
SOFTWARE TOOL ARTICLE

isa4j: a scalable Java library for creating ISA-Tab metadata

[version 1; peer review: 2 approved]

Dennis Psaroudakis 1,2, Feng Liu1, Patrick König 1, Uwe Scholz 1,
Astrid Junker 1, Matthias Lange 1, Daniel Arend 1

1Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, 06466, Germany
2Hochschule Mittweida, University of Applied Sciences, Mittweida, 09648, Germany

First published: 03 Dec 2020, 9(ELIXIR):1388
https://doi.org/10.12688/f1000research.27188.1
Latest published: 03 Dec 2020, 9(ELIXIR):1388
https://doi.org/10.12688/f1000research.27188.1

v1

Abstract
Experimental data is only useful to other researchers if it is findable,
accessible, interoperable, and reusable (FAIR). The ISA-Tab framework
enables scientists to publish metadata about their experiments in a
plain text, machine-readable format that aims to confer that
interoperability and reusability. A Python software package (isatools)
is currently being developed to programmatically produce these
metadata files. For Java-based environments, there is no equivalent
solution yet. While the isatools package provides a lot of flexibility and
a wealth of different features for the Python ecosystem, a package for
JVM-based applications might offer the speed and scalability needed
for writing very large ISA-Tab files, making the ISA framework
available in an even wider range of situations and environments. Here
we present a light-weight and scalable Java library (isa4j) for
generating metadata files in the ISA-Tab format, which elegantly
integrates into existing JVM applications and especially shines at
generating very large files. It is modeled after the ISA core
specifications and designed in keeping with isatools conventions,
making it consistent and intuitive to use for the community.
isa4j is implemented in Java (JDK11+) and freely available under the
terms of the MIT license from the Central Maven Repository (
https://mvnrepository.com/artifact/de.ipk-gatersleben/isa4j). The
source code, detailed documentation, usage examples and
performance evaluations can be found at https://github.com/IPK-
BIT/isa4j.

Keywords
ISA-Tab, FAIR data, reproducible research, metadata, Java, object-
oriented programming, framework

Open Peer Review

Reviewer Status

Invited Reviewers

1 2

version 1
03 Dec 2020 report report

Massimiliano Izzo , University of Oxford,

Oxford, UK

1.

Nils Hoffmann , Bielefeld University,

Bielefeld, Germany

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 10

F1000Research 2020, 9(ELIXIR):1388 Last updated: 08 MAR 2021

https://f1000research.com/articles/9-1388/v1
https://orcid.org/0000-0002-7521-798X
https://orcid.org/0000-0002-8948-6793
https://orcid.org/0000-0001-6113-3518
https://orcid.org/0000-0002-4656-0308
https://orcid.org/0000-0002-4316-078X
https://orcid.org/0000-0002-2455-5938
https://doi.org/10.12688/f1000research.27188.1
https://doi.org/10.12688/f1000research.27188.1
https://mvnrepository.com/artifact/de.ipk-gatersleben/isa4j
https://github.com/IPK-BIT/isa4j
https://github.com/IPK-BIT/isa4j
https://f1000research.com/articles/9-1388/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0002-8100-6142
https://orcid.org/0000-0002-6540-6875
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.27188.1&domain=pdf&date_stamp=2020-12-03

Corresponding author: Daniel Arend (arendd@ipk-gatersleben.de)
Author roles: Psaroudakis D: Conceptualization, Investigation, Software, Writing – Original Draft Preparation, Writing – Review &
Editing; Liu F: Conceptualization, Investigation, Software, Writing – Review & Editing; König P: Conceptualization, Writing – Original Draft
Preparation, Writing – Review & Editing; Scholz U: Funding Acquisition, Project Administration, Writing – Review & Editing; Junker A:
Funding Acquisition, Project Administration, Writing – Review & Editing; Lange M: Conceptualization, Writing – Review & Editing; Arend
D: Conceptualization, Investigation, Software, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This work was supported by the German Ministry of Education and Research (BMBF) through the grants FKZ
031A053B ‘DPPN’ (assigned to Matthias Lange, Uwe Scholz, and Astrid Junker), FKZ 031A536A ‘de.NBI’ (assigned to Matthias Lange and
Uwe Scholz) and supported by ELIXIR.
Copyright: © 2020 Psaroudakis D et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Psaroudakis D, Liu F, König P et al. isa4j: a scalable Java library for creating ISA-Tab metadata [version 1;
peer review: 2 approved] F1000Research 2020, 9(ELIXIR):1388 https://doi.org/10.12688/f1000research.27188.1
First published: 03 Dec 2020, 9(ELIXIR):1388 https://doi.org/10.12688/f1000research.27188.1

