19 (19.72) 13.19 (20.41) 13.19 (20.95) 13.19 (21.23)

Abbreviations: ROI, region of interest; SUVR, standard uptake value ratio; HDNS, hand-drawn in native space; ACG, anterior cingulate gyrus; AVS, anterior

ventral striatum; FRC, frontal cortex; LTC, lateral temporal cortex; PAR, parietal cortex; PRC, precuneus cortex; GBL, global region; HDMNI, hand-drawn in

MNI; PAMNI, PickAtlas and MNI; FSNS, FreeSurfer in native space; SD, standard deviation.

NOTE. Data are presented as SUVR mean (SD), except *Striatum and Global, which are presented as Centiloid mean (SD).
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compute the percentage of subjects classified as PiB(1) if
the hand-drawn prespecified cutoff was used (Table 2). To
assess the differences in the ROI SUVR measurements be-
tween the four methods, a repeated measures analysis was
performed with a fixed factor, ROI method, and a random
subject effect to account for within-subject correlation.
The Kenward-Rogers method [31] was used for computing
the degrees of freedom. The following statistical model
was fit for each ROI SUVR (y):

yij 5 b0 1 b1Mij1 1 b2Mij2 1 b3Mij3 1 bi0 1 εij

where:

i. b0represents the intercept;
ii. Mijk (k5 1,2,3) is the dummy variable for method fac-

tor for the jth observation on the ith subject
(i 5 1,2,.,67; j 5 1,2,3,4) and
Tab

PiB

RO

AC

FR

PA

PR

AV

LT

GB

AV

GB

A

spa

FR

PR

PA

N

a. M1 5 1 if method is FreeSurfer, 0 otherwise,
b. M2 5 1 if method is HDMNI, 0 otherwise,
c. M3 5 1 if method is SPM, 0 otherwise;

iii. jth is the observation on the ith subject (i5 1,2,.,67;
j 5 1,2,3,4);
le 2

amyloid positivity by ROI and method

I

HDNS,

N (%)

HDMNI,

N (%)

PAMNI,

N (%)

FSNS,

N (%)

G 11 (16.4) 12 (17.9) 11 (16.4) 8 (11.9)

C 12 (17.9) 2 (3.0) 11 (16.4) 5 (7.5)

R 9 (13.4) 2 (3.0) 12 (17.9) 13 (19.4)

C 14 (20.9) 15 (22.4) 13 (19.4) 4 (6.0)

S 20 (29.9) 17 (25.4) 15 (22.4) 14 (20.9)

C 12 (17.9) 7 (10.5) 11 (16.4) 5 (7.5)

L 12 (17.9) 10 (14.9) 12 (17.9) 5 (7.5)

S (Centiloid) 20 (29.9) 19 (28.4) 17 (25.4) 21 (31.3)

L (Centiloid) 12 (17.9) 13 (19.4) 13 (19.4) 14 (20.9)

bbreviations: ROI, region of interest; HDNS, hand-drawn in native

ce; ACG, anterior cingulate gyrus; AVS, anterior ventral striatum;

C, frontal cortex; LTC, lateral temporal cortex; PAR, parietal cortex;

C, precuneus cortex; GBL, global region; HDMNI, hand-drawn in MNI;

MNI, PickAtlas and MNI; FSNS, FreeSurfer in native space.

OTE. Data are presented as n 5 PiB(1)/percentage (%).
iv. bi0 is the subject-specific random effect (b0i wNð0;
s20ÞÞ; and

v. εij wNð0; s2eÞ is the random error term.

The b coefficients (b1, b2, b3) represent the difference in
SUVR mean estimates between each method examined and
the HDNS; b1 corresponds to the difference in means be-
tween HDNS and FSNS, b2 corresponds to the difference in
means between HDNS and HDMNI space, and b3 corresponds
to the difference in means between HDNS and PAMNI.

