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Abstract

Metagenomic methods enable the simultaneous characterization of microbial communities without time- consuming and bias- 
inducing culturing. Metagenome- assembled genome (MAG) binning methods aim to reassemble individual genomes from this 
data. However, the recovery of mobile genetic elements (MGEs), such as plasmids and genomic islands (GIs), by binning has not 
been well characterized. Given the association of antimicrobial resistance (AMR) genes and virulence factor (VF) genes with 
MGEs, studying their transmission is a public- health priority. The variable copy number and sequence composition of MGEs 
makes them potentially problematic for MAG binning methods. To systematically investigate this issue, we simulated a low- 
complexity metagenome comprising 30 GI- rich and plasmid- containing bacterial genomes. MAGs were then recovered using 
12 current prediction pipelines and evaluated. While 82–94 % of chromosomes could be correctly recovered and binned, only 
38–44 % of GIs and 1–29 % of plasmid sequences were found. Strikingly, no plasmid- borne VF nor AMR genes were recovered, 
and only 0–45 % of AMR or VF genes within GIs. We conclude that short- read MAG approaches, without further optimization, are 
largely ineffective for the analysis of mobile genes, including those of public- health importance, such as AMR and VF genes. We 
propose that researchers should explore developing methods that optimize for this issue and consider also using unassembled 
short reads and/or long- read approaches to more fully characterize metagenomic data.

DATA SUMMARY
In keeping with FAIR principles (Findable, Accessible, Inter-
operable, Reusable data), all analyses presented in this paper 
can be reproduced and inspected with the associated GitHub 
repository (https:// github. com/ fmaguire/ MAG_ gi_ plasmid_ 
analysis) (10.5281/zenodo.4005062) and data repository 
(https:// osf. io/ nrejs/) (10.17605/OSF.IO/NREJS).

INTRODUCTION
Metagenomics, the sequencing of DNA from within an envi-
ronmental sample, is widely used to characterize the func-
tional potential and identity of microbial communities [1, 2]. 
These approaches have been instrumental in developing our 
understanding of the distribution and evolutionary history 
of antimicrobial resistance (AMR) genes [3–5], as well as 
tracking pathogen outbreaks [6]. Although long- read DNA 

technologies [e.g. Oxford Nanopore Technologies’ nanopore 
sequencing [7] and Pacific Biosciences’ (PacBio) single- 
molecule real- time sequencing [8] platforms] are now being 
used for metagenomic sequencing [9, 10], high- throughput 
sequencing of relatively short reads (150–250 bp) on plat-
forms such as the Illumina MiSeq still dominates metagen-
omics. These reads can be directly analysed using reference 
databases and a variety of homology search tools [11–14]. 
Since these reads are shorter than most genes, however, 
read- based methods provide very little information about 
genomic organization. This lack of contextual information 
is particularly problematic in the study of AMR genes and 
virulence factors (VFs), as the genomic context plays a role in 
function [15], selective pressures [16] and likelihood of lateral 
gene transfer (LGT) [17].
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Sequence assembly using specialized metagenomic de Bruijn 
graph assemblers (e.g. metaSPAdes [18], IDBA- UD [19] 
and megahit [20]) is often used to try to recover information 
about genomic context [21]. To disentangle the resulting mix 
of assembled fragments, there has been a move to group these 
contigs based on the idea that those from the same source 
genome will have similar relative abundance and sequence 
composition [22]. These resulting groups or ‘bins’ are known 
as metagenome- assembled genomes (MAGs). A range of 
tools have been released to perform this binning, including 
CONCOCT [23], MetaBAT2 [24], MaxBin2 [25] and a tool 
that combines their predictions: DAS Tool [26]. These MAG 
binning methods have been used successfully in unveiling 
previously uncharacterized genomic diversity [27–29], but 
metagenomic assembly and binning has been shown to 
involve the loss of some information. This means as little as 
24.2–36.4 % of reads [30, 31] and ~23 % of genomes [31] are 
successfully assembled and binned in some metagenomic 
analyses. The Critical Assessment of Metagenome Interpre-
tation (CAMI) challenge’s (https:// data. cami- challenge. org/) 
Assessment of Metagenome BinnERs (amber) [32] bench-
marks different MAG recovery methods in terms of global 
completeness and bin purity. Similarly, a recent study has also 
used the amber approach to evaluate 15 different binning 
methods applied to a common metaSPAdes assembly [33]. 
However, to the best of our knowledge, there has not been a 
specific assessment of MAG- based recovery of mobile genetic 
elements (MGEs) such as genomic islands (GIs) and plasmids, 
despite their health and research importance.