 This article is included in the ELIXIR gateway.

Page 2 of 10

F1000Research 2020, 9(ELIXIR):1388 Last updated: 08 MAR 2021

mailto:arendd@ipk-gatersleben.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.27188.1
https://doi.org/10.12688/f1000research.27188.1
https://f1000research.com/gateways/elixir
https://f1000research.com/gateways/elixir

Introduction
In recent years, the question of how to publish research data
has increasingly come into the limelight of discussions among
scholars, funders, and publishers1. Wilkinson et al.2 establish
a set of principles to ensure that data are shared in a way that is
useful to the community and worthwhile for data producers:
Data should be findable, accessible, interoperable, and reusable
(FAIR) – not only by humans but also by computers. In some
scientific fields, there are well-curated, consistent, and strongly
integrated databases that provide easy access for both humans
and machines, such as Genbank and UniProt for nucleotide and
protein sequences3,4. Other areas, like plant phenotyping,
do not yet have central databases or established file formats
and things become especially difficult when data from
different domains need to be published in conjunction. The
Investigation-Study-Assay (ISA) framework and the correspond-
ing ISA-Tab file format5 provide a clearly defined, machine-
readable, and extensible structure for explanatory metadata that
bundles common elements while keeping data in separate files
using appropriate formats. Several communities have already
created specific standards (such as MIAPPE6 or MIAME7) and
infrastructure8 based on the ISA framework. Furthermore, tools
have been developed for validating, converting, and manually
crafting ISA-Tab metadata7,9,10. However, given the ever-increas-
ing volume of research data generated in high-throughput
experiments, the manual creation of metadata is simply not fea-
sible in many situations. A Python package called isatools for
programmatically generating ISA-Tab metadata is currently under
development (https://isatools.readthedocs.io) featuring methods
to parse, validate, build, and convert ISA files. It also offers a
feature to create sample collection and assay run templates
according to a specified experimental design which can be
useful when planning an experiment. Building ISA-Tab files,
isatools provides great flexibility and ease of use: users can
create and connect ISA objects in arbitrary order and degree
of detail and isatools automatically determines the appropriate
formatting when the ISA-Tab text is rendered.

Naturally, this flexibility requires isatools to keep the whole
object structure in memory and resolve the optimal path through
the object chain when the content is serialized. This can notably
impact performance when describing large and complex stud-
ies including a high number of replicates and attributes, as for
instance required by the MIAPPE standard for plant phenotyp-
ing experiments. This could make it challenging to use isatools
in interactive and time-sensitive applications. Additionally, in the
majority of cases, the desired file structure is already clear
beforehand based on such community standards or your own
decision of what needs to be documented, so this flexibility is
often not needed. We therefore set out to develop a solution that
focuses on high performance and scalability, and which would
integrate well into JVM-based data publishing ecosystems. The
library, called isa4j, addresses these goals by providing inter-
faces for exporting ISA-formatted metadata not only to files, but
also to any data stream provided by the application (e.g. a
HTTP response stream in a web application) and using an itera-
tive approach for creating ISA-Tab files: Instead of loading all
records into memory and writing them in one go, an output
stream is opened, a single record is created, flushed out into

the stream, and then immediately dropped again from mem-
ory. This guarantees memory usage to remain constant so that
isa4j imposes no limit on the size of the generated metadata
and is able to process datasets too big to fit into memory. The
output stream can also be picked up by the application and piped
into further processing steps, such as calculating checksums or
compressing the ISA-Tab content. In exchange, the user needs
to structure rows consistently as headers cannot be modified
once they are written. The schema in Figure 1 shows the exem-
plary integration of isa4j into different application scenarios
for supporting the FAIR data sharing paradigm. In this article,
we explain how isa4j can be used to generate ISA-Tab meta-
data and compare it to isatools in performance and scalability
regarding both quantity and complexity of ISA-Tab entries.

