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Abstract: Hemicellulose is a kind of biopolymer with abundant resources and excellent biodegrad-
ability. Owing to its large number of polar hydroxyls, hemicellulose has a good barrier performance
to nonpolar oxygen, making this biopolymer promising as food packaging material. Hydrophilic
hydroxyls also make the polymer prone to water absorption, resulting in less satisfied strength
especially under humid conditions. Thus, preparation of hemicellulose film with enhanced oxy-
gen and water vapor barrier ability, as well as mechanical strength is still sought after. Herein,
sodium trimetaphosphate (STMP) was used as esterification agent to form a crosslinked structure
with hemicellulose through esterification reaction to render improved barrier performance by re-
ducing the distance between molecular chains. The thus modified hemicellulose film achieved an
oxygen permeability and water vapor permeability of 3.72 cm3 × µm × m−2 × d−1 × kPa−1 and
2.85 × 10−10 × g × m−1 × s−1 × Pa−1, respectively, at the lowest esterification agent addition of
10%. The crosslinked structure also brought good mechanical and thermal properties, with the tensile
strength reaching 30 MPa, which is 118% higher than that of the hemicellulose film. Preliminary test
of its application in apple preservation showed that the barrier film obtained can effectively slow
down the oxidation and dehydration of apples, showing the prospect of application in the field of
food packaging.

Keywords: hemicellulose; sodium trimetaphosphate; crosslinking; barrier property

1. Introduction

Plastics as the youngest generation in material families are ubiquitous and have
found tremendous application in all aspects of modern society. Most plastic products are
petroleum-based and are nonrenewable by nature, thus giving rise to environmental issues
when disposed of after service. Reports found that the world has accumulated more than
6 billion tons of plastic waste to date [1]. In light of the increasingly severe shortage of
petrochemical resources and environmental pollution, the development of biodegradable
bio-based materials has become the focus of current research. With respect to food pack-
aging film, renewable lignocellulosic biomass has attracted much research attention due
to the potential to replace petroleum-based film materials like polyethylene. Utilization
of biomass as green packaging is expected to reduce the consumption of petrochemical
resources and significantly reduce environmental pollution due to its biodegradability and
renewability [2,3].

Bio-based food packaging film mainly derived from polysaccharide has been widely
studied [4,5]. Among them, lignocellulose is rich in polysaccharide and has good biodegrad-
ability [6]. Hemicellulose is a type of lignocellulosic material, which is second only to
cellulose in content. As a kind of heterogeneous polysaccharide composed of multiple
glycogen structures [7], hemicellulose has excellent reproducibility, biodegradability and
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oxygen barrier [8]. However, due to the complexity and diversity of hemicellulose struc-
ture, the research on hemicellulose is still in its infancy [9–11]. The chemical modification
methods of hemicellulose mainly include esterification [12–14], etherification [15–17], graft-
ing [18,19] and crosslinking [20–23].

One of the primary requirements for a food packaging film is good barrier per-
formance. To this end, various efforts have been made, including doping barrier par-
ticles such as montmorillonite [24], or by chemical reactions to make the interchains
tighter [13,18,20,21] to improve film barrier so it can be comparable to traditional barrier
materials. Among them, the films prepared by crosslinking reaction have good mechan-
ical properties under the condition of excellent barrier performance. However, some of
the chemicals used in previous work were less green, raising safety issues when used as
packaging materials. In light of this, a nontoxic, edible chemical to produce film with lifted
performance is sought after. In previous studies, citric acid crosslinked hemicelluloses
were used to obtain film with excellent barrier properties [20]. However, the mechanical
properties of the film obtained by this method are not improved much, and the amount
of addition is larger when the film achieves good barrier properties. In this regard, to
further improve the barrier performance of hemicellulose film, a safe and nontoxic sodium
trimetaphosphate (STMP) commonly used in food additives was studied [25]. STMP has
been utilized in the crosslinking reaction of a variety of polysaccharides [26,27].

