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Dynamic perceptual feature selectivity in primary
somatosensory cortex upon reversal learning
Ronan Chéreau1, Tanika Bawa1,2, Leon Fodoulian1,2, Alan Carleton 1, Stéphane Pagès1 &

Anthony Holtmaat 1✉

Neurons in primary sensory cortex encode a variety of stimulus features upon perceptual

learning. However, it is unclear whether the acquired stimulus selectivity remains stable when

the same input is perceived in a different context. Here, we monitor the activity of individual

neurons in the mouse primary somatosensory cortex during reward-based texture dis-

crimination. We track their stimulus selectivity before and after changing reward con-

tingencies, which allows us to identify various classes of neurons. We find neurons that stably

represented a texture or the upcoming behavioral choice, but the majority is dynamic. Among

those, a subpopulation of neurons regains texture selectivity contingent on the associated

reward value. These value-sensitive neurons forecast the onset of learning by displaying a

distinct and transient increase in activity, depending on past behavioral experience. Thus,

stimulus selectivity of excitatory neurons during perceptual learning is dynamic and largely

relies on behavioral contingencies, even in primary sensory cortex.
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The mammalian cortex encodes a myriad of sensory signal
characteristics which are represented by neuronal assem-
blies, each with a preference for specific stimulus

parameters1,2. It is believed that these assemblies are organized in
a hierarchical fashion. First-order sensory areas encode lower-
order stimulus features, such as texture coarseness3–5, object
orientation and direction6, and sound frequency7, whereas more
complex features and contextual aspects of a stimulus are enco-
ded by higher-order cortices8–11. Nonetheless, the coding in
primary sensory cortices can exhibit higher levels of complexity,
expressing non-sensory-related signals such as attention12,
anticipation13, and behavioral choice11–15. Reward-based per-
ceptual learning initially shapes the stimulus selectivity and
response properties of primary sensory neurons, which may
contribute to a reliable detection of particular features, and
thereby improve perception13,16–18. However, it is unclear as to
whether the stimulus preference of those neurons remains stable
when the reward contingencies are changed. To study this, we
monitor the shaping of stimulus selectivity for primary somato-
sensory cortical (S1) layer 2/3 (L2/3) neurons in mice that learn to
discriminate between a rewarded and non-rewarded texture. We
then reassess their selectivity upon reversal learning, which
reveals a substantial subset of neurons that dynamically repre-
sents textures. Many lose or gain selectivity. Yet another class,
which we term value-sensitive neurons, first lose and then regain
texture selectivity contingent on the associated reward. The
ramping up of this selectivity forecasts the onset of learning.

Results
Texture selectivity of L2/3 neurons increases with learning. We
trained mice on a head-fixed ‘Go/No-go’ texture discrimination
task, similar to previous designs5 (Fig. 1a). Thirsted animals were
incited to lick a spout during a 2-s texture presentation in the
form of a piece of P120 sandpaper (125-μm grit size; rewarded
texture), in order to trigger the supply of a water reward at the
end of the presentation period (scored as a ‘hit’ trial; Fig. 1a and
Supplementary Fig. 1). A failure to lick was scored as a ‘miss’ trial.
The animals needed to withhold from licking upon presentation
of a P280 sandpaper (52-μm grit size; non-rewarded texture) to
avoid a 200-ms white noise and a 5-s timeout period (scored as a
‘correct reject’ trial). A failure to withhold from licking was scored
as a ‘false alarm’ trial (Fig. 1a and Supplementary Fig. 1). Mice
learned to discriminate between the two stimuli (Fig. 1b). They
typically started at chance level (naïve) and reached an average
performance level of 82% within 3–7 days (expert mice)
(Fig. 1b)13–15,19. To verify that the task was whisker-dependent
and involved the cortex, we trimmed the whiskers ipsilateral to the
texture, or suppressed contralateral cortical activity using a local
injection of the γ-aminobutyric acid receptor (GABAR) agonist
muscimol in separate sets of expert mice (see Methods). Both
treatments reduced the performance to chance level (Fig. 1c, d).
This indicates that to solve this task mice fully rely on somato-
sensory input and do not use additional sensory information, and
that the task involves signal processing through S1.

In order to monitor the activity of S1 neurons during texture
discrimination learning, we co-expressed the genetically encoded
calcium sensor GCaMP6s and the cell filler mRuby2, predomi-
nantly in excitatory L2/3 neurons using adeno-associated viral
vectors (Fig. 1e, Supplementary Fig. 2)20. Single-cell calcium
signals were recorded using two-photon laser scanning micro-
scopy (2PLSM; Fig. 1e, f). Fast-volumetric imaging was
performed to allow for the correction of axial motion artifacts
(Fig. 1e, Methods section)21.

Similar to previous studies5,14, a fraction of the neurons
displayed a differential response to the textures (Fig. 1f and

Supplementary Fig. 3). In order to determine the texture
selectivity of individual neurons during learning we compared
the calcium signal amplitudes evoked by the two different
sandpapers using a receiver-operating characteristic (ROC) curve
analysis. This provided a discrimination index for each neuron
(DI; Fig. 1g, Methods section)22. On average, the fraction of
selective neurons increased with learning (Fig. 1h). Interestingly,
we observed that in expert mice, a larger fraction of the recorded
population was selective for the P120 (rewarded) as compared
with the P280 (non-rewarded) texture (Fig. 1i) and that this
difference built up with learning (Fig. 1j).

What could be the cause of the increase in selectivity bias
during learning? One explanation holds that the neuronal
responses strictly correlate with the different behaviors the
animals exhibit during Go and No-go trials, which emerges with
learning (Supplementary Fig. 1). In that case, the neuronal
activity could be linked to the motor-output that is associated
with licking, and not exclusively to the presented texture.
Alternatively, L2/3 neurons could encode higher-order features
that are associated with the textures (such as the reward value or
the behavioral choice). To explore these possibilities, we first
conducted experiments that allowed us to categorize neurons
based on their activity in relation to the animal’s licking and
whisking behavior, and then we reassessed their selectivity after
inverting the reward-contingencies.

