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Abstract

H9N2 subtype avian influenza viruses (AIVs) have shown expanded host range and can infect mammals, such as humans
and swine. To date the mechanisms of mammalian adaptation and interspecies transmission of H9N2 AIVs remain
poorly understood. To explore the molecular basis determining mammalian adaptation of H9N2 AIVs, we compared two
avian field H9N2 isolates in a mouse model: one (A/chicken/Guangdong/TS/2004, TS) is nonpathogenic, another one (A/
chicken/Guangdong/V/2008, V) is lethal with efficient replication in mouse brains. In order to determine the basis of the
differences in pathogenicity and brain tropism between these two viruses, recombinants with a single gene from the TS
(or V) virus in the background of the V (or TS) virus were generated using reverse genetics and evaluated in a mouse
model. The results showed that the PB2 gene is the major factor determining the virulence in the mouse model
although other genes also have variable impacts on virus replication and pathogenicity. Further studies using PB2
chimeric viruses and mutated viruses with a single amino acid substitution at position 627 [glutamic acid (E) to lysine,
(K)] in PB2 revealed that PB2 627K is critical for pathogenicity and viral replication of H9N2 viruses in mouse brains. All
together, these results indicate that the PB2 gene and especially position 627 determine virus replication and
pathogenicity in mice. This study provides insights into the molecular basis of mammalian adaptation and interspecies
transmission of H9N2 AIVs.
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Introduction

Since the first H9N2 subtype avian influenza virus (AIV) was

isolated from turkeys in 1966 in the U.S. [1], this subtype of

viruses has been circulating in birds worldwide. Although H9N2

viruses are often found in shorebirds and wild ducks in North

America [2], there is no evidence of a permanent lineage of these

viruses in land-based poultry [3]. In Asia, H9N2 subtype of AIVs

has become endemic in domestic poultry in many countries

[4,5,6,7,8,9]. Noticably, H9N2 viruses have transmitted from

land-based chickens to pigs [10,11,12,13,14,15]. Also, H9N2

viruses have been reported to infect humans and caused mild

respiratory disease [12,16,17]. Further evidence of its mammalian

host range is that some H9N2 strains replicate efficiently in mice

and are able to kill mice without prior adaptation [5,18]. All these

facts indicate that H9N2 AIVs have expanded their host range and

are able to infect different mammalian hosts including humans.

Although infections of humans with H5, H7 and H9 AIVs have

been documented, the molecular mechanism for adaptation of

AIVs in mammalian hosts remains poorly understood. The surface

protein hemagglutinin (HA), which is responsible for binding of

the virus to cellular receptors, is a major determinant in the host

range of influenza A viruses. The HAs of AIVs preferentially bind

to a2,3 sialic acid receptors, whereas the HAs from human

influenza viruses preferentially bind to a2,6 sialic acid receptors

[19]. Normally, the receptor binding site of the H9N2 HA similar

to other AIVs’ HAs contains 226Q (glutamine, Q) and 228G

(Glycine, G); an increasing number of currently circulating H9N2

isolates carry an leucine (L) at position 226 in the receptor binding

site, a position which has been shown to be critical for influenza

replication efficacy in human airway epithelial cells [20]. The

polymerase PB2 gene is also a major factor of host range for

human influenza viruses and highly pathogenic H5N1 AIVs; a

single-amino-acid substitution at position 627 of the PB2 protein

from glutamic acid (E) to lysine (K) is responsible for virulence in

mammalian species [21,22,23]. Previous adaption studies showed

that mouse adapted H9N2 viruses contain PB2 627K which is

associated with efficient replication and virulence of H9N2 AIV in

mice [3,24].

In this study, we characterized two H9N2 AIVs that were

isolated from chickens, A/chicken/Guangdong/TS/2004 (TS)

and A/chicken/Guangdong/V/2008 (V) in southeastern China.
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These two viruses showed similar pathogenicity for chickens, but

differ significantly in virulence and tissue tropism in mice. To

determine the molecular basis for the difference in virulence and

tissue tropism in mice, we generated recombinant and mutated

viruses via reverse genetics and tested them in the mouse model.