The statistical model presented previously was used for
the analysis of each of the SUVR values for each ROI calcu-
lated by the original methods (i.e., before Centiloid conver-
sion). When the Centiloid SUVR was added, for the AVS
and GBL regions, another method along with its correspond-
ing parameter were included in the model, b4Mij4, where
(b4Þrepresents the difference in the estimated means be-
tween HDNS and Centiloid-translated SUVR measure.
Thus, the model implemented for this scenario had the
following equation:

yij 5 b0 1 b1Mij1 1 b2Mij2 1 b3Mij3 1 b4Mij4 1 bi0 1 εij

where the parameters are the same as described previously.
In addition, we also computed intraclass correlation coef-

ficients (ICC) using a one-way random effects model be-
tween HDNS and each of the other methods for each ROI
SUVR [32,33]. The ICC was used to quantify the
between-method reliability for each ROI. All statistical ana-
lyses were performed using SAS 9.3 (SAS Institute, Cary,
NC). All statistical tests were two sided and considered sig-
nificant if the associated P value , .05 (95% confidence in-
terval [CI] for the estimated parameter differences excludes
0). No multiple comparison correction was performed
because the ROIs were set a priori. However, for the compar-
isons performed among methods, Tukey-Kramer [34]
adjusted 95% CIs are presented in Table 3.

Bland-Altman plots [35]were used to investigate agreement
between the HDNS Centiloids translation and the other ROI
delineation methods after conversion to Centiloid units
(Supplementary Figs. 1 and 2). Bland-Altman plots quantify



Table 3

Repeated measures analysis for each ROI

ROI HDMNI versus HDNS PAMNI versus HDNS FSNS versus HDNS Centiloid SUVR versus HDNS

ACG 20.053 (20.074 to 20.031) 20.060 (20.081 to 20.039) 20.031 (20.052 to 20.010) NA

FRC 20.057 (20.086 to 20.027) 20.070 (20.100 to 20.041) 20.100 (20.130 to 20.071) NA

PAR 20.186 (20.216 to 20156) 20.052 (20.082 to 20.022) 0.011 (20.019 to 0.041) NA

PRC 0.069 (0.041 to 0.097) 20.075 (20.103 to 20.047) 20.238 (20.266 to 20.210) NA

AVS 20.056 (20.089 to 20.024) 20.105 (20.138 to 20.073) 20.115 (20.147 to 20.082) 20.228 (20.260 to 20.195)

LTC 20.087 (20.110 to 20.065) 20.085 (20.108 to 20.063) 20.176 (20.199 to 20.154) NA

GBL 20.046 (20.065 to 20.027) 20.086 (20.106 to 20.067) 20.142 (20.161 to 20.123) 20.163 (20.183 to 20.144)

AVS* (Centiloid) 1.268 (21.764 to 4.300) 21.547 (24.579 to 1.486) 5.980 (2.948 to 9.012) 23.536 (26.569 to 20.504)

GBL* (Centiloid) 0 (21.415 to 1.415) 0 (21.415 to 1.415) 0 (21.415 to 1.415) 0 (21.415 to 1.415)

Abbreviations: ROI, region of interest; SUVR, standard uptake value ratio; HDNS, hand-drawn in native space; ACG, anterior cingulate gyrus; AVS, anterior

ventral striatum; FRC, frontal cortex; LTC, lateral temporal cortex; PAR, parietal cortex; PRC, precuneus cortex; GBL, global region; HDMNI, hand-drawn in

MNI; PAMNI, PickAtlas and MNI; FSNS, FreeSurfer in native space.

NOTE. Results from the repeated measures model are represented as mean estimated differences and 95% confidence interval using hand-drawn values as the

reference method (*using Centiloid units measurements).
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the level of agreement between two quantitative techniques by
calculating limits of agreement represented by the difference
between the two paired measurements versus the average be-
tween them. Its use follows the recommendation that 95% of
these measurements lie within 62 standard deviation of the
mean differences.
3. Results

3.1. Descriptive statistics for each ROI

The average SUVR for all six regional ROIs (ACG, AVS,
FRC, LTC, PAR, and PRC) and the global ROI was typically
higher for HDNS than that for all other methods (Table 1).
Exceptions included PAR, which was the highest for FSNS,
and PRC, which was highest for HDMNI.