Neuronal activity represents sensory input. We first investigated
the possibility that the P120-selective neurons were merely
reporting licking, by comparing for all hit trials, the delay between
the onset of the calcium signal and the time of texture pre-
sentation or the time of the 1st lick. For the majority of neurons,
the rise in the calcium signal occurred immediately after the
texture presentation and preceded the 1st lick with a larger jitter
(Fig. 2a–c). This suggests that the activity of the P120-selective
neurons was evoked by the texture and not by licking. However,
this analysis did not exclude the possibility that selectivity had
been influenced by an increasingly stereotyped behavioral
sequence during learning, including whisking. To dissociate
sensory-evoked neuronal activity from activity that was primarily
related to whisking or licking we exposed mice to the various
task-related stimuli before the training had started. The stimuli
were presented separately and without a temporal structure
(Fig. 3a). We also monitored the animal’s whisking and licking
behavior. Together, this allowed us to categorize neurons based
on their activity in relation to the sound cue, texture presentation,
as well as whisking and licking behavior. We found that a large
fraction of neurons (36.7% of the total population) exhibited
touch-related activity during texture presentation while few
neurons were sensitive to the auditory cue (0.8%; Fig. 3b). Within
the pool of touch-sensitive neurons there was no bias in texture
selectivity (Fig. 3c). This suggests that the imaged population was
not a priori preferring any of the two textures, which is in line
with previous work4. Then we determined whether neurons
showed whisking or licking-related responses. We trained a
random forests machine-learning model using the inferred firing
rates from the calcium signal to assess for each neuron if its
activity could predict whisking and/or licking rates. The model
was trained using a range of positive and negative time lags of the
neuronal activity relative to behavior, in order to account for
possible pre-motor related activity (i.e. preceding the behavior)
and/or sensory-related activity (i.e. following the behavior). For
each neuron we calculated the prediction power (PP), which
reflected the correlation between the animals’ actual whisking and
licking behavior, and the behavior that was predicted by its
activity (Fig. 3d). We plotted the PP distributions for whisking
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and licking rates as inferred from the GCaMP6s signal. This was
compared to a control distribution that was inferred from the
mRuby2 signal to assess the noise in PP measurement (Fig. 3e, f).
Neurons with a PP over a threshold criterion of five standard
deviations above the mean of the control distribution were

considered to be predictive of whisking and/or licking. We
found that 9.4% of the neurons were partially predicting the
animal’s whisking rate whereas only 2% predicted licking rates
(Fig. 3e–g). We then compared the resulting categories with the
selectivity that the neurons displayed in the subsequent texture
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Fig. 1 Increase in texture selectivity of S1 neurons during discrimination learning. a Experimental setup and structure. Mice were rewarded for licking the
water spout upon random presentations of the P120 but not the P280 sandpaper. b Discrimination performance across learning (N= 12 mice, Wilcoxon
rank-sum test, ****P= 3.7 × 10−5). c Effect of contra and ipsilateral whisker trimming on behavioral performance (N= 7 mice, Friedman test and post-hoc
Dunn’s test, n.s. P= 0.33, ***P= 0.0009). d An injection of muscimol in S1 of expert animals reduced behavioral performance (N= 5 mice, Wilcoxon rank-
sum test, **P= 0.0079). e Left, example of field of view containing mRuby2/GCaMP6s-expressing neurons (scale bar: 100 μm). Right, thin volumetric
imaging was performed in order to correct post-hoc for axial brain motion artefacts. f Examples of average calcium signal to the P120 texture (brown) and
P280 texture (orange). g Example of ROC analysis for a neuron during an expert session. Left, probability distributions of the calcium signals for the P120
and P280 trials. Right, ROC curve from which the DI is calculated. The DI expresses the likelihood that the neuronal calcium signals predicted the presented
texture. Statistical significance was determined using a permutation test (see Methods). DIs for example neurons #1-4 in f are 0.20, 0.38, −0.28, and
−0.13, respectively (P < 0.05 for all DIs). h The fraction of selective neurons before and after learning (N= 12 mice, 875 neurons, Wilcoxon rank-sum test,
*P= 0.03). i Distribution of DIs in expert mice (N= 12 mice) with example neurons from f. P120-selective neurons (brown): 146/875; P280-selective
neurons (orange): 57/875. j The fraction of P120 (brown) and P280 (orange) selective neurons before and after learning (N= 12 mice, 875 neurons,
Wilcoxon rank-sum tests, P120-selective fraction in naïve vs expert, *P= 0.02; P280-selective fraction in naïve vs expert, P= 0.33; P120 vs P280 selective
fractions in naïve, P= 0.36, and expert, **P= 0.006). The bars with error bars, or traces with shaded areas represent averages ±SEM. Lines between bars
represent individual mice.
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discrimination task. Most of the neurons that were found to be
selective after training had formerly been categorized as unde-
fined or reporting touch (88%; Fig. 3g). Altogether, these data
strongly suggest that the stimulus-selective neurons did not
exclusively signal whisking or licking behavior during the task.
Moreover, only 11% of the P120-selective neurons were pre-
dicting the animal’s whisking rate and 0% the licking rate. Thus,
the biased increase in P120 selectivity during texture dis-
crimination learning could not be explained by mere changes in
the animal’s whisking or licking behavior.