Our results showed that the single amino acid substitution at

position 627 of the PB2 protein from E to K contributes to efficient

replication and lethality of H9N2 AIVs in mice.

Materials and Methods

Cells and Viruses
Human embryonic kidney cells (293T) were purchased from the

China Center for Type Culture Collection (CCTCC) and

maintained in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% fetal bovine serum and 1% antibiotics,

and were incubated at 37uC in 5% CO2. The H9N2 influenza A

virus A/chicken/Guangdong/TS/2004 (TS) was isolated from the

lung of a dead chicken in a poultry farm with an outbreak of

respiratory disease in Guangdong, China, in 2004. The H9N2

influenza A virus A/chicken/Guangdong/V/2008 (V) was isolat-

ed from rectal swabs of diseased chickens in Guangdong, China, in

2008; the diseased chickens showed sneezing, depression and

diarrhea with a low mortality. Both viruses were amplified in 10-

day-old SPF embryonated eggs and used in this study.

Construction of Plasmids
To establish eight-plasmid reverse genetic systems for the TS

and V viruses, a bidirectional transcription vector (pDL) was used.

The pDL contains human RNA pol I promoter and murine RNA

polymerase I terminator sequences, which are flanked by the RNA

polymerase II promoter of human cytomegalovirus and SV40 late

polyadenylation signal. Two BsmB I restriction sites were utilized

to clone viral full-length cDNA between RNA pol I promoter and

terminator. The viral cDNAs were amplified by RT-PCR with

primers containing BsmB I sites (primers are available upon

request), and then digested with BsmBI, and cloned into the BsmBI

sites of the pDL vector. The resulting plasmids (pDL-V-PB2, -PB1,

-PA, -HA, -NP, -NA, -M and –NS; pDL-TS-PB2, -PB1, -PA, -HA,

-NP, -NA, -M and –NS) were confirmed by sequencing (primers

are available upon request). Mutations were introduced into the

PB2 gene by site-directed mutagenesis Kit (Invitrogen). The

resulting plasmids are pDL-V-PB2-627E and pDL-TS-PB2-627K,

Figure 1. Weight changes, mortality and virus titers of mice inoculated with the TS and V virus. A) Weight changes of mice; B) Mortality
of mice; C) Virus titers of the mouse lungs and brains: four-week-old SPF BALB/c mice (thirty mice/group) were inoculated intranasally with 106 EID50

of each virus and three mice were euthanized on each day post infection and organ tissues were collected for virus titration in eggs. Data shown are
the log10 geometric mean EID50/ml 6 SEM; dashed line indicates detection limit of 101 EID50/ml.
doi:10.1371/journal.pone.0040118.g001
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which were confirmed by sequencing. The plasmids for transfec-

tion were prepared by using the Perfectprep Plasmid mini kit

(Eppendorf, Hamburg, Germany).

Generation of Recombinant Viruses Using Reverse
Genetics

An eight plasmid reverse genetic system was used to generate

wild-type and recombinant viruses. A monolayer of 293T cells

with approximately 90% confluence in six-well plates was

transfected with 5 mg of the eight plasmids (0.6 mg/each plasmid)

by using Lipofectamine 2000 (Invitrogen) according to the

manufacturer’s instructions. Briefly, 5 mg of plasmids and 10 mL

of lipofectamine 2000 were mixed, incubated at room temperature

for 30 min, and then added to the cells. After 6 hours incubation

at 37uC, the mixture was replaced with DMEM containing 2%

fetal bovine serum and 0.2 mg/mL TPCK-treated trypsin. The

supernatant was harvested after 2 days incubation and 100 mL of

supernatant was injected into an embryonated egg for virus

propagation. The inoculated eggs were incubated for 3 days and

the allantoic supernatant was collected and tested by hemagglu-

tination assay. The rescued viruses were confirmed by sequencing

of the whole viral genome.