This paper aimed to improve the barrier property of hemicellulose via formation of
crosslinking structure using green crosslinker. In this attempt, STMP was chosen as a
crosslinker to crosslink hemicellulose under alkaline conditions to form a tight network
structure to reduce gas penetration. By using sorbitol as plasticizer [28] and polyvinyl
alcohol (PVA) as reinforcing agent and cosubstrate [24], a series of barrier films with
excellent properties was prepared by solution casting. The mechanical, thermal, barrier
properties and wettabilities of the film were studied with regard to varying STMP contents.
The thus modified hemicellulose film was applied in preservation test of apples.

2. Materials and Methods
2.1. Materials and Reagents

Poplar wood powder (particle size between 0.2 mm and 0.8 mm, from Hebei, China)
was used. Its hemicellulose content was 30.5% and the main components of hemicellu-
lose were 4-O-methyl glucuronic acid xylose; the number-averaged molecular weight of
hemicellulose was 7600 and the weight-averaged molecular weight was 24,000. Ethanol,
sodium hydroxide and glacial acetic acid (Beijing Merida Technology Co., Ltd., Beijing,
China), sodium trimetaphosphate (STMP), sodium chlorite (Shanghai Meryer Chemical
Technology Co., Ltd., Shanghai, China), hydrochloric acid, sodium carbonate, toluene,
sorbitol (AR, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) and PVA (1799,
Shanghai Titan Technology Co., Ltd., Shanghai, China) were all used directly without
further treatment.

2.2. Extraction of Poplar Hemicellulose

Hemicellulose was extracted from the waste poplar powder by using the alkaline
hydrolysis and alcohol precipitation [29]. Details of the procedure were described in a
previous publication [20]. The overview of extraction process is shown in Figure 1.
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and the mixture was stirred at 75 °C for 2 h. When a homogeneous solution was formed, 
STMP was added to allow reaction at 50 °C for 2 h. 

After the reaction, the solution was sonicated for 10 min and defoamed in vacuum 
for 15 min. After this, the solution was poured into a polystyrene plastic culture dish (13 
cm × 13 cm) for natural drying and film formation. The composition of each film is 
shown in Table 1. 
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the films was performed with a universal material testing machine (CMT6104, MTS Sys-
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thermal decomposition process was protected with a nitrogen atmosphere at a flow rate 
of 20 mL/min. 
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Figure 1. The flow chart of hemicellulose extraction.

2.3. Preparation of STMP Crosslinked Hemicellulose−Based Film

PVA was predissolved in water and the pH was adjusted to about 10 with Na2CO3 at
95 ◦C. After PVA was completely dissolved, hemicellulose and sorbitol were added and
the mixture was stirred at 75 ◦C for 2 h. When a homogeneous solution was formed, STMP
was added to allow reaction at 50 ◦C for 2 h.

After the reaction, the solution was sonicated for 10 min and defoamed in vacuum
for 15 min. After this, the solution was poured into a polystyrene plastic culture dish
(13 cm × 13 cm) for natural drying and film formation. The composition of each film is
shown in Table 1.

Table 1. Nomenclature and composition of films.

Sample STMP Mass
Fraction (%)

Mass of
Hemicellulose (g)

Mass of PVA
(g)

Mass of
Sorbitol (g)

STMP−0 0 0.90 0.30 0.30
STMP−5 5 0.90 0.30 0.30

STMP−10 10 0.90 0.30 0.30
STMP−15 15 0.90 0.30 0.30
STMP−20 20 0.90 0.30 0.30

2.4. Analytical Methods

Infrared spectrum analysis (FT−IR): The samples were analyzed on a Fourier in-
frared spectroscopy analyzer (iN10 MAX, Thermo Scientific Co., Ltd., Shanghai, China)
using typical KBr tablet method. The scanning range of the spectrum was from 4000 cm−1

to 450 cm−1; the resolution was 4 cm−1 with 32 scans.
Tensile test: The film sample was cut into a rectangular specimen of 10 mm × 80 mm.