Texture selectivity is dynamic upon reversal learning. Studies
using comparable paradigms have reported that S1 neurons
exhibit selectivity not only for the tactile stimulus but also for the
behavioral choice5,14,15. In order to test this, we uncoupled
the behavioral choice from the respective textures by inverting the
reward contingencies. This allowed us to assess which neurons
were persistently selective for a given texture, and which were
dynamic. To this end, expert mice were continued to be trained
on the same textures, but now the detection of the P280 texture
was rewarded and the P120 texture was not (Fig. 4a). Upon
reversal the performance initially dropped to chance level (the
post-reversal naïve phase; Fig. 4b) before it reached the expert
criterion again within 2–4 days (the post-reversal expert phase).
In the post-reversal naïve phase, the neuronal population’s
average DI remained of the same sign as compared with the pre-
reversal expert phase. However, we observed an inversion of the
DI’s sign in the post-reversal expert phase (Fig. 4c), indicating
that many neurons had changed their texture selectivity during
reversal learning. By comparing the DI of each neuron over
expert sessions before and after reversal we could define a variety
of neuronal classes, including those that remained selective for
the same texture (4%; e.g. neuron 1 in Fig. 4d), those that reversed
their selectivity to the other texture (and thus invariably reported
textures contingent on the associated reward, 8%; e.g. neuron 2 in
Fig. 4d), and those that had lost (19%) or gained (18%) selectivity
altogether (Fig. 5a–c). Overall, the population regained a selec-
tivity bias for the rewarded texture (Fig. 5c, d). The changes in
selectivity could be the result of network plasticity. To assess this,
we calculated the level of co-fluctuation in spontaneous activity
within the groups that had lost or gained selectivity, which may
reflect the level of mutual connectivity23–25. Upon reversal, the
level of co-fluctuation increased for gained neurons and decreased
for lost neurons (Fig. 5e). This may indicate that reversal learning
promotes the rewiring of local synaptic circuits.

We also checked whether the various classes correlated with
the animal’s whisking or licking behavior. We found no
difference in the average calcium signal for any of the classes
above when comparing trials for which the animal displayed high

whisking or licking rates with low-rate trials (Fig. 5f, g and
Supplementary Fig. 4a, b). This result is in line with the decoding
model (Fig. 3) and indicates that the dynamics in selectivity
observed after reversal learning cannot be attributed to alterations
in whisking and licking.

Altogether, the reversal learning experiment shows that texture
selectivity of L2/3 neurons in S1 is largely dynamic, with a
fraction of neurons reversing their texture selectivity congruent
with the reward contingency. This suggests that although for
some neurons selectivity is determined solely by the texture
attributes of the stimuli, for many others it is shaped by higher-
order features that are associated with the stimuli.

Selectivity reversal is associated with choice or reward. What
determines the selectivity dynamics in the class of neurons that
followed the textures’ reward contingencies? We envisioned two
possibilities. Neurons could persistently report the upcoming
choice5,14,15, independent of reversal learning. Alternatively,
neurons could gradually update their texture selectivity during
reversal learning, congruous with the associated reward. The
latter neurons would therefore signal the texture value rather than
upcoming behavioral choice, as seen in other brain areas8,9,26,27.
To address this, we tracked the responses of the reversibly
selective neurons according to the trial outcome (hits, misses,
FAs, and CRs) throughout the reversal learning process. We
distinguished three learning phases: pre-reversal expert, post-
reversal naïve, and post-reversal expert. Upon reversal of the
reward contingencies, some neurons showed persistently larger
responses during hit and FA trials as compared with miss and CR
trials (e.g. Neuron 1 in Fig. 6a; Supplementary Fig. 5). Other cells
exhibited larger responses in hit and miss trials during the pre-
reversal expert phase, then showed larger responses in FA and CR
trials during the naïve post-reversal phase, and finally regained
response strength in hit and miss trials during the expert post-
reversal phase (e.g. Neuron 2 in Fig. 6a; Supplementary Fig. 5).
Thus, whereas the former neuron stably preferred a texture
congruent with the final action-selection (i.e. choice) throughout
all phases, the latter neuron updated its selectivity during re-
learning, possibly based on the reward-outcome that was asso-
ciated with the texture (i.e. value). The difference between those
two neurons became most striking during the post-reversal naïve
phase in which the animals typically abandoned their previous
behavioral strategy and made inconsistent choices. This allowed
us to parse out from the class of reversibly selective neurons those
whose selectivity was conforming to the animal’s upcoming
choice to lick or not to lick (i.e. choice neurons) or conforming to
the texture’s associated reward value (i.e. value neurons). To
quantitatively parse the different types of selectivity, we calculated
a choice index (CI) for each neuron. Similar to the DI, this was
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based on a ROC curve analysis, but now comparing the response
amplitudes between lick and no-lick trials (Fig. 6b). This analysis
confirmed the existence of the two subclasses (Fig. 6c), one for
which the CI remained stable throughout the naïve phase after

reversal (choice neurons), and one for which the CI was altered
(value neurons). For both classes, the calcium signals did not
correlate with the whisking and licking rates (Fig. 6d and Sup-
plementary Fig. 4c, d). In addition, only a few neurons in both
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classes had previously been categorized as being predictive for
whisking + licking, similar to the other classes of neurons
(Fig. 6e). This confirms that the selectivity dynamics (or lack
thereof) in choice and value neurons could not be attributed to
alterations in whisking or licking.

Altogether, this shows that reversibly selective neurons could
be sub-divided into two classes: neurons that signaled the
stimulus congruent with the animal’s upcoming choice and
neurons that reported the contextual stimulus value (Fig. 7a). To
illustrate the differences between these classes, we provide
examples of the temporal evolution of the DI and CI throughout
reversal learning for a choice neuron and a value neuron from the
same animal (Fig. 7b). In line with our previous analysis (Fig. 6c),
the DI of both neurons showed a relatively similar temporal

profile, with an initial drop after reversal and a gradual inversion
during re-learning. On the other hand, the CI of the choice
neuron remained positive throughout the reversal learning
phases, whereas the CI of the value neuron did not. Notably,
for the value neuron the inversion of the DI seemingly occurred
tens of trials before the animal’s performance started to increase,
whereas for the choice neuron the inversion coincided sharply
with the increase in performance.