Methods
Implementation
isa4j is implemented in Java (JDK11+) and can therefore also
be used with other JVM-based languages like Groovy or Kotlin.
It uses the Gradle Build Tool (https://gradle.org) to resolve

Figure 1. Exemplary integration of isa4j into different
application scenarios for supporting the FAIR data sharing
paradigm. Heterogeneous data sources like SQL and NoSQL
databases, laboratory information management systems (LIMS)
and application programming interfaces (API) that store data
and metadata of scientific experiments can be fed into isa4j to
integrate and transform this data to output complying with the ISA
specifications: The isa4j library can, for example, be embedded in
command line interface (CLI) applications to create ISA-Tab files in a
batch processing manner. It may also be embedded in web services
to create ISA-Tab files on the fly via an API based on specific user
requirements. ISA-Tab files created with CLI applications could be
uploaded to public research data repositories for long-term storage
and web applications as graphical user interfaces would allow low-
barrier interactive access to experimental data. Both examples
demonstrate how isa4j can be used for FAIR data sharing.

Page 3 of 10

F1000Research 2020, 9(ELIXIR):1388 Last updated: 08 MAR 2021

https://isatools.readthedocs.io
https://gradle.org

dependencies and create arti-facts. Logging is realized via the
framework-agnostic SLF4J library (http://www.slf4j.org/) so that
isa4j works with a variety of logging libraries. The object-oriented
Java class structure is modelled according to the published ISA
specifications (https://isa-specs.readthedocs.io) to make isa4j
intuitive to use and keep consistency with other ISA applica-
tions. The Ontology and OntologyAnnotation classes
allow linking characteristics, units, and other metadata to
established vocabularies such as those collected by the OBO
Foundry11.

Operation
isa4j is not an application itself but a software library provid-
ing methods for generating ISA-Tab metadata in JVM-based
applications or scripts. As a result, operation requires at least
a basic level of coding skills in Java or another JVM-based lan-
guage. When using a build tool like Maven or Gradle, isa4j
can simply be added as a dependency to be downloaded from
the Central Maven Repository (https://mvnrepository.com/
artifact/de.ipk-gatersleben/isa4j). Otherwise, the JAR file
can be downloaded from there and manually included in the
class path. To use isa4j’s logging feature, one of the SLF4J
bindings needs to be included the same way (http://www.slf4j.org/
manual.html).

You can then import isa4j classes and start building Investiga-
tion, Study, and Assay files. For examples and details on the code
interface itself, please consult the current project page (https://
github.com/IPK-BIT/isa4j) as things may change in future ver-
sions and we do not want to confuse you with potentially
outdated information.

Scalability evaluation
Scalability of isa4j was assessed and compared to the Python
isatools API in two dimensions: number of entries and
complexity of entries.

At the simplest complexity level (Minimal), Study file rows
consisted only of a Source connected to a Sample through a
Process, and that Sample connected to a DataFile through
another Process in the Assay File, with no Characteristics,
Comments, or other additional information (6 columns in total).
At the second degree of complexity (Reduced), a Characteris-
tic was added to the Sample in the Study File, and the Assay
File was expanded to include an intermediary Material Object
(11 columns). The third and final level of complexity (Real
World) was modelled after the MIAPPE v1.1 compliant real-
world metadata published for a plant phenotyping experiment
(https://doi.org/10.5447/IPK/2020/3, 119 columns). Exemplary
ISA-Tab output for each of the three complexity levels can be
found at https://ipk-bit.github.io/isa4j/scalability-evaluation.html#
complexity-levels.