Chicken Experiment
To determine the pathogenicity of the two H9N2 viruses, the

Intravenous Pathogenicity Index (IVPI) test was performed

according to the recommendation of the Office International

Des Epizooties (OIE). The chicken experiment was approved by

the Institutional Animal Care and Use Committee at South China

Agricultural University. Twenty-four 6-week-old SPF white

leghorn chickens were randomly allocated into 3 groups (8

chickens/group). Each chicken was intravenously inoculated

through the wing vein with 0.2 mL of inoculum containing 1:10

of virus (original virus HA titer $1024) or 0.2 mL of sterile

phosphate-buffered saline (PBS) in the control group. The birds

were monitored daily for 10 days and scored based on the OIE

recommended scoring system: 0 if normal, 1 if sick, 2 if very sick

and 3 if dead.

Mouse Experiments
Four-week-old female BALB/c mice (Guangdong Experimental

Animal Center, Guanzhou, China) were used in this study. All

mouse experiments were approved by the Institutional Animal

Care and Use Committee at South China Agricultural University.

Mice were intranasally inoculated with 106 50% egg infection

doses (EID50) of each virus per mouse in 40 mL sterile PBS or

40 mL sterile PBS in the control group under light anesthesia.

Mice were monitored daily for weight loss and clinical signs. If a

mouse lost body weight over 25% of its pre-infection weight, it was

defined as dead and humanely euthanized immediately; the rest of

the mice were sacrificed at the end of experiment on 10 days post

infection (dpi). The 10% of homogenate of each organ tissue in

PBS was used for virus titration in 10-day-old embryonated

chicken eggs. Virus titers were given in units of log10EID50 per mL

6 standard deviation (SD).

In the first experiment, 90 mice were randomly divided into 3

groups (30 mice/group). Mice were intranasally infected with the

TS or V virus, or PBS as controls. Three mice in each group were

euthanized to investigate viral replication and tissue tropism from

1 to 10 dpi. The tissues collected from each animal included heart,

liver, spleen, lung, kidney, duodenum, rectum and brain.

Histopathological analysis were performed using H & E and

IHC staining (using an in-house anti-HA monoclonal antibody as

the first antibody) on samples collected on 5 dpi.

In subsequent experiments, 11 mice were used in each group.

Three mice in each group were euthanized on 3 and 5 dpi. The

remaining 5 mice were monitored daily for weight loss and

mortality until 10 dpi. During necropsy, lung and brain were

collected for virus titration.

Statistical Analyses
The log10 transformed virus titers were analyzed using

ANOVA, with a P-value #0.05 considered statistically significant

(GraphPad Prism, GraphPad Software, La Jolla, CA). Virological

measures shown to be significantly different by treatment group

were compared pairwise by using the Tukey–Kramer test.

Results

Virulence of TS and V H9N2 Viruses in Chickens and Mice
Chickens inoculated with either TS or V virus did not show any

clinical signs during the experimental period, similar to the control

chickens. The IVPI of both TS and V H9N2 viruses is 0,

indicating they are nonpathogenic for chickens although they were

isolated from diseased or dead chickens. In infected mice, the TS

virus did not induce weight loss and any clinical signs, whereas the

V virus caused severe weight loss and clinical signs including

decreased activity, huddling, hunched posture and ruffled fur

(Figure 1A). The V virus caused 100% mortality in infected mice,

whereas no mice died in the TS virus infected group (Figure 1B).

Both viruses were able to replicate in mouse lungs; however, the V

Table 1. Virus replication in mouse lungs and brains on 3 and
5 days post infection.