Value neurons display error history activity during learning.
Based on the preceding observations, we hypothesized that the
gradual reacquisition of texture preference by the value neurons
carries a signal that predicts the upcoming improvement in the
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animal’s texture discrimination performance. Such a signal might
consist of distinct response amplitudes during certain trials,
which could depend on whether the animal had previously made
correct or incorrect choices26,28–30. Previous work suggests that a
correct trial that follows an incorrect trial is considered more
instructive for the animal than two consecutive correct trials8,9,26.
To test this, we focused our analysis on those consecutive trials in
which mice were actively licking upon texture presentation (i.e.
hits and FAs), hence ensuring that they were engaged in the task.
We compared the mean response amplitudes of hit trials that
were preceded by a FA trial (Rhit post FAð Þ) to those that were

preceded by a hit trial (Rhit post hitð Þ) (Fig. 8a). All trials across mice
were aligned to the point at which the reversal learning had
reached the expert criterion (Fig. 8b, Supplementary Fig. 6, and
Supplementary Table 1). Averaged hit and FA rates over a 200-
trial rolling window separated from one another at ~140 trials
before the expert criterion. This point indicated the moment at
which mice started to improve their performance, which we
defined as the learning onset (Fig. 8c, black arrow head). For non-
selective neurons as well as choice, texture, gained, and lost
selectivity neurons, we did not observe any difference between the
Rhit post hitð Þ amplitudes and the Rhit post FAð Þ amplitudes (Fig. 8d).
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In contrast, for the contextual value neurons, the average
Rhit post FAð Þ response amplitudes became larger than the Rhit post hitð Þ
amplitudes, at ~260 trials before the expert criterion, and ~120
trials before learning onset (Fig. 8c, d, red arrowhead). The two
types of responses became similar again when mice performed
above the expert criterion. During this interval, we did not observe
a change in the sampling strategy of the texture confirming that
the difference in responses is not associated with changes in
licking and/or whisking rates (Supplementary Fig. 7). We used the
normalized difference between Rhit post FAð Þ and Rhit post hitð Þ respon-
ses as an error history index (Fig. 8e), and observed that a large
fraction of the value neurons exhibited a transient increase in the
error history as compared to the other neuronal classes that we
had identified. Such an anticipation of the learning onset could not
be deduced from the DI evolution (Supplementary Fig. 8). Alto-
gether, these results indicate that the change in texture preference
of value neurons caries a signal that is indicative of the upcoming
improvement in discrimination, i.e. learning.

Discussion
Previous studies indicate that reward-based perceptual learning
increases the reliability and selectivity of neuronal responses in
primary sensory cortices. As a consequence, the neuronal popu-
lation that represents the relevant sensory stimuli stabilizes,
which may improve perception13,16–18,31. We extend on this
work by tracking the stimulus feature selectivity of neurons in
mouse S1, first during learning of a Go/No-go texture dis-
crimination task (Fig. 1), and subsequently upon reversal learning
of the task (Figs. 4 and 5).

We found that during learning, the population of neurons
displaying selectivity for the rewarded texture became increas-
ingly larger than for the non-rewarded texture (Fig. 1h–j).
This finding agrees with previous studies describing that
response selectivity is shaped by the behavioral choice of the
animal5,11,14,15. Using the reversal learning paradigm we then
showed that whereas a small population of neurons can stably
encode a texture, a large fraction loses, gains, or first loses and
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then regains selectivity for a texture when the reward con-
tingencies are reversed (Figs. 4 and 5). This implies that a simple
alteration of reward contingencies can disorganize a pre-
established selectivity map in S1, which is then extensively
reshaped with relearning.

The reshaping of this map could be the result of plasticity
mechanisms that also underlie the experience-dependent tuning
of neuronal response properties in primary sensory cortex20. In
this case, Hebbian plasticity may drive the phenomenon, with the
result that similarly tuned neurons become more strongly inter-
connected23–25. This is supported by our finding that both,
neurons that gain selectivity and those that lose selectivity show
higher co-fluctuation in spontaneous activity during the time they
are selective (Fig. 5e).

The reshaping of the selectivity map during reversal learning is
remarkable, since the lower-order sensory features that are
embodied in the textures had not changed. Thus, in principle,
the capacity of the S1 neuronal population to discriminate those
lower-order sensory features did not need to be modified in order
for the mouse to resolve the altered reward contingencies.
Nonetheless, the finding is congruent with the idea that learning
continuously optimizes sensory representations in cortex, and
that this strongly depends on the stimulus context2,13,14. In our
study, the reward contingency could represent an important
aspect of the context that modulates sensory representations.
Indeed, the selectivity dynamics in the neuronal population upon
reversal learning suggests that neurons in S1 do not solely
represent lower-order sensory features. Instead, they seem to
selectively report the association between a lower-order stimulus
feature and a paired higher-order feature, such as the reward.

In Go/No-go tasks the reward is tightly coupled to the animal’s
choice for licking. Thus, the selectivity for the texture-reward
coupling could merely represent the encoding of the upcoming
behavioral choice. The reversal learning paradigm allowed us to
assess the stability of the neuronal responses for this coupling, e.g.
whether the initial P120-selective neurons stably respond to
the animal’s choice, even during the post-reversal naïve phase,

or whether they lose selectivity shortly upon reversal and then
re-built it with relearning (Figs. 6 and 7). We found that more
than half of the P120-selective neurons belonged to the latter
class. Thus, their sensory responses were transiently uncoupled
from the animal’s choice, and primarily depended on whether the
presented texture was associated with the upcoming reward (or
not), i.e. the value of the texture. In future experiments it will be
interesting to test whether repeated reversal learning continues to
renew the selective population, or whether the population reverts
back to the original response configuration.