The classification as PiB(1) by using the unconverted
HDNS cutoffs across methods was highly variable, showing
that FSNS and HDMNI methods typically result in a lower
number of subjects classified as PiB(1) when the uncon-
verted HDNS cutoff is used (Table 2). However, the PAMNI

method resulted in a similar number of subjects classified
as PiB(1) using the ACG, FRC, PAR, and PRC regional
ROIs or the GBL ROI. Also, when using the striatum, the
HDNS method shows the most subjects classified as
PiB(1) compared with all other methods.

As intended, the Centiloid standardization results in very
similar numbers of subjects classified as PiB(1), regardless
of the normalization and ROI drawing methods used
(Table 2).

3.2. Repeated measures model for each ROI

The results of the repeated measures model are presented
as estimated mean differences along with the 95% CI be-
tween HDNS SUVR values and each of the other methods
for each individual ROI (Table 3). Consistent with Table 1,
the SUVR values from the HDNS method were typically
higher for every region than those of the ROIs generated
by automated methods. For example, for the ACG, the esti-
mated SUVR mean difference between the HDMNI and
HDNS was equal to 20.053 with a 95% CI of 20.074 to
20.031. This suggests that the range of differences in the
mean SUVR values computed using the HDNS method
versus the SUVR computed by the HDMNI method, for the
ACG region, could range between 20.074 and 20.031.
The largest estimated mean differences in SUVR values
from the automated FSNS ROIs compared with those from
HDNS ROIs were observed in the PRC (20.238; 95% CI,
20.266 to 20.210) and the LTC (20.176; 95% CI,
20.199 to20.154) (Table 3). The estimated differences be-
tween the means of the SUVRs standardized to Centiloid
units, as expected, are all zero with CIs of 1–3 CL units
(Table 3).
3.3. ICC between methods

A high degree of reliability was found between the HDNS

method and the PAMNI method for all ROIs (all ICCs are
above 0.875; Table 4). A high degree of reliability was
observed between the HDNS method and the FSNS method
for ACG, FRC, PAR, and AVS (all ICC . 0.85; Table 4)
but not for the LTC (ICC 5 0.601) or PRC (ICC 5 0.505),
suggesting only moderate reliability for these two areas
(Table 4). The ICC’s reliability coefficients between HDNS

ROIs and HDMNI were above 0.8 for ACG, PRC, and
AVS, suggesting high reliability and moderate reliability
for the FRC (ICC 5 0.760), LTC (ICC 5 0.731), and PAR
(ICC 5 0.604) (Table 4). The ICCs lower than 0.6 (LTC
and PRC; Table 4) have wide CIs suggesting that these
methods have higher variability and, in turn, lower reliability
coefficients. The ICCs greater than 0.8 (ACG, FRC, PAR,
and AVS; Table 4) have narrow CIs, indicating lower vari-
ability and higher reliability among the compared methods.

All ICCs were above 0.94 for Centiloid-converted ROIs,
suggesting very high reliability when this type of standardi-
zation is used across ROI methods.



Table 4

ICC between methods

ROI

ICC (HDNS 2 HDMNI),

(agreement) 95% CI

ICC (HDNS 2 PAMNI),

(agreement) 95% CI

ICC (HDNS 2 FSNS),

(agreement) 95% CI

ICC (HDNS – Centiloid),

(agreement) 95% CI

ACG 0.965 (0.944–0.978) 0.959 (0.934–0.974) 0.893 (0.831–0.933) NA

FRC 0.760 (0.637–0.845) 0.930 (0.889–0.956) 0.856 (0.776–0.909) NA

PAR 0.604 (0.427–0.736) 0.890 (0.827–0.931) 0.855 (0.775–0.908) NA

PRC 0.960 (0.936–0.975) 0.954 (0.926–0.971) 0.505 (0.304–0.663) NA

AVS 0.968 (0.949–0.980) 0.920 (0.871–0.949) 0.893(0.832–0.933) 0.873 (0.802–0.920)