GIs are clusters of chromosomal genes that are known or 
predicted to have been acquired through LGT events. GIs can 
arise following the integration of MGEs, such as integrons, 
transposons, integrative and conjugative elements (ICEs), 
and prophages (integrated phages) [34, 35]. They are of high 
interest since VFs are disproportionately associated with these 
mobile sequences [36], as are certain AMR genes [37, 38]. GIs 
often have differing nucleotide composition compared to the 
rest of the genome [34], a trait exploited by GI prediction tools 
such as SIGI- HMM [39] and IslandPath- DIMOB [40], 
and integrative tools like IslandViewer [41]. GIs may 
also exist as multiple copies within a genome [42], leading to 
potential assembly difficulties and biases in the calculation of 
coverage statistics.

Plasmids are circular or linear extrachromosomal self- 
replicating pieces of DNA with variable copy numbers and 
repetitive sequences [43, 44]. Similar to GIs, the sequence 
composition (including G+C content, dinucleotide bias, etc.) 
of plasmids are often markedly different from the genome 
with which they are associated [45–47]. Plasmids are also of 
high interest as a major source of the lateral dissemination of 
AMR genes throughout microbial ecosystems [37, 48].

GIs and plasmids have proven particularly difficult to assemble 
from short- read sequencing data. Due to the history of their 
integration at specific insertion sites, GIs are commonly 
flanked by direct repeats [49, 50]. Repetitive sequences are 
known to complicate assembly from short reads, with repeats 

often found at contig break sites [51]. Given that assembly 
of closely related genomes in a metagenome is already chal-
lenging [52], the polymorphic nature of GIs and the known 
presence of flanking repeats would be expected to compound 
these separate assembly issues. Repeats also inhibit the 
assembly of plasmids from short- read sequencing data, 
particularly for longer plasmid sequences [53]. Additionally, 
the varying sequence composition and relative abundance 
features mean that GIs and plasmids pose significant chal-
lenges in MAG recovery.

As these MGEs are key to the function and spread of patho-
genic traits such as AMR and virulence, and with MAG 
approaches becoming increasingly popular within microbial 
and public- health research, it is both timely and vital that 
we assess the impact of metagenome assembly and binning 
on the recovery of these elements. Therefore, to address this 
issue, we performed an analysis of the recovery accuracy of 
GI and plasmid sequences, and associated AMR/VF genes, 
across a set of 12 state- of- the- art methods for short- read 
metagenome assemblies. We show that short- read MAG- 
based analyses alone are not suitable for the study of mobile 
sequences, including those of public- health importance.

METHODS
Metagenome simulation
Thirty RefSeq genomes were selected using IslandPath- 
DIMOB [40] GI prediction data collated into the Island-
Viewer database ( www. pathogenomics. sfu. ca/ islandviewer) 
[41] (Table S1, available with the online version of this article). 
The selected genomes and associated plasmids (listed in 
Table S2 and deposited at https:// osf. io/ nrejs/ under ‘data/
sequences’) were manually selected to satisfy the following 
criteria: 10 genomes with 1–10 plasmids, 10 genomes with 
>10 % of chromosomal DNA predicted to reside in GIs, and 
10 genomes with <1 % of chromosomal DNA predicted to 
reside in GIs.

Impact Statement

Metagenome- assembled genome (MAG) binning has 
become an increasingly common approach in environ-
mental, microbiome and public- health studies that makes 
use of short- read metagenomic data. By examining 12 
widely used MAG binning workflows, we demonstrate 
that these methods are not suitable for the analysis of 
mobile genetic elements. Given the potential human and 
animal health implications of antimicrobial resistance 
and virulence genes associated with these elements, 
inappropriate use of short- read MAGs has the potential 
to be misleading at best and harmful at worst. This result 
will hopefully stimulate a shift in MAG methods to focus 
on developing approaches optimized for these elements, 
as well as incorporating additional read- based and long- 
read analyses.