Previous studies indicate that the value of a sensory stimulus is
encoded by higher-order areas such as the posterior parietal,
orbitofrontal, and retrosplenial cortices8,9,26,27. Our data shows
that value-encoding is also an attribute of a population of neurons
in S1. The instructive cues for this selectivity could be manifold.
For example, they could be provided by direct feedback from the
aforementioned higher-order cortical areas, or they could be
derived from sub-cortical areas that are implicated in attention
and behavioral updating during learning32,33. Modulatory rein-
forcement signals that are associated with behavioral outcome
could also play a major role33–35. Indeed, reward-related response
modulation has been observed in S128, and was found to promote
cortical plasticity processes related to visual response tuning in
primary visual cortex16. We found that the value neurons gra-
dually regained their preference for the rewarded texture with
relearning, which would be congruent with the idea that reward-
related plasticity mechanisms contribute to shaping perceptual
representations in cortex.

At this point it is not clear if the value neurons constitute a
specific subpopulation of L2/3 neurons. Since we used an AAV
expression cassette with a generic promoter, the population of value
neurons could theoretically contain interneurons. L2/3 of S1 con-
tains various types of interneurons of which vasoactive intestinal
peptide (VIP)-positive interneurons have been shown to be impli-
cated in shaping neuronal responses35–38 and cortical plasticity39,40.
It is tempting to speculate that the reward-related response mod-
ulation that we observed is conveyed by VIP interneurons33,41.
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We also found that value neurons transiently displayed
enhanced response amplitudes dependent on the animal’s beha-
vioral error history (Fig. 8). During the naïve reversal phase these
neurons showed higher responses in hit trials if the hit trial was
preceded by a false alarm trial. This phenomenon was prominent
during the transition from the naïve to expert reversal phase and
forecasted the increase in behavioral performance. We speculate
that the omission of reward-associated signals during a false
alarm trial directs the animal’s attention towards the newly
rewarded texture. Elevated attentional signals have been shown to
modulate sensory-driven responses in visual cortex42. Thus, the
attentional signals may be read out by the value neurons, which in
turn reshape the texture selectivity of surrounding neurons.
Together, this may enhance sensory perception.

Methods
Animals. C57BL/6J male mice (Janvier Labs) aged 6 weeks were group housed on a
12-h light cycle (lights on at 8:00 a.m.) with littermates until surgery. Two weeks
after surgery, mice kept under standardized conditions at the animal facility of the
university of Geneva, with an inverted light-dark cycle 7–8 days before the first
training session. The behavioral experiments were performed during the dark
phase. All procedures were conducted in accordance with the guidelines of the
Federal Food Safety and Veterinary Office of Switzerland and in agreement with
the veterinary office of the Canton of Geneva (licence numbers GE/28/14, GE/61/
17, and GE/74/18). C57BL/6J male mice (Janvier Labs) aged 6 weeks were group

housed on a 12-h light cycle (lights on at 8:00 a.m.) with littermates until surgery.
Two weeks after surgery, animals were housed under standard conditions, with an
inverted light–dark cycle 7–8 days before the first training session.

Surgery and intrinsic optical imaging. Stereotaxic injections of adeno-associated
viral (AAV) vectors were carried out on 6-week-old male C57BL/6 mice. A mix of
O2 and 4% isoflurane at 0.4 L min−1 was used to induce anesthesia followed by an
intraperitoneal injection of MMF solution, consisting of 0.2 mg kg−1 medetomi-
dine (Dormitor, Orion Pharma), 5 mg kg−1 midazolam (Dormicum, Roche), and
0.05 mg kg−1 fentanyl (Fentanyl, Sinetica) diluted in sterile 0.9% NaCl. AAV1-
hSyn1-mRuby2-GSG-P2A-GCaMP6s (Penn Vector Core; 100 nl)20 was delivered
to L2/3 of the right barrel cortex in S1 at the approximate location of the C2 barrel-
related column (1.4 mm posterior, 3.5 mm lateral from bregma, 300 µm below the
pia). For long-term in vivo calcium imaging, a 3-mm diameter cranial window was
implanted, as described previously43.

Two weeks after surgery, the C2 barrel column was mapped again using
intrinsic optical imaging to confirm the location of mRuby2/GCaMP6s expression.
To do this, a mix of O2 and 4% isoflurane at 0.4 L min−1 was used to induce
anesthesia followed by an intraperitoneal injection of MM solution consisting of
0.2 mg kg−1 medetomidine and 5 mg kg−1 midazolam diluted in sterile 0.9% NaCl.
The C2 whisker was inserted into a capillary connected to a piezo actuator.
Intrinsic signal was collected during repeated whisker stimulation (1 s at 8 Hz).
A 100-W halogen light source connected to a light guide system with a 700-nm
interference filter was used to illuminate the cortical surface through the cranial
window. Reflectance images 300 µm below the surface were acquired using a ×2.7
objective and the Imager 3001F (Optical Imaging, Mountainside, NJ) equipped
with a 256 × 256 pixels array charge-coupled device (CCD) camera (using VDaq
software). The built-in Imager 3001F analysis program (Winmix software) was
used to visualize the responses and produce an intrinsic signal image by dividing
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the stimulus signal by the pre-stimulus baseline signal. An image of the vasculature
was then acquired using a 546-nm interference filter, and superimposed on the
intrinsic signal image. This reference image was used later to select an appropriate
field of view (FOV) using 2PLSM. After this procedure, a metal post was implanted
laterally to the window using dental acrylic to restrict head movement during
behavior and imaging.

Habituation and water deprivation. Mice were handled and accustomed to be
head restrained on the training setup for 10–15 min over 4–5 days. Water depri-
vation started 3–5 days before the first training session and discontinued at the end
of the training. Weight was monitored daily during this period and the amount of
water given was adjusted to prevent them from losing more than 15% of their
original weight. Altogether, mice received a minimum of 1 ml of water per day
corresponding to the amount they drank during the training as rewards plus the
amount that the experimenter provided outside of the training sessions.