A thickness gauge was used to measure the thickness of the film. The tensile test of the
films was performed with a universal material testing machine (CMT6104, MTS Systems
Co. Ltd., Wuhan, China). The initial distance was 60 mm and the stretching speed was
5.0 mm/min. Tensile strength and elongation at break values of the films were averaged
over five specimens according to China national standard GB/T 1040.2-2006.

Thermogravimetric analysis (TGA): The thermal stability of a sample of about 5 mg
was measured on a thermogravimetric analyzer (Q50, TA Instruments, New Castle, Penn-
sylvania, USA). At a rate of 20 ◦C/min, sample was heated from 40 to 700 ◦C. The ther-
mal decomposition process was protected with a nitrogen atmosphere at a flow rate of
20 mL/min.

Scanning electron microscopy (SEM) analysis: The surface of the film sample was
sprayed with gold, and the surface morphology of the films was observed on scanning
electron microscope (Quanta FEG 250, FEI, Hillsboro, OR, USA). The acceleration voltage
was 5 kV.
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Contact angle test: Contact angles were measured using a contact angle tester (OCA35,
DataPhysics Instruments GmbH, Beijing, China). First, 2 µL of water was dropped onto
the surface of the sample. The droplet image was collected and the contact angle was
calculated by using the software of the instrument. Five different locations on each sample
were tested and the mean was taken as the static contact angle [30].

Oxygen permeability (OP) measurement: After the film samples were cut into wafers
with a diameter of 10 cm, the oxygen permeability of the film was measured using VAC-
V2 permeability analyzer (OX-TRAN 2/21, MOCON, Minneapolis, MN, USA). The test
was carried out in accordance with the standard method as specified in Chinese National
Standard GB/T 1038-2000. The measured temperature was 23 ◦C and the relative humidity
(RH) was 50%. The average value of each result was taken on the three samples.

Water vapor permeability (WVP) measurement: The water vapor permeability was
measured by the weighing method commonly used in literature and calculated using
Equation (1) [13,31]. The films were sealed in a container containing dry silica gel. Next,
the containers were placed in a desiccator containing water and weighed regularly every
24 h for 7 d. Each result was averaged over three specimens.

WVP =
w × L

t × A × ∆p
(1)

where w is the weight gained (g), L is the film thickness (m), t is the elapsed time (s), A is
the film permeation area (m2), ∆p is 2339 Pa at 20 ◦C.

Test of film in apple preservation: Apple pieces of roughly the same size (approxi-
mately 1/16th of an apple) were kept in three 50 mL beakers, two of which were sealed
with hemicellulose film (HC) and sodium trimetaphosphate crosslinked hemicellulose film
(STMP−10), respectively. As control, the third beaker was not covered with any film. The
changes in the appearance of apples were visually observed.

3. Results and Discussion

STMP hydrolyzes under alkaline conditions and can be esterified with the hydroxyl
groups on the hemicellulose. Therefore, the hemicellulose film can form a network
crosslinking structure by using STMP as the crosslinking agent, as shown in Figure 2.
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Figure 2. Crosslinking reaction of hemicellulose with sodium trimetaphosphate (STMP).

3.1. Structure Analysis of STMP Crosslinked Hemicellulose Films

The FT−IR spectra of the STMP crosslinked hemicellulose films are displayed in
Figure 3. As shown in the figure, each film with varying STMP addition has obvious
stretching vibration peak of fatty alcohol (–OH) at about 3300 cm−1, and the stretching
vibration peak of alkane C–H at about 2900 cm−1. At 1050 cm−1, the stretching vibration
peaks of C–O bond and C–C bond in hemicellulose or the bending vibration peaks of C–O
(H) on sugar ring were observed, which was consistent with the structural characteristics of
hemicellulose film reported in literature [15,20,32]. After the addition of STMP, three char-
acteristic peaks of P/O bond appeared at 1260 cm−1, 991 cm−1 and 759 cm−1, and became
more obvious with the increase of STMP addition, indicating the successful crosslinking of
hemicellulose by STMP.
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3.2. Mechanical Properties of STMP Crosslinked Hemicellulose Film