https://data.cami-challenge.org/
www.pathogenomics.sfu.ca/islandviewer
https://osf.io/nrejs/


3

Maguire et al., Microbial Genomics 2020;6

In accordance with the recommendation in the CAMI chal-
lenge [52], the genomes were randomly assigned a relative 
abundance following a log- normal distribution (μ=1, σ=2). 
Plasmid copy number estimates could not be accurately found 
for all organisms. Therefore, plasmids were randomly assigned 
a copy number regime, low (1–20), medium (20–100) or high 
(500–1000) at a 2 : 1 : 1 rate. Within each regime, the exact copy 
number was selected using an appropriately scaled gamma 
distribution (α=4, β=1) truncated to the regime range.

Finally, the effective plasmid relative abundance was deter-
mined by multiplying the plasmid copy number with the 
genome relative abundance. The full set of randomly assigned 
relative abundances and copy numbers can be found in Table 
S3. Sequences were then concatenated into a single fasta file 
with the appropriate relative abundance. MiSeq v3 250 bp 
paired- end reads with a mean fragment length of 1000 bp 
(standard deviation of 50 bp) were then simulated using 
art_illumina (v2016.06.05) [54], resulting in a simulated 
metagenome of 31 174 411 read pairs. The selection of relative 
abundance and metagenome simulation itself was performed 
using the ‘data_simluation/ simulate_ metagenome. py’ script.

MAG recovery
Reads were trimmed using sickle (v1.33) [55] resulting 
in 25 682 644 surviving read pairs. The trimmed reads were 
then assembled using three different metagenomic assem-
blers: metaSPAdes (v3.13.0) [18], IDBA- UD (v1.1.3) [19] 
and megahit (v1.1.3) [20]). The resulting assemblies were 
summarized using metaQUAST (v5.0.2) [56]. The assemblies 
were then indexed and reads mapped back using bowtie2 
(v2.3.4.3) [12].

Samtools (v1.9) was used to sort the read mappings, and 
the read coverage was calculated using the MetaBAT2 
accessory script (jgi_summarize_bam_contig_depths). The 
three metagenome assemblies were then separately binned 
using MetaBAT2 (v2.13) [24] and MaxBin2 (v2.2.6) [25]. 
MAGs were also recovered using CONCOCT (v0.4.2) [23], 
following the recommended protocol in the user manual. 
Briefly, the supplied CONCOCT accessory scripts were used 
to cut contigs into 10 kb fragments ( cut_ up_ fasta. py) and read 
coverage calculated for the fragments ( CONCOCT_ coverage_ 
table. py). These fragment coverages were then used to bin the 
10 kb fragments before the clustered fragments were merged 
( merge_ cutup_ clustering. py) to create the final CONCOCT 
MAG bins ( extra_ fasta_ bins. py). Finally, for each metage-
nome assembly, the predicted bins from these three binners 
(MaxBin2, MetaBAT2 and CONCOCT) were combined 
using the DAS Tool (v1.1.1) meta- binner [26]. This resulted 
in 12 separate sets of MAGs (one set for each assembler and 
binner pair).

MAG assessment
Synthetic read coverage and depth
The trimmed synthetic reads were mapped back to each 
reference replicon using bowtie2 (v2.4.1), and sorted and 
indexed using Samtools (v1.10). The coverage of each 

reference replicon is calculated using ‘samtools coverage’ 
and the per base sequencing depth calculated using ‘samtools 
depth’. The mean and per base depth are then plotted using 
R (v.3.4.2).

Chromosomal coverage
The MAG assessment for chromosomal coverage was 
performed by creating a BLASTN 2.9.0+ [57] database 
consisting of all the chromosomes of the input reference 
genomes. Each MAG contig was then used as a query against 
this database and the coverage of the underlying chromo-
somes tallied by merging the overlapping aligning regions 
and summing the total length of aligned MAG contigs. The 
most represented genome in each MAG was assigned as the 
‘identity’ of that MAG for further analyses. Coverage values 
of less than 5 % were filtered out and the number of different 
genomes to which contigs from a given MAG aligned were 
tallied. Finally, the overall proportion of chromosomes that 
were not present in any MAG was tallied for each binner and 
assembler.