Texture discrimination task. Mice were trained to discriminate between two
commercial-grade sandpapers (P120 and P280) in a Go/No-go paradigm as
described previously5. The control of the devices and the recording of behavioral
parameters were performed using a data acquisition interface (PCI 6503, National
Instruments) and custom-written LabWindows/CVI software (National Instru-
ments). Licks were detected electrically. Mice remained on a metallic plate that
maintained an electrical potential difference with the licking spout. The electrical
circuit was closed when mice touched the spout with their tongue, producing a
1.2-µA current that was detected by the acquisition interface. Whisking activity was
measured with an optical barrier that detected the changes in intensity when
whiskers swept through. To achieve this, an 850-nm LED beam was used as light
source (HIR204C, Everlight Electronics) and an 860-nm phototransistor (PT 202C,
Everlight Electronics) was used to detect intensity variations through a 1-mm hole
placed 60 mm away from the light source, at a sampling frequency of 10 kHz.
Whisking activity was quantified as the frequency at which individual whiskers
crossed the light beam placed ~1 mm in front of and centered on the presented
texture. The licking and whisking rates were calculated as the average number of
events over a sliding window of 100 ms and normalized per second.

Sandpapers were attached to a four-arm wheel (2 × 2 of the same sandpapers)
mounted on a stepper motor (T-NM17A04, Zaber) and a motorized linear stage
(T-LSM100A, Zaber) to move textures in and out of reach of the whiskers. At the
start of each trial, the wheel spun for a random amount of time while in the rear
position of the linear stage (approximately between 0.5 and 1 s) and stopped
between two textures positions. To present a texture the linear stage first moved to
the front position and then the stepper motor rapidly slid the sandpaper into the
whisker’s reach at ~15 mm from the snout with an angle of 70° relative to the
rostro-caudal axis. In the first phase of the training, the coarser P120 sandpaper
was the rewarded texture (i.e. the target stimulus for which the mouse was incited
to lick the spout in order to receive a water reward) and the P280 sandpaper was
the non-rewarded texture (i.e. the non-target stimulus for which the mouse was
incited to refrain from licking the spout). Initially, mice were trained to trigger a
4–6-µl sucrose water reward (100 mg/ml) by licking the spout during the
presentation of the P120 texture (rewarded). Then, they were gradually familiarized
with the P280 texture presentation (non-rewarded), from 0 to 30% of the trials,
within two sessions (one session per day, 150–300 trials per session). Imaging
started when P120 and P280 textures were pseudo-randomly presented with 50%
probability for each trial type with a maximum of four consecutive presentations of
the same stimuli. A trial consisted of a 1-s pre-stimulus period followed by a 3-kHz
auditory cue for 200 ms, a delay period of 500 ms after which the texture reached
the whiskers within 150 ms and remained there for 2 s before being retracted.
Licking during the P120 texture presentation triggered a water reward at the end of
the 2-s presentation, and the corresponding trial was scored as a ‘hit’. Licking
during the P280 texture presentation triggered a 500-ms white noise sound
exposure at the end of the 2-s presentation plus a 5-s time-out period, and the trial
was scored as a ‘false alarm’ (FA). In the absence of a lick during stimulus
presentation, trials were scored as a ‘miss’ or a ‘correct rejection’ (CR) for P120 and
P280 stimuli, respectively. To prevent the mice from compulsive licking during
training, in addition to the aforementioned rules, mice had to show a 2-fold
increase in the licking rate during stimulus presentation as compared with the pre-
stimulus baseline period to get rewarded on the P120 texture presentation. Around
250–400 trials per session were performed (1 session per day) at a rate of ~6 trials/
min.

The overall performance of the animal was calculated as the percentage of
correct trials (hits + CRs) over an entire session or over a sliding window of 200
trials. The hit and FA rates were calculated as Nhit/(Nhit+Nmiss) and NFA/
(NFA+NCR) respectively where N is a number of trials for an entire session or over
a sliding window of 200 trials. Mice were considered experts when the average
performance per session reached a level of 70% correct trials (the expert criterion)
over two consecutive sessions. In the second phase of training (i.e. reversal
learning), reward contingencies were inverted (i.e. the P280 texture was rewarded
whereas the P120 texture was not) and mice were trained until they reached the
same expert criterion again in two consecutive sessions.

2PLSM. We used a custom built 2-photon laser scanning microscope mounted
onto a modular in vivo multiphoton microscopy system (https://www.janelia.
org/open-science/mimms-10-2016) equipped with an 8-kHz resonant scanner
and a ×16 0.8NA objective (Nikon, CFI75), and controlled with Scanimage
2016b44 (http://www.scanimage.org). Fluorophores were excited using a Ti:
Sapphire laser (Chameleon Ultra, Coherent) tuned to λ= 980 m that was slightly
underfilling the back aperture of the objective to extend the depth of field to
5 µm. Fluorescent signals were collected with GaAsP photomultiplier tubes
(10770PB-40, Hamamatsu) separating mRuby2 and GCaMP6s signals with a
dichroic mirror (565dcxr, Chroma) and emission filters (ET620/60 m and
ET525/50 m, respectively, Chroma). Fast volumetric imaging was performed at
11.5 Hz using a piezo z-scanner (P-725 PIFOC, Physik Instrumente) for moving
the objective over the z-axis. Each acquisition volume consisted of 5 contiguous
planes (with 5-µm steps between planes) of 400 × 400 µm (512 × 256 pixels)
allowing post-hoc z-motion correction which may be generated by licking-
induced brain motion artifacts21.