The test results of STMP crosslinked hemicellulose films are shown in Table 2 and
Figure 4. It is seen that no obvious yield phenomenon of hemicellulose film was observed
during tensile process. The tensile strength of the hemicellulose film was found to increase
with increasing the STMP addition in the initial stage. The tensile strength of the hemicel-
lulose film with 10% STMP was up to 30.08 MPa, which was 118% higher than that of the
unmodified hemicellulose film. The rigidity of the film was gradually enhanced and the
maximum elastic modulus reached 1512 MPa. This is mainly because STMP crosslinked
hemicellulose to form a network structure, resulting in enhanced intermolecular force,
and thus significantly improved tensile strength [33,34]. At higher STMP loadings, i.e.,
greater than 15%, the tensile strength and the elastic modulus film gradually decreased.
This observation is mainly due to the gelation phenomenon in some places caused by the
excessive addition of STMP, which leads to the decline of mechanical properties [35]. The
elongation at break for films with 20% STMP addition was determined to be 1.86%, much
lower than 3.48% for unmodified film. This variation in elongation at break in turn was
consistent with the fact that the hemicellulose was crosslinked. It can be inferred that the
hemicellulose film can be crosslinked completely at STMP addition level of about 10%,
while the hemicellulose film will be over-crosslinked after 15% STMP loading. In addition,
Sreedhar et al. [36] suggested that the strength of the crosslinked film was not only depen-
dent on the degree of crosslinking, but also on the amount of electrostatic interaction. The
decrease of film strength may be due to the fact that when the concentration of crosslinking
agent is too high, there are more negative charges on the polymer matrix, resulting in
electrostatic repulsion, leading to larger distance between molecules and decreased binding
force, thus reduced strength.

Table 2. Tensile test results of the STMP crosslinked hemicellulose films.

Sample Thickness (µm) Tensile
Strength (MPa)

Elongation at
Break (%)

Modulus of
Elasticity (MPa)

STMP−0 52 ± 3 13.85 ± 0.84 3.48 ± 0.23 827 ± 85
STMP−5 56 ± 2 28.79 ± 1.43 3.75 ± 0.24 929 ± 93

STMP−10 61 ± 2 30.08 ± 1.72 3.15 ± 0.32 1512 ± 116
STMP−15 62 ± 3 23.56 ± 1.38 2.19 ± 0.35 1473 ± 133
STMP−20 64 ± 1 20.92 ± 1.35 1.86 ± 0.14 958 ± 79
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3.3. Thermal Stability Analysis of STMP Crosslinked Hemicellulose Films

The thermal stability of STMP crosslinked hemicellulose films is shown in Table 3
and Figure 5. It is seen from Figure 5a that the films displayed mainly three weight loss
stages, i.e., 60~160 ◦C, 160~370 ◦C and 370~500 ◦C. The weight loss at 60~160 ◦C was
mainly caused by the evaporation of residual water in the material and the adsorption
of a small amount of water vapor [37]. With the increase of STMP contents, the weight
loss at 60~160 ◦C decreased gradually, indicating that the water absorption of the material
decreased, which is in accordance with the fact that the hemicellulose crosslinking reaction
occurred. The main weight loss stage of the film was observed at 160~370 ◦C which is
due to the rupture of C–O bond and C=O bond on the side chain of hemicellulose; while
the weight loss stage of 370~550 ◦C originated from the rupture of C–C main chain on the
hemicellulose skeleton, namely the carbonization process [20]. The carbon residue rate of
the film increased with the increase of crosslinking degree, up to 40% at 600 ◦C.

As shown in Table 3 and Figure 5b, with the increase of STMP content, the temperature
corresponding to the peak thermal decomposition rate of the crosslinked hemicellulose
film in the second stage increased from 304.41 to 345.45 ◦C, and the thermal decomposition
rate decreased, indicating that the thermal performance of the crosslinked hemicellulose
film was improved. The increase of thermal decomposition temperature and the decrease
of maximum thermal mass loss rate were mainly due to the tight structure induced by
crosslinking [38]. When the addition amount of STMP was higher than 15%, two thermal
decomposition rate peaks appeared (Tmax2 and Tmax3). This was mainly due to the decom-
position of the excessive STMP that occurred first, and subsequent breaking of the side
chain of the polymer, which is consistent with the analysis of the tensile test results.