In order to investigate the impact of the presence of closely 
related genomes in the metagenome on the ability to bin 
chromosomes, we generated a phylogenetic tree for all the 
input genomes. Single copy universal bacterial proteins 
were identified in the reference genomes using BUSCO 
v4.0.2 with the Bacteria Odb10 data [58]. The 86 of these 
proteins that were found in every reference genome were 
concatenated and aligned using MAFFT v7.427 [59] and 
masked with trimal v1.4.1–3 [60]. A maximum- likelihood 
phylogeny was then inferred with IQ- Tree v1.6.12 [61] 
using 1000 ultrafast- bootstraps and the in- built ModelF-
inder determined partitioning [62]. The phylogeny was then 
visualized using the Interactive Tree of Life (iTOL) v4 [63]. 
Pairwise branch distances were extracted from the resulting 
tree using ete3 v3.1.1 [64] and regressed using a linear 
model against coverage (via seaborn v0.10.0 [65]) and using 
a Poisson logistic regression model (via statsmodel v0.12.0 
[66]) against contamination. R2 and McFadden’s pseudo- R2 
were calculated for each model using the statsmodel library.

Plasmid and GI coverage
Plasmid and GI coverage were assessed in the same way. 
Firstly, a BLASTN database was generated for each set of 
MAG contigs. Then, each MAG database was searched for 
plasmid and GI sequences with greater than 50 % coverage. 
All plasmids or GIs that could be found in the unbinned 
contigs or MAGs were recorded as having been successfully 
assembled. The subset of these that were found in the binned 
MAGs was then separately tallied. Finally, we evaluated the 
proportion of plasmids or GIs that were correctly assigned 
to the bin that was maximally composed of chromosomes 
from the same source genome.

AMR and VF assessment
Detection of AMR/VF genes
For the reference genomes, as well as 12 sets of MAGs, 
prodigal [67] was used to predict ORFs using the default 
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parameters. AMR genes were predicted using Resistance 
Gene Identifier (RGI v5.0.0; default parameters) and the 
Comprehensive Antibiotic Resistance Database (card 
v3.0.3) [68]. VFs were predicted using the predicted ORFs 
and BLASTX 2.9.0+ [57] against the Virulence Factor Data-
base (vfdb; obtained on August 26 2019) with an E value 
cut- off of 0.001 and a minimum identity of 90 % [69]. Each 
MAG was then assigned to a reference chromosome using 
the above- mentioned mapping criteria for downstream 
analysis.

AMR/VF gene recovery
For each MAG set, we counted the total number of AMR/
VF genes recovered in each metagenomic assembly and each 
MAG, and compared this to the number predicted in their 
assigned reference chromosome and plasmids. We then 
assessed the ability for MAGs to correctly bin AMR/VF genes 
of chromosomal, plasmid and GI origin by mapping the loca-
tion of the reference replicon’s predicted genes to the location 
of the same genes in the MAGs.

RESULTS
Recovery of genomic elements
Chromosomes
The overall ability of MAG methods to recover the original 
chromosomal source genomes varied widely. We considered 
the ‘identity’ of a given MAG bin to be that of the genome that 
comprises the largest proportion of sequence within that bin. 
In other words, if a bin is identifiably 70 % species A and 30 % 
species B, we consider that to be a bin of species A. Ideally, we 
wish to generate a single bin for each source genome consisting 
of the entire genome and no contigs from other genomes. 

Some genomes are cleanly and accurately binned regardless of 
the assembler and binning method used (Fig. 1). Specifically, 
greater than 90 % of Streptomyces parvulus (minimum 91.8 %) 
and Clostridium baratii (minimum 96.4 %) chromosomes are 
represented in individual bins across all methods. However, 
no other genomes were consistently recovered at >30 % chro-
mosomal coverage across methods. The three Streptococcus 
genomes were particularly problematic with the best recovery 
for each ranging from 1.7–47.49 %. Contrary to what might 
be expected, the number of close relatives to a given genome 
in the metagenome did not clearly affect the MAG coverage 
(Fig. S2).

In terms of the impact of different metagenome assemblers, 
megahit resulted in the highest median chromosomal 
coverage across all binners (81.9%), with metaSPAdes 
performing worst (76.8%) (Fig.  2a). Looking at binning 
tools, CONCOCT performed very poorly with a median 26 % 
coverage for top hit per bin, followed by MaxBin2 (83.1%) 
and MetaBAT2 (88.5%). It is perhaps unsurprising that the 
best- performing binner in terms of bin top hit coverage was 
the metabinner DAS Tool that combines predictions from 
the other three binners (94.3 % median top hit chromosome 
coverage per bin; Fig. 2a).