For each complexity level, CPU execution time was measured for
writing a number of n rows in Study and Assay File each, start-
ing at 1 and increasing in multiplicative steps up to a million
rows. Every combination of complexity level and number of rows

was measured for 5 consecutive runs in isatools and 15 runs for
isa4j (here results varied more) after a warm-up of writing 100
Real World complexity rows. Additionally, memory usage
was measured for realistic complexity in 5 separate runs after
CPU execution time measurements.

All evaluations were carried out on a Linux server with two
Intel Xeon E5-2697 v2 CPUs running at 2.70 GHz, 256 GB
DDR3 RAM running at 1600 MHz and CentOS 7.8.2003.
isatools was evaluated under Python 3.7.3 [Clang 11.0.0
(clang-1100.0.33.16)] using isatools version 0.11 and memory-
profiler version 0.57 for measuring RAM usage. isa4j was evalu-
ated under AdoptOpenJDK 11.0.5. For both libraries, a memory
consumption baseline was calculated after the warm-up runs
and an additional Garbage Collector invocation. This baseline
consumption was subtracted from all subsequent memory
consumption values as we wanted to measure purely the
memory consumed by the ISA-Tab content, not libraries and
other periphery1. The actual code generating the files and
measuring time and memory usage for Python isatools2 and
isa4j3 can be found on the isa4j GitHub repository.

Results
Figure 2 shows the performance of both libraries at increasing
file size for three different levels of complexity. isa4j consist-
ently takes up less CPU execution time than isatools for all tested
scenarios, reducing the time required for writing 1 million rows
of Real World complexity from 8.6 hours to 43 seconds.

The emphasis on being useful especially in large-scale
datasets is further amplified by isa4j’s memory usage stability:
While there is no notable increase for either library up to a vol-
ume of 25 rows, starting at about 250 rows, isatools memory
consumption increases linearly with the number of rows being
formatted, resulting in a maximum consumption of 15.8 GB
for one million rows. isa4j memory consumption remains sta-
ble at about 0.5 MB independently of the number of rows writ-
ten, demonstrating that the iterative technique of formatting and
writing the rows had the desired effect.

Use Case: BRIDGE Web Portal
We have integrated isa4j into the BRIDGE portal, which is
a visual analytics and data warehouse web application host-
ing data of 22621 genotyped and 9527 phenotyped germplasm
samples of barley (Hordeum vulgare L.)12. The underlying data
was derived from the study of Milner et al.13. isa4j was inte-
grated to allow the MIAPPE-compliant16 export of customized
subsets of phenotypic data of germplasm samples together with
the corresponding passport data14 in the ISA-Tab format. These

1 Baseline memory consumption was approximately 100 MB for isatools and
11 MB for isa4j.

2 https://github.com/IPK-BIT/isa4j/blob/master/src/test/resources/de/ipk_
gatersleben/bit/bi/isa4j/performanceTests/isatools_performance_test.py

3 https://github.com/IPK-BIT/isa4j/blob/master/src/test/java/de/ipk_gatersleben/
bit/bi/isa4j/performanceTests/PerformanceTester.java

Page 4 of 10

F1000Research 2020, 9(ELIXIR):1388 Last updated: 08 MAR 2021

http://www.slf4j.org/
https://isa-specs.readthedocs.io
https://mvnrepository.com/artifact/de.ipk-gatersleben/isa4j
https://mvnrepository.com/artifact/de.ipk-gatersleben/isa4j
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html
https://github.com/IPK-BIT/isa4j
https://github.com/IPK-BIT/isa4j
https://doi.org/10.5447/IPK/2020/3
https://ipk-bit.github.io/isa4j/scalability-evaluation.html#
complexity-levels
https://ipk-bit.github.io/isa4j/scalability-evaluation.html#
complexity-levels
https://github.com/IPK-BIT/isa4j/blob/master/src/test/resources/de/ipk_gatersleben/bit/bi/isa4j/performanceTests/isatools_performance_test.py
https://github.com/IPK-BIT/isa4j/blob/master/src/test/resources/de/ipk_gatersleben/bit/bi/isa4j/performanceTests/isatools_performance_test.py
https://github.com/IPK-BIT/isa4j/blob/master/src/test/java/de/ipk_gatersleben/bit/bi/isa4j/performanceTests/PerformanceTester.java
https://github.com/IPK-BIT/isa4j/blob/master/src/test/java/de/ipk_gatersleben/bit/bi/isa4j/performanceTests/PerformanceTester.java