Viruses Lung Brain

3 dpi 5 dpi 3 dpi 5 dpi

TS 3.8360.14a 3.7560.14 ,1b ,1

r-TS 3.9160.05 3.9760.05 ,1 ,1

TS-VPB2 5.6760.38 5.6760.38 1.1160.14 1.060.43

TS-VPB1 4.0060.29 4.6760.38 ,1 ,1

TS-VPA 4.3360.38 4.3360.50 ,1 ,1

TS-VHA 3.9160.43 4.3360.43 ,1 ,1

TS-VNP 4.6760.50 4.6760.43 ,1 ,1

TS-VNA 4.6760.43 4.6760.43 ,1 ,1

TS-VM 4.1160.29 4.9160.29 ,1 ,1

TS-VNS 3.1160.14 3.1160.29 ,1 ,1

V 5.9760.06 6.0360.06 1.4260.53 1.3560.32

r-V 6.0160.05 6.0760.04 1.3360.66 1.2560.66

V-TSPB2 4.9160.38 4.9160.43 ,1 ,1

V-TSPB1 5.0060.43 5.3360.29 ,1 ,1

V-TSPA 6.0060.43 5.9160.14 ,1 ,1

V-TSHA 6.1160.43 5.3360.50 ,1 ,1

V-TSNP 5.3360.14 5.6760.43 ,1 ,1

V-TSNA 5.6760.29 5.6760.43 ,1 ,1

V-TSM 5.3360.29 5.6760.38 ,1 ,1

V-TSNS 6.0060.38 5.6760.29 ,1 ,1

aNumbers are log10 geometric mean EID50/ml 6 SEM.
bThe detection limit is 101 EID50/ml.
doi:10.1371/journal.pone.0040118.t001
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virus grew to significant higher titers than the TS virus.

Interestingly, besides the lung the V virus was also detected in

brains of infected mice, but not in other tissues. In contrast, the TS

virus was not found in the brain and other tissues with the

exception of the lungs (Figure 1C). Both the V and TS viruses

induced moderate bronchopneumonia in infected mice. The TS

caused slightly fewer microscopic lung lesions in infected mice on

5 dpi than did the V virus; no significant difference was observed

among the groups inoculated with the V or TS virus (data not

shown). The V virus induced nonsuppurative encephalitis with

proliferation of neuroglial cells in infected mice on 5 dpi, whereas

the TS virus did not. This finding was confirmed by detecting viral

antigens in the brains of mice infected with the V but not the TS

virus using IHC staining (data not shown).

Virulence of Wild-type and Recombinant Viruses in Mice
The eight plasmid reverse genetic system was established for

both the TS and V viruses. Both r-TS and r-V viruses generated

by reverse genetics retained the biological properties of their wild-

type viruses in terms of pathogenicity and tissue tropism in mice as

described above (Table 1, Figure 2).

To determine the genes responsible for differences in virulence

between the TS and V viruses in mice, eight recombinant viruses

containing a single gene from the Vvirus in the genetic background of

the TS virus (designated TS-VPB2, TS-VPB1, TS-VPA, TS-VHA,

TS-VNA, TS-VNP, TS-VM and TS-VNS) were generated and their

replication and virulence was tested in mice (Table 1). Several

recombinant viruses including TS-VPA and TS-VNA caused

transient weight loss (approximately 10% at 7 dpi) and clinical signs

in infected mice, but only the TS-VPB2 caused severe disease with

100% mortality (Figure2A). The recombinant TS-VPB2 virus grew

toasignificanthighervirus titer inmouse lungs than theparental r-TS

virus; no significant differences in lung virus titers were observed

among the other 7 recombinant and the parental viruses. Interest-

ingly, only the TS-VPB2 (3 and 5 dpi) virus was also found in mouse

brains similar to the parental V virus (Table 1). These results

indicated that PB2 from the V virus is critical for virus replication and

virulence in mice.

In addition, eight recombinant viruses containing a single gene

from the TS virus in the genetic background of the V virus

(designated V-TSPB2, V-TSPB1, V-TSPA, V-TSHA, V-TSNA,

V-TSNP, V-TSM and V-TSNS) were generated and tested in

mice. When compared to the parental r-V virus, the recombinant

viruses except V-TSPB2 caused obvious weight loss and clinical

signs in infected mice (Figure 2B); the parental r-V was

attenuated due to the introduction of a single gene from the TS

virus although recombinant V-TSPA, V-TSHA, V-TSNS and V-

TSNA viruses still induced mortality in infected mice (Figure 2C).