LTC 0.731 (0.597–0.825) 0.875 (0.805–0.921) 0.601 (0.424–0.734) NA

GBL 0.933 (0.893–0.958) 0.937 (0.899–0.961) 0.767 (0.648–0.850) 0.750 (0.623–0.838)

AVS* (Centiloid) 0.982 (0.971–0.989) 0.939 (0.903–0.962) 0.951 (0.921–0.969) 0.969 (0.950–0.981)

GBL* (Centiloid) 0.973 (0.956–0.983) 0.985 (0.977–0.991) 0.947 (0.915–0.967) 0.951 (0.922–0.970)

Abbreviations: ROI, region of interest; HDNS, hand-drawn in native space; ACG, anterior cingulate gyrus; AVS, anterior ventral striatum; FRC, frontal cortex;

LTC, lateral temporal cortex; PAR, parietal cortex; PRC, precuneus cortex; GBL, global region; HDMNI, hand-drawn inMNI; PAMNI, PickAtlas andMNI; FSNS,

FreeSurfer in native space; CI, confidence interval.

NOTE. ICCs and their associated 95% confidence interval (*using Centiloid units measurements).

D.L. Tudorascu et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 10 (2018) 332-339 337
4. Discussion

These data demonstrate how different methods for
demarcation of brain ROIs can affect SUVR measurements
and resultant classification of amyloid positivity. However,
Centiloid standardization diminishes the variability among
different methods of demarcation. In this study, we charac-
terized the variability among different ROI demarcation
techniques and demonstrated that a simple standardization
(or linear scaling) to Centiloid units can greatly reduce the
variability across methods and almost eliminate the discrep-
ancies in amyloid-positivity classification. DS is a particu-
larly relevant population to explore these effects, as adults
with DS are almost uniformly affected by AD pathology.
We compared three different ROI demarcation methods
with our previously used HDNS ROI method and their Cen-
tiloid translation, where applicable, focusing on (1) differ-
ences between the ROI demarcation methods; (2)
reliability of the SUVR measures across the methods as
compared with the HDNS method; and (3) Centiloid stan-
dardization of classification cutoffs for application across
ROI methods.

Our results indicate smaller differences in SUVR values
between the HDNS and PAMNI methods as well as between
the HDNS and the HDMNI methods for ACG, FRC, PRC,
and LTC but larger differences for AVS and PAR. In contrast,
the differences in SUVR values when the HDNS method is
compared with the FSNS method are smaller for ACG,
AVS, and PRC and much larger for FRC, PAR, and LTC.
This variability in regional differences across methods could
prove challenging when exploring longitudinal change in
PiB retention or classification of amyloid positivity, either
cross-sectionally or longitudinally. However, the Centiloid
translation makes the ROI delineation methods comparable
with little to no variability.

Even though the differences that we found inmean SUVR
values between any two methods are relatively small, they
can still influence the PiB classification of individual sub-
jects, particularly thosewith SUVR values in the area around
the cutoff. For example, a difference in SUVR of 0.05 be-
tween two ROI demarcation methods can result in a subject
being classified differently. Therefore, method-specific cut-
offs should be used for amyloid-positivity classification
based on the ROI delineation method that was employed.

The PiB(1/2) classifications show very high variability
across methods if one method-specific cutoff is used across
all the different methods. Because the cutoffs were deter-
mined based on a k clustering method [30] and were specif-
ically determined for the HDNS, it is not advisable to use the
same cutoff if a different ROI delineation method was used.
However, we did find that conversion of method-specific
data and cutoffs to Centiloid units reduced PiB(1/2) classi-
fication variability to a surprisingly great degree and may
allowmethod-specific cutoffs to be applied in a valid manner
to other methods.

It should be noted, though, that application of the Centi-
loid method resulted in failed normalizations, and like Free-
Surfer, the other MRI-based automated method necessitated
the exclusion of subjects from the analysis and PiB(1/2)
classifications. Both SPM12’s segmentation and FreeSurfer
were developed based on structural MRI data from popula-
tions excluding DS subjects. SPM12’s segmentation tissue
probability maps were based on normal, healthy subjects
(http://brain-development.org/ixi-dataset/), and FreeSurfer’s
cortical atlas was based on 40 non-DS subjects ranging in
age from 19 to 86 years [26]. Relative differences in DS
brain anatomy or motion artifacts likely led to the 4 failures
with the Centiloid method and 9 failures with FreeSurfer.