Image processing. Images were processed using custom-written MATLAB scripts
and ImageJ (http://rsbweb.nih.gov/ij/). Lateral and axial motion corrections were
performed using the mRuby2 signal as a reference. First, rigid lateral movement
vectors were calculated based on individual trial movies from the average z-
projection of the 20-µm imaged volumes using the NoRMCorre MATLAB tool-
box45. Residual bidirectional scanning artifact vectors were calculated using a
highest-pixel-line signal correlation between the two scanning directions on the
entire frame. Inter-trial registration was calculated using a custom-written cross-
correlation algorithm based on the rigid image stack registration plugin in ImageJ.
All calculated lateral motion corrections were applied on both the mRuby2 and
GCaMP6s signals. Second, axial motion correction was performed using cross-
correlation on linearly interpolated volumes (with a factor 3). The image planes
with the highest correlation to a reference image, defined as the center image plane
of the first volume, were selected. For an unbiased extraction of the GCaMP6s
fluorescence signals from individual neurons, regions of interest (ROIs) were
drawn manually for each session based on neuronal shape using the
mRuby2 signal. The fluorescence time-course of each neuron (Fmeasured) was
measured as the average of all pixel values of the GCaMP6s signal within the ROI.
Local neuropil signal (Fneuropil) was measured for each ROI as the average of pixel
values within an automatically defined ring of 15 µm width, 2 µm away from the
ROI (excluding overlap with surrounding ROIs)46. The fluorescence signal of a cell
body was then estimated as F tð Þ ¼ Fmeasured tð Þ � r ´ Fneuropil tð Þ with r= 0.747.
Residual trends were removed by subtracting the 8th percentile of each trial48.
Normalized calcium traces ΔF/F0 were calculated as (F−F0)/F0, where F0 is the
median of the individual mean baseline fluorescence signal of each trial over a 1-s
period before the start of the stimulation. For individual stimulation sessions (see
Individual stimulation session and neuron categorization section) and spontaneous
activity recordings, F0 is the 30th percentile of each trial trace. For display, traces
were additionally filtered with a Savitzky-Golay function (2nd order, 500-ms span).

Activity onset analysis. Normalized calcium traces (ΔF/F0) were aligned to either
the onset of the texture presentation or to the first lick during the texture pre-
sentation for each neuron across all hit trials of an expert session. For both rea-
lignments, the onset of the neuronal response was calculated as the time, relative to
the texture or first lick onset, at which the average of the response reached half of
its maximum amplitude.

Individual stimulation session and neuron categorization. Prior to the start of
the training, nine mice were imaged in the experimental training configuration,
where task-related stimuli were presented independently of one another in a
pseudo-random fashion. Data acquisition was organized in trials of 10 s, each
starting with a 3-s baseline after which one of the following conditions was pre-
sented at a random time within a 4-s window: 2-s texture, 0.2-s sound (auditory
cue) or water valve opening to incite licking, and finishing with another 3-s of
recording. In 20% of the trials, no stimulation was applied. Whisking and licking
events were recorded over the course of the session.

To determine if neuronal activity was significantly modulated by texture or
sound stimuli, we compared, for each neuron across trials, the average normalized
fluorescence over 1 s before and after the stimulus onset using a paired-sample t-
test at a significance threshold of 5%. To account for noise in our data due to
possible stimulation-induced movement artefacts, we performed the same test
using the mRuby2 signal. None of the neurons showed a significant change in
mRuby2 signal upon texture and sound stimulation.

We used a random forests machine-learning algorithm to decode behavioral
features (licking and whisking rates) from the activity of single neurons. This
procedure allowed us to categorize single neurons as either decoding whisking,
licking, or both. Given the slow kinetics of calcium transients captured by the
GCaMP6s sensor, spiking rates were inferred from the ΔF/F0 trace and used as
input to the algorithm, which allowed to temporally match behavioral event
variations (i.e. whisking or licking rates) to neuronal activity. Firing rates at each
imaging frame were inferred from normalized calcium traces (ΔF/F0) using a fast
nonnegative deconvolution method (https://github.com/jovo/oopsi)49 with variable
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background fluorescence estimation and a Kd of 144 nM50. In order for the
algorithm to capture differences in activity levels between neurons, all trial traces
of all neurons recorded per mouse were concatenated before inferring spikes. To
account for putatively preceding pre-motor and/or following sensory-related
activity in S1 relative to behavioral events, the neuronal activity traces were shifted
negatively and positively in time with a maximum shift of 500 ms. Eleven time bins
of inferred firing rates (discretized in time bins of 100 ms) centered on zero time-
shift were used to predict instantaneous behavioral features and composed a vector
Xi tð Þ ¼ xi t � 500msð Þ; ¼ xi tð Þ; ¼ ; xi t þ 500msð Þ½ � where xi(t) represents the
inferred firing rates of the ith neuron at zero time-shift. Licking and whisking rates
were down sampled to 11.5 Hz in order to temporally match calcium imaging data.
The ranger function of the ranger R package version 0.10.1 was used to construct
regression forests, with each behavioral feature as dependent variable and the
binned inferred firing rates of a given neuron as predictors. For each neuron, two
regression forests were constructed, one to decode whisking and the other licking.
Most arguments of the function were kept at default settings, except the following:
the number of trees was set to 128, the minimum size of terminal nodes was set to
2, the number of predictor variables randomly sampled at each node split was set to
the maximum between 1 or the third of the number of predictors, and the variable
importance mode was set to “impurity”. To obtain a prediction for all trials, 5-fold
cross-validation was applied by training the algorithm on 80% of the trials (i.e.
training set) and evaluating it on the remaining 20% of the trials (i.e. test set). Since
data acquisition was discretized by trial, for each cross-validation the training and
test set trials were concatenated for training and prediction, respectively. For each
neuron and for each behavioral feature, the decoding accuracy was assessed by
computing the Pearson’s product-moment correlation coefficient between the
observed and predicted behavioral event fluctuations. In order to get an estimate of
the noise in the prediction levels, the same analysis was performed using the
mRuby2 signal as a control. Neurons were classified as decoding a given behavioral
feature if their Pearson’s correlation coefficient computed on the GCaMP6s signal
was five standard deviations away from the mean of the Pearson’s correlation
coefficients for all neurons computed on the mRuby2 signal. Neurons meeting
these criteria for both whisking and licking were classified as decoding both
behavioral features.

Spontaneous activity correlation. Spontaneous calcium transients were recorded
for 10 min after mice reached the expert level before and after texture reversal.
Pairwise Pearson’s correlation coefficients were calculated on the normalized cal-
cium traces.