subsets can be derived from germplasm selections identified by
the user during exploratory data analysis. In the ISA-Tab export
dialog, the user can choose whether the associated plant images
should be physically contained as files in the resulting ZIP file
or whether they should only be linked as URLs to a version
of the images available online. Due to the support of stream-
ing in isa4j, the phenotypic data export module of BRIDGE
is able to export large ZIP archives of several gigabytes with
low main memory consumption of the web server. Another
advantage over non-streaming approaches is that the down-
load can start without delay and that no temporary files have to
be created on the server. The process flow concept is shown
in Figure 3.

Discussion
We have created a library for programmatically generating
ISA-Tab metadata files in JVM-based environments and shown
that it is considerably more performant and scalable than the
existing Python based solution. It has been integrated into a large-
scale data warehouse web software to validate practical feasibil-
ity and provide an example of how the library could help make
ISA-Tab metadata available in time-sensitive applications.

CPU execution time appears to have a roughly linear relation-
ship with the number of rows being written at n > 250 but this
is only valid as long as isatools memory consumption does not
surpass what the system can provide. Exceeding that, addi-
tional time for swapping from and to the hard disk will be
required. There may also be further non-linear effects due to
optimization steps, such as the compilation to native machine

Figure 2. Performance comparison of isa4j and isatools. Top: CPU execution time at 3 different row complexity levels; Real World
complexity was modelled after MIAPPE v1.1 compliant ISA-Tab metadata generated for a plant phenotyping experiment. Small colored lines
on the left mark the highest point of each curve to help estimate the maximum value. Bottom: Memory consumption for isa4j and isatools
along the same x-axis.

Figure 3. BRIDGE process flow. The BRIDGE web application
uses isa4j to create ISA-Tab files from experimental data stored
in a relational database management system (RDBMS). The data
consists of passport data14 describing the basic characteristics
of a germplasm sample (such as accession number and location
of origin) on the one hand, and of phenotypic data, which
systematically describe phenotypic characteristics of the individual
germplasm samples, on the other. Phenotypic images that are
stored as binary files on a separate file server are linked from
the ISA-Tab files and are included in the final ISA-Tab ZIP archive.

Page 5 of 10

F1000Research 2020, 9(ELIXIR):1388 Last updated: 08 MAR 2021

code some JVMs perform for frequently used code parts. Lastly,
exact CPU time requirements will naturally depend on the spe-
cific system in use but the overall relationships and proportions
shown here should hold true for all situations.

Conclusions
The presented isa4j library provides a simple interface to cre-
ate and export ISA-Tab metadata and can be seamlessly inte-
grated into existing JVM-based pipelines, desktop tools or web
applications. isa4j is less flexible than the Python-based isatools
as it does not allow one to change the file structure after stream-
ing has started, but the desired ISA-Tab configuration is often
known beforehand, making this a peripheral limitation. In
exchange, isa4j provides significantly better performance, espe-
cially for large datasets. We hope that this library will make the
ISA framework available to an even wider audience and range
of situations and help make published research data more
interoperable and reusable for others. As a next step, we are
going to begin developing a specialized isa4j extension for plant
phenotyping experiments, isa4j-miappe, intended to make it

even easier for researchers in the field to ensure their metadata
comply with the community standard. If you would like to con-
tribute or develop an isa4j extension for your own community,
please feel free to get in touch with us.

Data availability
Raw performance measurement data can be found at https://raw.
githubusercontent.com/IPK-BIT/isa4j/master/docs/performance_
data.csv (archived: Zenodo, IPK-BIT/isa4j: isa4j-1.0.4, http://
doi.org/10.5281/zenodo.427516815).