Bin purity, i.e. the number of genomes present in a bin at 
>5 % coverage, was largely equivalent across assemblers, 
with a very marginally higher purity for IDBA- UD. Across 
binning tools, MaxBin2 proved an exception with nearly 
twice as many bins containing multiple species as the next 
binner (Fig. 2b). The remaining binning tools were largely 
equivalent, producing chimeric bins at approximately the 
same rates. Similar to coverage, there was a weak to non- 
existent relationship between bin purity and the number of 

Fig. 1. Top genome coverage for input genomes across MAG binners. Each dot represents the coverage of a specified genome when 
it comprised the plurality of the sequences in a bin. If a genome did not form the plurality of any bin for a specific binner- assembler 
pair, no dot was plotted for that genome and binner- assembler. The binning tool is indicated by the colour of the dot as per the legend. 
Genomes such as Clostridium baratii were accurately recovered across all binner- assembler combinations, whereas genomes such as 
Streptococcus macedonicus were systematically poorly recovered.
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closely related genomes in the metagenome (Fig. S3). There 
was also not a clear relationship between coverage of a bin 
and purity, with low purity but high coverage bins observed, 
as well as high purity but low coverage bins.

Plasmids
Regardless of method, a very small proportion of plasmids were 
correctly grouped in the bin that was principally composed of 
chromosomal contigs from the same source genome. Specifi-
cally, between 1.5 % (IDBA- UD assembly with DAS Tool 
bins) and 29.2 % (metaSPAdes with CONCOCT bins) were 

correctly binned at over 50 % coverage. In terms of metagenome 
assembly, metaSPAdes was by far the most successful assem-
bler at assembling plasmids, with 66.2 % of plasmids identifiable 
at greater than 50 % coverage. IDBA- UD performed worst with 
17.1 % of plasmids recovered, and megahit recovered 36.9 %. 
If the plasmid was successfully assembled it was, with one 
exception, placed in a MAG bin by MaxBin2 and CONCOCT, 
although a much smaller number were correctly binned (typi-
cally less than one third). Interestingly, the MetaBAT2 and DAS 
Tool binners were more conservative in assigning plasmid 
contigs to bins; but of those assigned to bins, nearly all were 
correctly binned (Fig. 3).

Fig. 2. Overall binning performance for every combination of metagenome assembler (as indicated by pane titles) and MAG binning 
tool (x- axis and legend colours). Diamonds in the plots represent outliers (greater or lower than the interquartile range marked by the 
error bars), and the boxes represent the lower quartile, median and upper quartile. (a) Chromosomal coverage of the most prevalent 
genome in each bin across binners and metagenome assemblies. Of the three assemblers, megahit resulted in the highest median 
chromosomal coverage (y- axis) across all binners (coloured bars) at 81.9 %, with metaSPAdes performing the worst (76.8%). Of the four 
binners, CONCOCT (red) performed poorly with a median coverage, followed by MaxBin2 (blue), MetaBAT2 (purple) and DAS Tool 
(green) performing the best. (b) Distribution of bin purity across assemblers and binners. The total number of genomes present in a bin 
at >5 % coverage (y- axis) was largely equivalent across assemblers (x- axis). For the binning tools, MaxBin2 (blue) produced nearly twice 
as many bins containing multiple species compared to CONCOCT (red), MetaBAT2 (purple) and DAS Tool (green), which all produced 
chimeric bins at roughly the same rate.
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GIs
GIs were poorly assembled and binned across methods 
(Fig. 4). Unlike for plasmids, the performance of different 
methods was generally less variable, with no clear best- 
performing method. Assembly of GIs with >50 % coverage 
was consistently poor (37.8–44.1 %), with metaSPAdes 
outperforming the other two assembly approaches. For the 
CONCOCT and MaxBin2 binning tools, all GIs that were 
assembled were assigned to a bin, although the proportion 

of binned GIs that were correctly binned was lower than for 
DAS Tool and MetaBAT2. DAS Tool, MetaBAT2 and 
CONCOCT did not display the same precipitous drop between 
those assembled and those correctly binned as was observed 
for plasmids. In terms of overall correct binning with the 
chromosomes from the same genome, the metaSPAdes 
assembly with CONCOCT (44.1 %) and MaxBin2 (43.3 %) 
binners performed best.