Table 3. Thermal properties of STMP crosslinked hemicellulose films.

Sample Tmax (◦C) Carbon Residue
Rate at 600 ◦C (%)Tmax1 (◦C) Tmax2 (◦C) Tmax3 (◦C) Tmax4 (◦C)

STMP−0 103.59 − 304.41 446.96 33.84
STMP−5 114.41 − 316.25 441.48 32.51

STMP−10 113.37 − 311.96 442.52 35.17
STMP−15 115.45 293.58 334.63 443.70 40.27
STMP−20 107.89 294.78 345.45 442.85 40.78
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3.4. Surface Morphology Analysis of STMP Crosslinked Hemicellulose Film

The surface morphology and structure of STMP crosslinked hemicellulose films were
observed by SEM, as shown in Figure 6. The surface roughness of hemicellulose film
decreased first and then increased after adding STMP. When STMP content was 10%, the
surface of the film was the smoothest and tightest, with no gaps, cracks or other defects,
and the molecular chains were closely stacking, indicating that the bonding between each
component was stable through hydrogen bonds and van der Waals forces. It could be
concluded that the crosslinking reaction at this time was more complete. However, when
the amount of crosslinking agent is more than 15%, some granular substances will appear
on the film surface, which is mainly because the excessive addition of crosslinking agent at
this time leads to the increase of the roughness of the film surface.

The main reason for this phenomenon could be that the amount of STMP is not enough
to crosslink hemicellulose completely, so that the molecular chain is relatively loose, and
the excessive STMP cannot continue to participate in the crosslinking reaction and disperse
uniformly in the film matrix, resulting in the increasing surface roughness of the film, and
even the appearance of some micropores because of the gel phenomenon [35].
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3.5. Surface Wettability Analysis of STMP Crosslinked Hemicellulose Film

For assessment of surface wettability, pure water was used as the detection liquid.
The contact angles were measured to be 42.1◦, 47.7◦, 52.9◦, 54.3◦ and 50.5◦ for STMP−0,
STMP−5, STMP−10, STMP−15 and STMP−20, respectively, as shown in Figure 7.
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As can be seen from Figure 7, the contact angle of the film increased first and then
decreased with rising STMP content. When the addition amount was 15%, the contact angle
reached 54.3◦. Similarly, this was mainly because STMP and the hydroxyl group of hemi-
cellulose underwent esterification reaction, resulting in decreased number of hydroxyls,
decreased polarity and decreased surface energy. Due to the repulsive force, the nonpolar
surface produced a larger contact angle, which caused the reduced hydrophilicity [39]. The
decrease in hydrophilicity contributed to reducing mechanical properties loss under wet
environment and reducing the water vapor permeation of the film [40].

3.6. Oxygen Barrier Properties of STMP Crosslinked Hemicellulose Film

The oxygen permeability of hemicellulose films with different STMP content at 23 ◦C
and 50% RH is shown in Table 4.

Table 4. Oxygen permeability of STMP crosslinked hemicellulose films1.

Sample Oxygen Permeability 1 (cm3 × µm × m−2 ×
d−1 × kPa−1)