Figure 2. Weight changes of mice infected with wild-type, parental and recombinants viruses. A) Weight changes of mice inoculated
with the wild-type TS, parental r-TS and recombinant viruses. B) Weight changes of mice inoculated with the wild-type V, parental r-V and
recombinant viruses.
doi:10.1371/journal.pone.0040118.g002
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Mice infected with the recombinant V-TSPB2 virus exhibited no

weight loss and no clinical signs and they gained weight similar to

the control mice (Figure 2B). All recombinant viruses were able

to replicate in mouse lungs, but the recombinant viruses

containing PB2, PB1, NP and M from TS virus replicated to

lower titers when compared to the parental r-V and other

recombinant viruses (Table 1). Noticeably, no virus was found in

mouse brains infected with any of recombinant viruses. These

results indicated that genes from the TS virus affected viral

replication and tissue tropism of recombinant viruses in the genetic

background of the V virus. All above results indicated that PB2

plays a major role for the observed differences in viral replication,

tissue tropism and pathogenicity in mice.

Sequence Comparison of TS and V Viruses
The full genome sequence analysis showed both viruses had

90.7–98.2% identity at the nucleotide level and 93.8–100%

identity at the amino acid level between genes/proteins of the

TS and V viruses (GenBank accession No.: JQ639775–

JQ639790). There were a total of 101 amino acid differences

between these two viruses. In the surface proteins, there were

15 amino acid differences in the HA protein and 29 amino acid

differences in the NA protein between the TS and V viruses

(Table 2). Noticeably, both HAs contain 226Q that has been

demonstrated to bind avian-like influenza receptors [19] and

there was a 3 (62–64) amino acid deletion in the stalk of the

NA of the TS virus (Table 2). In the polymerase proteins, a

difference of 10 amino acids was observed in both the PB1 and

PB2 proteins; whereas there were 8 amino acid differences in

the PA protein (Table 3). The amino acids at positions 613 (V)

and 627 (E) in the PB2 of the TS were avian-like [25], whereas

human-like influenza signatures were found at the respective

positions (613I and 627K) in the V PB2 (Table 3). The TS

virus expresses a full-length (90 amino acids) PB1-F2 protein,

whereas the V virus expresses a truncated PB1-F2 (79 amino

acids) since there is a stop codon (amino acid position 80) in the

V PB1-F2 open reading frame. In the NP protein one human-

like signature at position 214 (K) was found in the V virus,

whereas at the same position an avian-like signature (214R) is

presented in the TS virus. There were various amino acid

differences in the M2, NS2 and the nonstructural NS1 protein

between both TS and V viruses (Table 3). Although the V

virus was isolated 4 years later than the TS virus, the

phylogenic analysis indicated that each gene segment of both

viruses belongs to the CK/BJ-like H9N2 subgroup (Data not

shown) and is not derived from other subtypes of influenza A

virus.

Amino Acid Substitution at Position 627 in PB2 Protein
Changes Virulence of the TS and V Viruses

Sequence analysis showed that there were 10 amino acid

differences in the PB2 between the TS and V viruses (Table 3); in

addition, PB2 played a major role in virus replication, tissue

tropism and pathogenicity in the studies of recombinant viruses.

To further identify the amino acid(s) in PB2 responsible for the

observed difference in viral replication and virulence of TS and V

viruses in mice, we generated eight PB2 chimeric viruses and 2

mutated viruses that contain a single substitution at the position of

627 in PB2 (Figure 3). Firstly, we generated chimera #1, #2, #3

and #4. The mouse study revealed that Chimera #2 (TS virus

possessing the N-terminal portion of the V PB2-1-344aa) and #4

(V virus possessing the C-terminal portion of the TS PB2-345-

759aa) induced less than 10% weight loss in infected mice without

mortality, whereas the chimera #1 (TS virus possessing the C-

terminal portion of the V PB2-345-759aa) and #3 (V virus

possessing the N-terminal portion of the TS PB2-1-344aa) caused

over 25% weight loss in infected mice with 100% mortality

(Figure 4A and B). Furthermore, both chimera #1 and #3

Table 2. Amino acid differences between avian influenza
H9N2 TS and V viruses Amino acid differences of surface
proteins between avian influenza H9N2 TS and V viruses.