Software availability
Software available from: https://mvnrepository.com/artifact/
de.ipk-gatersleben/isa4j

Source code available from: https://github.com/IPK-BIT/isa4j
Archived source code as at time of publication: http://doi.org/
10.5281/zenodo.427516815

License: MIT

References

1. Barend M: Invest 5% of research funds in ensuring data are reusable.
Nature. 2020; 578(7796): 491–491.
PubMed Abstract | Publisher Full Text

2. Wilkinson MD, Dumontier M, Aalbersberg IJJ, et al.: The FAIR guiding
principles for scientific data management and stewardship. Sci Data. 2016;
3(1): 160018.
PubMed Abstract | Publisher Full Text | Free Full Text

3. Benson DA, Cavanaugh M, Clark K, et al.: GenBank. Nucleic Acids Res. 2018;
46(D1): D41–D47.
PubMed Abstract | Publisher Full Text | Free Full Text

4. The UniProt Consortium: UniProt: a hub for protein information. Nucleic Acids
Res. 2014; 43(Database issue): D204–D212.
PubMed Abstract | Publisher Full Text | Free Full Text

5. Sansone S, Rocca-Serra P, Field D, et al.: Toward interoperable bioscience
data. Nat Genet. 2012; 44(2): 121–126.
PubMed Abstract | Publisher Full Text | Free Full Text

6. Papoutsoglou EA, Faria D, Arend D, et al.: Enabling reusability of plant
phenomic datasets with MIAPPE 1.1. New Phytol. 2020; 227(1): 260–273.
PubMed Abstract | Publisher Full Text | Free Full Text

7. González-Beltrán A, Neumann S, Maguire E, et al.: The risa r/bioconductor
package: integrative data analysis from experimental metadata and back
again. BMC Bioinformatics. 2014; 15 Suppl 1(Suppl 1): S11.
PubMed Abstract | Publisher Full Text | Free Full Text

8. Haug K, Salek RM, Conesa P, et al.: MetaboLights—an open-access
general-purpose repository for metabolomics studies and associated

meta-data. Nucleic Acids Res. 2012; 41(Database issue): D781–D786.
PubMed Abstract | Publisher Full Text | Free Full Text

9. Rocca-Serra P, Brandizi M, Maguire E, et al.: ISA software suite: supporting
standards-compliant experimental annotation and enabling curation at
the community level. Bioinformatics. 2010; 26(18): 2354–2356.
PubMed Abstract | Publisher Full Text | Free Full Text

10. Maguire E, Gonzalez-Beltran A, Whetzel PL, et al.: OntoMaton: a bioportal
powered ontology widget for google spreadsheets. Bioinformatics. 2010;
29(4): 525–527.
PubMed Abstract | Publisher Full Text | Free Full Text

11. Smith B, Ashburner M, Rosse C, et al.: The OBO foundry: coordinated
evolution of ontologies to support biomedical data integration. Nat
Biotechnol. 2007; 25(11): 1251–1255.
PubMed Abstract | Publisher Full Text | Free Full Text

12. König P, Beier S, Basterrechea M, et al.: BRIDGE - a visual analytics web tool
for barley genebank genomics. Front Plant Sci. 2020; 11: 701.
PubMed Abstract | Publisher Full Text | Free Full Text

13. Milner SG, Jost M, Taketa S, et al.: Genebank genomics highlights the
diversity of a global barley collection. Nat Genet. 2018; 51(2): 319–326.
PubMed Abstract | Publisher Full Text

14. Alercia A, Diulgheroff S, Mackay M: FAO/Bioversity Multi-Crop Passport
Descriptors V.2.1 [MCPD V.2.1]. 2015.
Reference Source

15. Psaroudakis D, Arend D: IPK-BIT/isa4j: isa4j-1.0.4 (Version isa4j-1.0.4). Zenodo.
2020.
http://www.doi.org/10.5281/zenodo.4275168