STMP−0 10.46 ±0.38
STMP−5 6.71 ± 0.29

STMP−10 3.72 ± 0.11
STMP−15 3.76 ± 0.20
STMP−20 3.98 ± 0.08

1 Test conditions: 23 ◦C, 50% RH.

The main functions of packaging materials include the prevention of oxidation and
deterioration caused by oxygen penetration, so packaging materials need to have low
oxygen permeability. As shown in Table 4, compared with the unmodified hemicellulose
film, the oxygen permeability of the hemicellulose film with STMP was first decreased and
then slightly increased, with the lowest value of 3.72 cm3 × µm × m−2 × d−1 × kPa−1

observed at 10% STMP content, a reduction by 64% compared with the unmodified film.
At the same crosslinker level (20%), oxygen barrier performance was further improved
compared to hemicellulose film crosslinked with citric acid (with oxygen permeability
of 5.4 cm3 × µm × m−2 × d−1 × kPa−1). This oxygen permeability reached the level of
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traditional petroleum-based barrier film [41], e.g., 2.88 cm3 × µm × m−2 × d−1 × kPa−1

for EVOH, and is much lower than that of biodegradable polymer polylactic acid [42], i.e.,
160 cm3 × µm × m−2 × d−1 × kPa−1. The main reason is that the crosslinking of STMP
and hemicellulose leads to the formation of crosslinking network structure, resulting in
less intermolecular space, more compact film and thus lower oxygen permeability [34].
At the same time, there is less free space inside the film, making it harder for oxygen to
enter the film [43]. When the STMP addition amount is more than 15%, over-crosslinking
may cause some holes to appear on the film surface, thus slightly increasing the oxygen
permeability [35]. Meanwhile, the electrostatic effect caused by the high concentration of
crosslinking agent will enlarge the distance of molecular chain and improve the perme-
ability of oxygen [36], which is consistent with the inference in the tensile property test,
thermal property test and surface morphology test above.

3.7. Water Vapor Barrier Properties of STMP Crosslinked Hemicellulose Film

In the case of food packaging, lower water vapor permeability prevents water loss
from the food, rendering better preservation. The test results of water vapor perme-
ability of hemicellulose films with different STMP contents at 20 ◦C under about 100%
RH are summarized in Table 5. As shown in the table, the variation trend of water
vapor permeability is the same as that of oxygen permeability discussed above. With
the addition of STMP, the water vapor permeability of the hemicellulose film can reach
2.85 × 10−10 g × m−1 × s−1 × Pa−1 (10% STMP content), which is reduced by 41% com-
pared with that of the unmodified hemicellulose film. The main reason for the decrease of
water vapor permeability of hemicellulose film is the same as that of oxygen permeability,
i.e., a crosslinking reaction occurred to produce a denser film, leading to decreased oxygen
and water vapor permeability. In the case of higher STMP loading, excessive crosslinking
agent leads to gel formation, resulting in holes, and thus slightly increased water vapor
permeability. This explanation agrees well with the analysis of the SEM results.

Table 5. Water vapor permeability of STMP crosslinked hemicellulose films1.

Sample Water Vapor Permeability 1 (10−10 g × m−1 × s−1 × Pa−1)

STMP−0 4.82 ± 0.63
STMP−5 3.51 ± 0.25

STMP−10 2.85 ± 0.50
STMP−15 2.94 ± 0.47
STMP−20 3.19 ± 0.53

1 Test conditions: 20 ◦C, 100% RH.

3.8. Test of STMP Crosslinked Hemicellulose Film for Apple Preservation

Apple is prone to oxidize and dehydrate in air. The barrier performance of STMP
crosslinked hemicellulose film was evaluated by comparing the daily changes of apples
in the air, in hemicellulose film and in STMP crosslinked hemicellulose film via visual
observation. As shown in Figure 8, in the beginning of the test, all apple samples were full
of moisture and uniform in color. After 1 d, the apples in the air were slightly discolored,
which was caused by oxygen oxidation in the air, and began to lose water as indicated
by the withered quality, while apples in the hemicellulose film and STMP crosslinked
hemicellulose film were still full of water and had no signs of discoloration. After 3 d, the
apples in the air suffered severe water loss and oxidation discoloration. The apples in the
hemicellulose film also began to undergo oxidation discoloration and showed slight water
loss, while the apples in the STMP crosslinked hemicellulose film were still well-hydrated
with no sign of discoloration. Finally, on the fifth day, apples in the air dried, shriveled and
discolored, indicating loss of most water and oxidization. The apples in the hemicellulose
film were further oxidized, and the apples in the STMP crosslinked film also began to show
oxidation discoloration and water loss. The above observation showed that the STMP
crosslinked film and hemicellulose film can significantly cut off the oxygen and water
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vapor, and the barrier performance of the hemicellulose film crosslinked by STMP was
significantly enhanced compared with that of the unmodified hemicellulose film. The
apple which was dehydrated and oxidized in the air on day 1 can be preserved until day 3
with full moisture and uniform color if otherwise packed in modified hemicellulose film,
indicating the potential to protect food from oxidation and dehydration.