Gene Position/H9 (H3) TS V

HA 3 (–) A V

15 (–) A V

92 (84) G R

107 (99) M L

165 (157) K E

166 (158) D N

171 (163) I V

183 (175) S N

213 (205) T A

224 (216) V L

243 (235) S A

252 (244) Q R

370 (362) V T

469 (461) M V

539 (531) M L

NA 22 F L

30 A V

62–64 – ITE

70 S G

73 I L

81 V A

83 E G

85 K R

141 K D

149 T A

153 I T

170 G A

210 M I

249 K R

296 K R

313 K D

331 N R

332 S T

356 N S

367 K E

368 E K

370 L S

380 V T

384 T I

403 W S

416 N S

432 Q K

doi:10.1371/journal.pone.0040118.t002
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replicated to slightly higher virus titers in mouse lungs than the

chimera #2 and #4. Only chimera #3 was also detected in the

mouse brains (Figure 3). These results indicated that the last 5

amino acids at positions 378, 555, 613,627 and 649 located at C-

terminal of the PB2 are critical for viral replication and virulence

in mice.

To determine which of the 5 amino acids located at the C-

terminal of the PB2 is important for virus replication and

virulence, we generated chimera #5, #6, #7 and #8 viruses.

The results exhibited that Chimera #6 (TS virus possessing the N-

terminal portion of the V PB2-1-570aa) and #8 (V virus

possessing the C-terminal portion of the TS PB2-571-759aa) did

not induce weight loss and clinical signs in infected mice and were

similar to the controls (Figure 4A). In contrast, the chimera #5

(TS virus possessing the C-terminal portion of the V PB2-571-

759aa) and #7 (V virus possessing the N-terminal portion of the

TS PB2-1-570aa) caused obvious clinical signs and weight loss

with 100% mortality. Moreover, chimera #5 and #7 replicated to

higher virus titers in mouse lungs than the chimera #6 and #8.

However, only chimera #7 (3 and 5 dpi) and #6 (3 dpi) were also

detected in mouse brains (Figure 3). These results demonstrated

that a maximal of three amino acid positions (V613I, E627K and

V649I) at the C-terminus of the PB2 affect virulence of the TS and

V viruses in mice.

To determine the importance of amino acid at position 627 in

PB2, we generated two mutant viruses TSPB2-627K and VPB2-

627E. The mutant VPB2-627E virus encoding E at position 627 of

PB2 was not lethal and did not replicate in mouse brains when

compared to the parental r-V virus (Figure 3 and 4). However,

the mutant TSPB2-627K encoding K at position 627 of PB2 killed

all infected mice and replicated to significantly higher titers in

mouse lungs and brains when compared to the parental r-TS virus

(Figure 3 and 4). These results suggest that the amino acid at

position 627 of the PB2 is critical for differences in viral replication

and virulence between the TS and V viruses in mice.

Discussion

Several permanent lineages of H9N2 AIVs are established in

land-based poultry and have become endemic in Asia

[26,27,28,29]. Both V and TS viruses used in this study belong

to the CK/BJ-like H9N2 subgroup and are non-pathogenic in

chickens although they were isolated from diseased or dead

chickens. The diseased or dead chickens in the farms with an

outbreak of respiratory disease were most likely caused by

Table 3. Amino acid differences of internal gene proteins
between avian influenza H9N2 TS and V viruses.

Gene Amino acid position TS V

PB2 60 N D

76 T M

109 V I

188 E D

292 I V

379 R K

555 R K

613 V I

627 E K

649 V I

PB1 76 D N

111 M I

157 A T

171 T M

328 N K

368 V I

387 K Q

566 T M

621 Q K

744 T M

PA 14 V A

142 R K

185 R K

254 N T

323 V I

552 T N

683 L I

684 G E

NP 21 N D

52 H Y

214 R K

329 V I

417 S N

423 A S

473 S N

496 Y H

21 N D

M2 10 P H

16 E G

27 V I

32 V I

85 N D

NS1 26 G E

27 R L

59 H R

70 E K

86 A V

95 I L

Table 3. Cont.