Fig. 3. The performance of metagenomic assembly and binning in recovery of plasmid sequences. Each plot represents a different 
metagenome assembler, with the groups of bars along the x- axes showing the plasmid recovery performance of each binning tool when 
applied to the assemblies produced by that tool. For each of these 12 assembler- binner- pair- produced MAGs, the grouped bars from 
left to right show the percentage of plasmids assembled, assigned to any bin and binned with the correct chromosomes. These stages 
of the evaluation are indicated by the bar colours as per the legend. Across all tools the assembly process resulted in the largest loss of 
plasmid sequences and only a small proportion of the assembled plasmids were correctly binned.

Fig. 4. Impact of metagenomic assembly and MAG binning on recovery of GIs. GIs were recovered in a similarly poor fashion to plasmids. 
Regardless of binning (x- axis) and assembly (panel) methods, <40% of GIs were correctly assigned to the correct source genome. 
MaxBin2 and CONCOCT placed GIs in a bin the majority of the time (orange); however, a very small fraction was correctly binned (green). 
Generally, GIs were correctly binned better than plasmids with DAS Tool, MetaBAT2 and CONCOCT.



7

Maguire et al., Microbial Genomics 2020;6

AMR genes
The recovery of AMR genes in MAGs was poor with only 
~49–55 % of all AMR genes predicted in our reference genomes 
regardless of the assembly tool used, and metaSPAdes 
performing marginally better than other assemblers (Fig. 5a). 
Binning the contigs resulted in a ~1–15 % loss in AMR gene 
recovery with the concoct- metaSPAdes pair performing 
best at only 1 % loss and DAS Tool- megahit performing 
the worst at 15 % reduction of AMR genes recovered. Overall, 
only 24–40 % of all AMR genes were correctly binned. This was 
lowest with the MaxBin2-IDBA- UD pair (24 %) and highest 
in the CONCOCT- metaSPAdes pipeline (40 %).

Moreover, focusing on only the AMR genes that were 
correctly binned (Fig. 5b), we can evaluate the impact of 

different genomic contexts (i.e. chromosomal, plasmid, 
GI). Across all methods only 30–53 % of all chromosomally 
located AMR genes (n=120), 0–45 % of GI located AMR 
genes (n=11) and none of the plasmid- localized AMR genes 
(n=20) were correctly binned.

VF genes
We also examined the impact of MAG approaches on 
recovery of VF genes as identified using the Virulence 
Factor Database (vfdb). We saw a similar trend as AMR 
genes (Fig. 6a). Between 56 and 64 % of VFs were iden-
tifiable in the metagenomic assemblies (with megahit 
recovering the greatest proportion). The binning process 
further reduced the number of recovered VFs by 4–26 %, 

Fig. 5. Recovery of AMR genes across assemblers, binners and genomic context. (a) The proportion of reference AMR genes recovered (y- 
axis) was largely similar across assembly tools (panels as indicated by title) at roughly 50 %, with metaSPAdes performing marginally 
better overall. Binning tools (x- axis) resulted in a small reduction in AMR genes recovered (orange); however, only 24–40 % of all AMR 
genes were correctly binned (green). metaSPAdes- CONCOCT was the best performing MAG binning pipeline. (b) Per cent of correctly 
binned AMR genes recovered by genomic context. MAG methods were best at recovering chromosomally located AMR genes (light blue) 
regardless of metagenomic assembler or binning tool used. Recovery of AMR genes in GIs showed a bigger variation between tools (light 
green). None of the 12 evaluated MAG recovery methods were able to recover plasmid- located AMR genes.
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with DAS Tool- megahit performing the worst (26 % 
reduction) and CONCOCT- metaSPAdes performing the 
best (4 % reduction). Unlike AMR genes, the majority of 
VF genes assigned to a bin were assigned to the correct 
bin (i.e. that bin largely made up of contigs from the same 
input genome). Overall, CONCOCT- metaSPAdes again 
performed best with 43 % of all VFs correctly assigned.