Neither of the automated PET template methods, which
do not require MRI data (HDMNI and PAMNI), were prone
to failure. However, PET template methods can introduce
additional biases and variability [36]. Also, the application
of anatomically based partial volume correction (PVC) tech-
niques, which are increasingly popular in longitudinal amy-
loid PET imaging [13,37,38], is not possible with PET
template methods that do not contain significant
anatomical information. This limitation must be weighed
against the advantage of minimizing excluded data
resulting from poor-quality MRI scans.

http://brain-development.org/ixi-dataset/
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In this study, we did not explore PVC. Additional process-
ing would be necessary to apply commonly used PVC tech-
niques for each of the ROI methodologies with the exception
of FreeSurfer, as it is the only method tested with tissue-
specific ROIs (i.e., ROIs that do not contain both grey matter
and white matter voxels). A major objective of PVC in amy-
loid PET imaging is the removal of influence of nonspecific
binding in white matter [39]. The hand-drawn methods,
either in native (HDNS) or template space (HDMNI), the Pick-
Atlas method (PAMNI), and the CTX (cortical) ROIs of the
standard Centiloid method all contain substantial white mat-
ter voxels. However, the FreeSurfer method had the highest
rate of failure, so alternative automated MRI-based DS-spe-
cific segmentation and ROI delineation techniques should be
explored if PVC is to be applied in this population.

These data indicate that both SUVR values and PiB(1/2)
classification are highly dependent on the choice of method
for ROI demarcation. Small differences in SUVR values for
individual ROIs can lead to differences in classification of
subjects based on PiB status, especially when many in the
population are near the cutoff value. However, conversion
of these values to standardized Centiloid units results in
far better agreement between methods in terms of both
PiB(1/2) classification and SUVR values.

One limitation of this study is the use of different MRI
scanners at both acquisition sites; however, such conditions
will likely exist for most multisite investigations. Each of the
MRI-based ROI methods may perform differently on MRI
data acquired across different scanners. An additional limi-
tation of the present method is that we are unable to control
for random variations in individuals within the cohort and to
variations based on change in imaging equipment over time.
However, because the comparisons made between methods
are in the same individuals, this is a small concern. Because
the Centiloid method does not address variability across sub-
jects or within subjects, only bias across methods, a future
area of study should explore additional methods to address
within/across subject variability, such as a next-level Centi-
loid linear regression that does incorporate a noise term.
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RESEARCH IN CONTEXT

1. Systematic review: Amyloid PET data is typically
quantified using regions of interest delineated on
structural MRI images using manual, or more
recently, automated methods. However, ROI seg-
mentation onMRI images can be challenging in pop-
ulations with brain structure abnormalities, such as
Alzheimer’s disease or Down syndrome, particularly
when automated processing routines are employed.
Differences in ROI delineation could substantially
affect statistical outcomes when quantifying [11C]
PiB PET standardized uptake value ratio.

2. Interpretation: These data demonstrate how different
methods for demarcation of brain ROIs can affect
SUVR measurements and resultant classification of
amyloid-positivity. However, Centiloid standardiza-
tion diminishes the variability among different
methods of demarcation. In this study, we character-
ized the variability among different ROI demarcation
techniques and demonstrated that a simple standard-
ization (or linear scaling) to Centiloid units can
greatly reduce the variability across methods and
almost eliminate the discrepancies in amyloid-posi-
tivity classification. DS is a particularly relevant pop-
ulation in which to explore these effects, as adults
with DS are almost uniformly affected by AD
pathology.

3. Future directions: Because the Centiloid method
does not address variability across subjects or within
subjects, only bias across methods, a future area of
study should be to explore additional methods to
address within/across subject variability, such as a
next-level Centiloid linear regression that does incor-
porate a noise term.
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