Gene Amino acid position TS V

123 I T

137 T I

179 E G

180 I V

197 T N

NS2 11 G D

22 R G

40 L I

63 G W

85 H R

doi:10.1371/journal.pone.0040118.t003
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multiple pathogens rather than a single H9N2 influenza virus

according to the IVPI test. Early H9N2 isolates from chickens

replicate poorly or not at all in mice [30]. Previous studies

showed that a few H9N2 isolates replicate systemically and are

pathogenic for mice without prior adaptation [5,18,30], indicat-

ing that some H9N2 viruses have gained the ability to cross the

species barrier and could replicate in mammalian hosts. A similar

situation is also demonstrated with the H9N2 described in this

study: the TS virus is nonlethal for mice whereas the V virus is

lethal for mice. These findings indicate that some H9N2 isolates

have expanded their host range and have adapted to mammalian

hosts. Indeed, H9N2 viruses have been isolated from pigs in

China and Korea [10,11,14,27,31] due to avian to pig

interspecies transmission; 10 genotype of H9N2 viruses were

shown to coexist in pigs in China from 1998 to 2007 [15]. More

importantly, some circulating H9N2 viruses obtained typical

human-like receptor specificity with amino acid L at position 226

at the receptor binding site [32], resulting in efficient replication

in cultured human airway epithelial cells [20]. Interestingly, most

of the recent H9N2 isolates from pigs and poultry have 226L in

HA [33], indicating that H9N2 viruses are gradually adapting to

mammals. In contrast, both the TS and V viruses contain

glutamine (Q) at position 226 in the HA, which is a typical avian-

like receptor binding marker, binding the SAa2, 3Gal receptors.

This result indicates that the HA is not the only determinant

which affects replication and pathogenicity of H9N2 AIVs in

mice. When compared to virus replication in mice, the V virus

replicated a significantly higher titer in mouse lungs than the TS

virus and it can enter the central nervous system with a detectable

titer. The recombinant viruses such as V-TSPA, -HA, -NA and -

NS replicated comparable titers in mouse lungs as the V virus

did, but they were not detected from mouse brains. They caused

less mortality in mice when compared to the V virus, indicating

that replication in brain might enhance viral virulence in mice

although virus replication in lungs seems to be the major

determinant for the mouse mortality to the infection.

H9N2 viruses have infected humans, leading to mild respira-

tory disease in people from Hongkong and mainland China

during 1999–2003 [12,16,17]. The infection of humans with

H9N2 viruses resulted in typical human flu-like illness that can be

easily associated with seasonal flu viruses and overlooked. H9N2

viruses could have the potential to become a human pandemic

strain in addition to the highly pathogenic H5N1 virus, which is

considered to be a major pandemic threat [34]; H5N1 viruses

cause infection with high mortality in humans and spread from

Asia into Africa and Europe due to its association with wild

migratory birds [35,36]. To date, the mechanism of adaptation

and interspecies transmission of H9N2 viruses from birds to

mammals remains poorly understood. Our present study using

two H9N2 field chicken isolates showed the adaptation and

pathogenicity of H9N2 influenza viruses in mice is largely

attributed to the PB2 gene. Previous studies have shown that PB2

627K in human influenza viruses and highly pathogenic H5N1

AIVs plays an important role in the host range and replication in

mammalian hosts [22,23,37]. Adaptation of H9N2 virus to quail

and chickens facilitates this strain with expanded host range, i.e.,

it was shown that an H9N2 virus replicates more efficiently in

mice and the mouse-adapted virus has the mammalian signature

627K in PB2 after adaptation to land- based poultry [3]. A

serially passaged chicken H9N2 virus in mouse lungs also

contains PB2 627K [24]. All these results suggest that PB2

627K is very important for virulence and mouse-adaptation of

the H9N2 virus. To our knowledge, to date only one H9N2 field

strain was found to have PB2 627K prior to this study, which was

isolated from the ostrich in South Africa (A/ostrich/South

Africa/9508103/95, GenBank accession No. AF508640). Herein,

we showed that a chicken field H9N2 isolate already contains

PB2 627K that is crucial for pathogencity and tissue tropism in

mice. This finding suggests that H9N2 viruses started to adapt to

the mammalian hosts not only on the HA but also the PB2 gene.