As with AMR genes, the genomic context (chromosome, 
plasmid, GI) of a given VF largely determined how well it was 
binned (Fig. 6b). The majority (73–98 %) of all chromosomally 
located VF genes (n=757) were correctly binned. However, 
0–16 % of GI- localized VF genes (n=809) and again none of 

the plasmid- associated VF genes (n=3) were recovered across 
all 12 MAG pipelines.

Comparisons of rates of loss
We combined the performance metrics for Figs  3–6 to 
compare the rates of loss of different components (Fig. S5). 
This highlighted that genomic components (GIs and plasmids) 
and plasmids in particular are lost at a disproportionately 
higher rate than individual gene types during MAG recovery. 
This also emphasizes that better metagenomic assembly does 
not necessarily result in better binning/recovery of GIs and 
plasmids.

Fig. 6. Recovery of VF genes across assemblers, binners and genomic context. (a) Per cent of reference VF genes recovered across 
assemblers and binners. The proportion of reference VF genes recovered (y- axis) exhibited a similar trend as AMR genes. Recovery 
was greatest after the assembling stage (blue), with megahit performing best. Binning tools resulted in a larger reduction in VF 
genes recovered (orange) compared to AMR genes. However, in the majority of cases, VF genes that were binned were correctly binned 
(green). metaSPAdes- CONCOCT was again the best performing pair. (b) Per cent of correctly binned VF genes recovered in each 
genomic region. MAGs were again best at recovering chromosomally located VF genes (light blue), and able to correctly bin the majority 
of chromosomally located VFs. Again, there was very poor performance in terms of the recovery of GIs (light green), and none of the 
plasmid- located AMR genes (orange) were correctly binned.
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Simulated read analysis
To further explore the potential causes of poor assembly and 
binning of MGEs, we analysed the resultant coverage distribu-
tion from mapping our synthetically generated reads back to 
the original chromosomes, GIs and plasmids from which they 
were simulated. This analysis identified that while coverage of 
our synthetic metagenome was consistently between 91–100 % 
across all reference chromosomes, the coverage of GIs and 
plasmids encompassed a larger range (Fig.  7). Inspecting 
individual genomes shows large spikes and drops in coverage 
and per base read depth in and around these elements (Figs 
S6 and S7). This variability in coverage might be attributed to 
repeated elements and the sequence composition differences 
that are commonly associated with MGEs. This issue is likely 
responsible for failures to accurately estimate the read- depth/
coverage in these regions, upon which both assembly (in 
traversal of the assembly graph) and binning rely.

DISCUSSION
In this paper, we evaluated the ability of MAG binning 
methods to correctly recover MGEs (i.e. GIs and plas-
mids) from metagenomic samples. Overall, chromosomal 
sequences were binned well (up to 94.3 % coverage, with 
perfect bin purity using megahit- DAS Tool). The pres-
ence of closely related genomes had unclear impacts on 
the coverage and cross- contamination of bins (e.g. Strepto-
coccus species in Figs S2 and S3). Additionally, the trade-
 off between false positives and sensitivity in the binning 
of closely related sequences is an area in need of further 
exploration.

Given the importance of MGEs in the function and spread 
of virulence traits and AMR, it is particularly noteworthy 
that regardless of MAG binning method, plasmids and GIs 
were disproportionately lost compared to core chromosomal 
regions. At best (with metaSPAdes and CONCOCT), 29.2 % 
of plasmids and 44.1 % of GIs were identifiable at >50 % 
coverage in the correct bin (i.e. grouped with a bin that was 
mostly made up of contigs from the same genome). While 
some MGEs were likely recovered in more partial forms 
(<50 % coverage), use of these by researchers interested in 
selective pressures and LGT could lead to inaccurate infer-
ences. This poor result is congruent with the intuition that 
the divergent compositional features and repetitive nature of 
these MGEs is problematic for MAG methods (a conclusion 
supported by the observed high coverage and read- depth 
variability of MGEs when mapping simulated reads back 
to the original genomes). The particularly poor plasmid 
binning performance is likely attributable to the known 
difficulties in assembly of plasmids from short- read data 
[53]. Therefore, binning efficiency might improve with use 
of long- read sequencing or assembly methods optimized 
for the assembly and binning of plasmid sequences [53] 
(such as scapp [70]). Incorporating long- read data has been 
shown to improve overall MAG binning [71] and facilitate 
metagenomic characterization of plasmids [72]. However, 
the low throughput and high error rate of current long- read 
technologies relative to widely used short- read approaches 
present a challenge when characterizing MGEs in metage-
nomes, especially those of greater complexity. Further 
research is needed to fully characterize the performance 
of different long- read protocols and analytical approaches 
(including hybrid approaches with short- reads) on the 
accuracy of recovering MGEs in metagenomic samples.