Page 6 of 10

F1000Research 2020, 9(ELIXIR):1388 Last updated: 08 MAR 2021

https://raw.githubusercontent.com/IPK-BIT/isa4j/master/docs/performance_data.csv
https://raw.githubusercontent.com/IPK-BIT/isa4j/master/docs/performance_data.csv
https://raw.githubusercontent.com/IPK-BIT/isa4j/master/docs/performance_data.csv
http://doi.org/10.5281/zenodo.4275168
http://doi.org/10.5281/zenodo.4275168
https://mvnrepository.com/artifact/de.ipk-gatersleben/isa4j
https://mvnrepository.com/artifact/de.ipk-gatersleben/isa4j
https://github.com/IPK-BIT/isa4j
http://doi.org/10.5281/zenodo.4275168
http://doi.org/10.5281/zenodo.4275168
http://www.ncbi.nlm.nih.gov/pubmed/32099131
http://dx.doi.org/10.1038/d41586-020-00505-7
http://www.ncbi.nlm.nih.gov/pubmed/26978244
http://dx.doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pmc/articles/4792175
http://www.ncbi.nlm.nih.gov/pubmed/29140468
http://dx.doi.org/10.1093/nar/gkx1094
http://www.ncbi.nlm.nih.gov/pmc/articles/5753231
http://www.ncbi.nlm.nih.gov/pubmed/25348405
http://dx.doi.org/10.1093/nar/gku989
http://www.ncbi.nlm.nih.gov/pmc/articles/4384041
http://www.ncbi.nlm.nih.gov/pubmed/22281772
http://dx.doi.org/10.1038/ng.1054
http://www.ncbi.nlm.nih.gov/pmc/articles/3428019
http://www.ncbi.nlm.nih.gov/pubmed/32171029
http://dx.doi.org/10.1111/nph.16544
http://www.ncbi.nlm.nih.gov/pmc/articles/7317793
http://www.ncbi.nlm.nih.gov/pubmed/24564732
http://dx.doi.org/10.1186/1471-2105-15-S1-S11
http://www.ncbi.nlm.nih.gov/pmc/articles/4015122
http://www.ncbi.nlm.nih.gov/pubmed/23109552
http://dx.doi.org/10.1093/nar/gks1004
http://www.ncbi.nlm.nih.gov/pmc/articles/3531110
http://www.ncbi.nlm.nih.gov/pubmed/20679334
http://dx.doi.org/10.1093/bioinformatics/btq415
http://www.ncbi.nlm.nih.gov/pmc/articles/2935443
http://www.ncbi.nlm.nih.gov/pubmed/23267176
http://dx.doi.org/10.1093/bioinformatics/bts718
http://www.ncbi.nlm.nih.gov/pmc/articles/3570217
http://www.ncbi.nlm.nih.gov/pubmed/17989687
http://dx.doi.org/10.1038/nbt1346
http://www.ncbi.nlm.nih.gov/pmc/articles/2814061
http://www.ncbi.nlm.nih.gov/pubmed/32595658
http://dx.doi.org/10.3389/fpls.2020.00701
http://www.ncbi.nlm.nih.gov/pmc/articles/7300248
http://www.ncbi.nlm.nih.gov/pubmed/30420647
http://dx.doi.org/10.1038/s41588-018-0266-x
https://www.bioversityinternational.org/e-library/publications/detail/faobioversity-multi-crop-passport-descriptors-v21-mcpd-v21/
http://www.doi.org/10.5281/zenodo.4275168

Open Peer Review
Current Peer Review Status:

Version 1

Reviewer Report 08 March 2021

https://doi.org/10.5256/f1000research.30037.r79165

© 2021 Hoffmann N. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Nils Hoffmann
Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, 33594, Germany

The authors describe a JAVA-based implementation of the Investigation-Study-Assay (ISA)
framework for the structured description of biological experiments, their protocols and their
results. They position their implementation as a complement to the existing Python-based
implementation that uses a complete in-memory model of the ISA data structures before writing
them to the actual output files. For large studies, e.g. for whole populations or large cohorts, this
can mean that memory and CPU requirements are very demanding.

Thus, the authors implemented their JAVA library to write out lines as they arrive, requiring that
the user fix their data format description before starting to write out to the final files. Therefore,
their implementation's memory complexity scales constant with the number of rows to be written,
as each row can be created ad-hoc and then written out to the target file. In order to underline
this advantage over the Python-based library, the authors created different benchmarks,
illustrating the memory and CPU time usage of each library for a collection of different study
designs with increasing levels of complexity, highlighting the significant speed and memory
advantage of their implementation.