Polymers 2021, 13, 927 11 of 13 
 

 

 
Figure 8. Appearance (oxidation and dehydration status) evolution of apple sample exposed to air 
(left column), stored in beaker sealed with hemicellulose film (middle column) and STMP cross-
linked hemicellulose film (right column) with time (rows 1–4 corresponding to 0 d, 1d, 3 d and 5d, 
respectively), showing the potential of modified hemicellulose film in fruit packaging. 

4. Conclusions 
Hemicellulose film with improved mechanical, thermal and barrier properties was 

prepared by using STMP as crosslinking agent for hemicellulose via esterification. At an 
STMP mass fraction of 10%, the film showed the best comprehensive performance. The 
formation of crosslinking structure makes the tensile strength reach up to 30.08 MPa, 
118% higher than that of the unmodified hemicellulose film; the oxygen permeability 
and water vapor permeability could reach 3.72 cm3 × μm × m−2 × d−1 × kPa−1 and 2.85 × 
10−10 g × m−1 × s−1 × Pa−1, respectively, due to the formation of a dense structure. The bar-
rier performance of the modified hemicellulose film was evaluated and verified via a 
test of preservation of apple where changes, i.e., water loss, discoloration with time were 
visually observed. The preliminary results indicated a good prospect for sodium 
trimetaphosphate crosslinked hemicellulose film in the field of food packaging. 

Author Contributions: Conceptualization, Y.Z., H.S.; methodology, Y.Z., B.Y., H.S. and Y.W.; 
software, Y.Z.; formal analysis, Y.Z., H.S., B.Y.; investigation, Y.Z., B.F. and H.Z.; resources, B.Y. 
and Y.W.; data curation, Y.Z.; writing—original draft preparation, Y.Z. and H.S.; writing—review 
and editing, Y.Z., H.S., B.Y., B.F., H.Z. and Y.W.; supervision, H.S.; project administration, H.S., 
B.Y. and Y.W.; funding acquisition, Y.W and H.S. All authors have read and agreed to the pub-
lished version of the manuscript. 

Funding: This research was founded by National Natural Science Foundation of China (grant 
numbers: 52073004, 31570575). 

Institutional Review Board Statement: Not applicable. 

Figure 8. Appearance (oxidation and dehydration status) evolution of apple sample exposed to air
(left column), stored in beaker sealed with hemicellulose film (middle column) and STMP crosslinked
hemicellulose film (right column) with time (rows 1–4 corresponding to 0 d, 1d, 3 d and 5d, respec-
tively), showing the potential of modified hemicellulose film in fruit packaging.

4. Conclusions

Hemicellulose film with improved mechanical, thermal and barrier properties was
prepared by using STMP as crosslinking agent for hemicellulose via esterification. At
an STMP mass fraction of 10%, the film showed the best comprehensive performance.
The formation of crosslinking structure makes the tensile strength reach up to 30.08 MPa,
118% higher than that of the unmodified hemicellulose film; the oxygen permeability
and water vapor permeability could reach 3.72 cm3 × µm × m−2 × d−1 × kPa−1 and
2.85 × 10−10 g × m−1 × s−1 × Pa−1, respectively, due to the formation of a dense structure.
The barrier performance of the modified hemicellulose film was evaluated and verified
via a test of preservation of apple where changes, i.e., water loss, discoloration with time
were visually observed. The preliminary results indicated a good prospect for sodium
trimetaphosphate crosslinked hemicellulose film in the field of food packaging.
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