Surprisingly, the H9N2 virus with PB2 627K is first isolated from

poultry rather than from the mammalian hosts such as swine or

humans. This scenario is somehow different with the H5N1 virus

Figure 3. Schematic diagram of chimeric and single amino acid PB2 mutants and virus titers in mouse lungs and brains. Differences
of amino acid residues in PB2 between TS and V virus were shown as single-letter amino acid codes with their positions indicated at the top of the
diagram. The red and blue bars indicate the amino acid regions originated from TS or V, respectively. Virus titers are presented by log10 geometric
mean EID50/ml 6 SEM (The detection limit is 101 EID50/ml).
doi:10.1371/journal.pone.0040118.g003
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where the PB2 627K is repeatedly reported in human cases [38]

and other mammalian species such as tigers [39], dogs [40] and

cats [41]. Whether the H9N2 virus will enhance replication and

virulence in humans and swine with the acquisition of PB2 627K

needs to be investigated.

All chimeric V viruses containing V PB2 C-terminal with

627K are able to replicate in mouse brains. In the TS

background, V PB2 C-terminal 627K chimeric viruses did not

replicate in mouse brains although the recombinant virus TS-

VPB2 does, indicating that other amino acids except 627K also

play a role in viral replication in mouse brains. The chimera

#6 (TS virus possessing the N-terminal portion of the V PB2-

570aa) replicated in mouse brains on 3 dpi, whereas the

chimera #2 (TS virus possessing the N-terminal portion of

the V PB2-344aa) did not. This result indicates that amino acids

379K and 555K are critical for replication of TS chimeric

viruses in mouse brains since there are only 2 amino acid

differences between chimera #2 and #6.

Besides PB2, other genes are also associated with pathogenicity

of influenza A virus. Several genes from the TS virus attenuated

the V virus, especially the PB1, NP or M genes. All of these

recombinant viruses caused less mortality although they still

caused disease in mice, indicating that these genes are important

for the virulence of the V virus. Vice versa, the PA or NA gene

from the V virus enhanced pathogenicity of the TS virus when

compared to the parental r-TS virus. Furthermore, the NP gene

affected viral replication in mouse lungs in both TS and V genetic

background although not as prominent as the PB2 did. All these

Figure 4. Weight changes and mortality of mice inoculated with parental, chimeric or mutated viruses. A) Weight changes; B) Mortality
of mice inoculated with parental, chimeric or mutated viruses.
doi:10.1371/journal.pone.0040118.g004
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results suggest that the pathogenicity of influenza viruses is a

polygenic trait. Which domain or amino acid (s) within the above

described genes contributes to pathogenicity in mice needs to be

investigated in future studies.

The polymerase subunit PB1, PB2, PA along with NP and viral

RNA form the ribonucleoprotein which is responsible for viral

replication and transcription. Numerous studies have shown that

the amino acid at position 627 in PB2 affects polymerase activity

and replication efficiency [42]. Our findings support this

conclusion since the H9N2 virus with PB2 627K produced higher

virus titers in lungs when compared to the virus with PB2 627E in

mice. However, other residues of the PB2 also seem to have

impact on viral replication and tissue tropism of H9N2 viruses in

mice; how and which specific residues of the PB2 need to be

determined in future studies.

Taken together, we showed a mammalian adapted signature

PB2 627K in an H9N2 field isolate and demonstrated that PB2

627K plays an important role for the virulence and tissue tropism

of H9N2 AIVs in mice. This study supports the previous finding

that PB2 627K is an important determinant of host range and

virulence of influenza A viruses.
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