Finally, the authors demonstrate the practical feasibility of their library through integration into
the BRIDGE web portal where they employ isa4j to generate ISA-tab files on the fly for the studies
stored in BRIDGE.

The support for ISA-tab in programming languages other than Python, especially with a focus on
performance, is a timely and needed addition. For JAVA, the graphical client ISACreator was
previously developed, but has not seen any significant updates throughout the last few years.
Specifically, where neither the flexibility of the Python-based ISA tools nor a graphical user
interface for a predefined ISA format are required, the isa4j library can be a valuable, performant,
yet still validating tool to generate ISA-tab files in many different life-sciences domain, such as
metabolomics, proteomics, genomics, etc. Thus, it addresses a current need and does this in a well
designed and performant way.

Page 7 of 10

F1000Research 2020, 9(ELIXIR):1388 Last updated: 08 MAR 2021

https://doi.org/10.5256/f1000research.30037.r79165
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-6540-6875

Minor comments:
The manuscript states, that the library is available from mvnrepository.com, while the
GitHub page states that it is available from Maven Central, please update the manuscript
accordingly.

○

The online documentation to set up a custom isa4j project should also mentions that an
slf4j logging implementation needs to be on the class path, e.g. for Gradle:
implementation 'org.slf4j:slf4j-simple:1.7.30'

○

The documentation at https://ipk-bit.github.io/isa4j/getting-started/investigation-file.html in
section "Add them as investigation contacts" is syntactically not correct (missing semicolons
';'), also the method findByName does not exist in version 1.0.4 of the library (getByName
does).

○

I would recommend to set up a continuous integration system linked to the GitHub
repository (GitHub actions, Travis, CircleCI, etc.) to make sure that the source code is
buildable and automatically tested.

○

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, mass spectrometry of small molecules, data standardization.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 16 February 2021

https://doi.org/10.5256/f1000research.30037.r77273

Page 8 of 10

F1000Research 2020, 9(ELIXIR):1388 Last updated: 08 MAR 2021

https://mvnrepository.com/
https://search.maven.org
https://ipk-bit.github.io/isa4j/getting-started/investigation-file.html
https://doi.org/10.5256/f1000research.30037.r77273

© 2021 Izzo M. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Massimiliano Izzo
Oxford e-Research Centre, Department of Engineering Science, University of Oxford, Oxford, UK

The authors present isa4j, an optimised Java-based library to generate and serialise ISA-TAB
metadata. I find particularly interesting that isa4j supports writing the ISA-metadata output on
streams as well as files, as this can be very useful when building modern client-server applications.
isa4j has an interesting approach of loading into memory only one row at the time, hence limiting
memory consumption. The memory consumption comparison with isatools makes a good
argument for using isa4j for certain large scale experiment.

I am curious to know whether isa4j-generated ISA-TABs comply with the ISA-TAB validation rules,
also with respect to the configuration files for specific assays (latest version can be found here.
There are a few discrepancies with respect to the official ISA-TAB specifications: for instance,
Processes cannot have names in "isa4j" and as a consequence "Assay Name" or synonymous
columns are missing. Characteristic categories are treated as strings in isa4j, while are
OntologyAnnotations in the ISA-API. I might have missed other, minor, discrepancies. I would
suggest adding more equivalence tests with existing datasets to align more this library with
isatools.

The developers don’t seem to have put the tests into continuous integration; I think it would be
worth doing so.

In any case, I think isa4j is a useful tool with strong performance, that will be very helpful to
produce ISA-TAB metadata from a variety of large-scale experiments with noteworthy
performances and low resources consumption.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?

Page 9 of 10

F1000Research 2020, 9(ELIXIR):1388 Last updated: 08 MAR 2021

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-8100-6142
https://isatools.readthedocs.io/en/latest/validation.html
https://github.com/ISA-tools/Configuration-Files/tree/master/isaconfig-default_v2015-07-02

Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Applied Computer Science, Software Engineering

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 10 of 10

F1000Research 2020, 9(ELIXIR):1388 Last updated: 08 MAR 2021

mailto:research@f1000.com