Discrimination and choice indices. The selectivity of each neuron was expressed
by a Discrimination index (DI) that was calculated based on neurometric functions
using a receiver-operating characteristic (ROC) analysis22,51,52. Normalized mean
calcium signals (ΔF/F0) during the 2-s stimulus presentations in the P120 texture
trials were compared to the P280 texture trials. ROC curves were generated by
plotting, for all threshold levels, the fraction of P120 trials against the fraction of
P280 trials for which the response exceeded threshold. Threshold levels were
defined as a linear function from the minimal to the maximal calcium signals. DI
was computed from the area under the ROC curve (AUC) as follows: DI= (AUC
−0.5) × 2. DI values vary between −1 and 1. Positive or negative values indicate
larger or smaller responses to P120 than to P280 texture presentations, respectively.
Statistical significance of the measured DI value was assessed by performing a
permutation test, from which a sampling distribution was obtained by shuffling the
texture labels of the trials 10,000 times. The measured DI was considered sig-
nificant when it was outside of the 2.5th–97.5th percentiles interval of the sampling
distribution. For the choice index (CI), the same calculation was performed, with
the difference that trials in which the animal licked during the texture presentation
were compared to trials with no lick. For building the temporal evolution of the DI
and CI across reversal learning, both indices were calculated over a sliding window
of 100 trials every 5 trials.

Calcium signals relative to behavioral strategies. For all hit trials of an expert
session, average whisking and licking rates were calculated as the average number
of events over the entire texture presentation window. For each mouse, the median
value in both distributions was used to separate low and high whisking or licking
rate trials.

Error history. Error history for each neuron was calculated as the normalized
difference between the average calcium signal during hit trials (�R) over a sliding
window of 200 trials as follows:

Error history tð Þ ¼
�Rhit post FAð Þ t � 100 : t þ 100ð Þ � �Rhit post hitð Þ t � 100 : t þ 100ð Þ

�Rhit t � 100 : t þ 100ð Þ
where Rhit post FAð Þ is the calcium signal in a hit trial that was preceded by a FA trial,
and Rhit post hitð Þ is a calcium signal in a hit trial that was preceded by another hit
trial. Rhit is the calcium signal in any hit trial, and t is the trial number, relative to
the trial at which behavioral performance reaches the expert criterion. To estimate

the fraction of neurons with an error history above chance, all hit trials within each
window of 200 trials were randomly permuted for each neuron, replacing
Rhit post FAð Þ, Rhit post hitð Þ , and Rhit in their respective trial positions. Then, an error
history value was calculated based on the permuted data set. This process was
repeated 1000 times to obtain 95% confidence intervals for each observed error
history value.

Immunohistochemistry. Post-hoc immunohistochemistry of GABA was per-
formed on mRuby2/GCaMP6s-expressing neurons. In all, 100-µm-thick tan-
gential sections were produced using a vibratome (Leica VT 1000). The sections
were washed 3 × 3 min in 500 µl Tris-buffered saline (0.1 M Tris, 150 mM NaCl)
containing 0.1% Tween (TBST), then pre-treated with TBST and 0.1% Triton-X
for 20 min followed by a 3 × 3 min TBST wash. They were blocked in 300 µl
TBST containing 10% normal donkey serum (ab7475, Abcam) for 1 h and
incubated with mouse anti-GABA antibody (ab86186, Abcam) diluted 1:500 for
72 h at 4 °C. After another 5 × 3 min wash in TBST they were incubated in 300 µl
of donkey anti-mouse antibody coupled to Alexa Fluor 647 (A32787, Thermo
Fisher Scientific) diluted 1:200 in TBST for 1 h at room temperature. Finally,
they were washed 10 × 3 min in TBST and then for 1 h in PBS before being
mounted onto glass slides. We applied Fluoroshield mounting medium with
DAPI (Abcam) before applying the coverslip. The sections were imaged using a
Zeiss Confocal LSM800 Airyscan.

S1 inactivation and whisker trimming. To inactivate S1, the GABA (G-amino-
butyric acid) agonist muscimol was injected in a separate set of expert mice (N= 5
mice; this data set was also used as a control group for another study53). During the
test session, high baseline performance (>70%) was first recorded for 100 trials
before the injection was performed. Under light anesthesia (4% isoflurane at
0.4 L min−1), a small hole was drilled through the imaging window above the
previously mapped C2 barrel column to provide access to a glass pipette through
which 300 nl of Muscimol (Bodipy-TMR-X, 5 mM in cortex buffer with 5% DMSO,
Thermo Fisher Scientific) was injected at 300 and 500 µm below the pia. Mice were
left to recover for 45 min and their behavioral performance was then assessed for
another 100 trials. For the whisker trimming experiment, a similar baseline per-
formance was first recorded for 100 trials before trimming the whiskers on the side
of the snout contralateral to the texture presentations, and tested the performance
for 50 trials. This ensured that trimming itself did not alter performance. Then, the
whiskers that were in contact with the textures (ipsilateral to the texture pre-
sentation side) were trimmed, and the effect on task performance was measured for
another 50 trials.

Statistics and reproducibility. All statistics were performed using MATLAB. For
all figures, significance levels were denoted as *P < 0.05, **P < 0.01, ***P < 0.001,
and ****P < 0.0001. No statistical methods were used to estimate sample sizes. All
comparison tests were performed two-sided. Non-parametric tests were used for
sample sizes smaller than 15. For the training experiments, the fields of view across
mice were of similar quality and the number of neurons recorded ranged between
42 and 113. For immunostainings, 2–3 fields of view per mice of similar quality
containing 110–201 neurons were analyzed.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data used to generate the figures is freely available at the CERN data repository
Zenodo https://zenodo.org/communities/holtmaat-lab-data/ with https://doi.org/
10.5281/zenodo.3824493.

Code availability
The principal Matlab code that was used for data analysis is freely available at the CERN
data repository Zenodo https://zenodo.org/communities/holtmaat-lab-data/ with https://
doi.org/10.5281/zenodo.3824493.
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