With the growing use of MAG methods in infectious 
disease research [73–77] and the public- health and agri- 
food importance of the LGT of AMR and VF genes, we 
also specifically evaluated the binning of these gene 
classes. The majority of these genes were correctly assem-
bled across assemblers, but were either not assigned or 
incorrectly assigned to MAG bins during binning. At best 
across all binners, 40 % of all AMR genes and ~63 % of VF 
genes (CONCOCT- metaSPAdes) present in the refer-
ence genomes were assigned to the correct MAG. While 
a majority of chromosomally located VF genes (73–98 %) 
and AMR genes (53%) were binned correctly, only 16 % of 
GI VFs (n=809), 45 % of GI AMR genes (n=11) and not a 
single plasmid- associated VF (n=3) or AMR gene (n=20) 
were correctly binned. This included critical high- threat 
MGE- associated AMR genes such as oxacillinases (OXA) 
and Klebsiella pneumoniae carbapenemases (KPC). One 
potential caveat of this is that some AMR genes and VFs 
may no longer be detectable in MAGs due to issues with 
ORF prediction (see Supplementary Information and Fig. 
S4). We also observed a higher variability in per base read 
depth and range of coverage in MGEs (Figs 7, S6 and S7). 
This, combined with previous studies observing fragmented 
ORF predictions in draft genomes, can lead to downstream 

Fig. 7. Mean coverage by genomic region. The mean coverage of our 
synthetic reads to their source genome is plotted by their genomic 
region. Chromosome (blue) and GI (green) displayed a similar mean 
coverage of ~96.5 %. Plasmids (orange) had a higher mean coverage at 
~98 %. The per genome coverage range of plasmids and GIs are higher 
than that of chromosomes. Diamond dots indicate the mean coverage 
of a region and black dots indicate outliers.
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over- or under- annotation with functional labels depending 
on the approach used [78]. Although not yet developed, 
methods that combine the assembly/binning pipelines 
tested here with read- based inference would provide a 
better sense of which functions are potentially being missed 
by the MAG reconstructions.

Our simulated metagenomic community comprised 30 distinct 
bacterial genomes with varying degrees of relatedness. While 
this diversity can be representative of certain clinical samples 
[79–81], other environments with relevance to public health, 
such as the human gut, soil and livestock, can have 100–1000s of 
species [82–85]. In addition, MGEs such as GIs and plasmids are 
known to recombine, producing closely related variants [86–88] 
that could further complicate assembly from a metagenomic 
sample. Polymorphic MGEs were not explicitly introduced in 
our simulated metagenome. Consequently, our analysis likely 
over- represents the effectiveness of the methods tested in a 
public- health setting. Metagenomic simulation is also unlikely 
to perfectly represent the noise and biases in real metagenomic 
sequencing, but it does provide the ground- truth necessary for 
evaluation [32, 89]. This simulation approach, combined with 
the development of an MGE/AMR- focused mock metagenome 
(similarly to the mockrobiota initiative [90]), could provide a 
key resource to develop and validate new binning approaches 
and different sequencing strategies. Additionally, it would 
provide a way to further optimize parameter settings of existing 
metagenomic assembly and binning tools beyond the default 
settings used in these analyses (considered representative of 
most ‘real- world’ usage [91]) without overfitting to a particular 
metagenome.

This study has shown that while short- read MAG- binning 
approaches provide a useful tool to study a bacterial species’ 
core chromosomal elements, they have severe limitations in 
the recovery of MGEs. The majority of these MGEs will either 
fail to be assembled or be incorrectly binned. The consequence 
of this is the disproportionate loss of key public- health MGE- 
associated VF and AMR genes that may be crucial markers for 
monitoring the spread of virulence and resistance among clini-
cally important pathogens. As many of these clinically relevant 
genes have a high propensity for LGT between unrelated 
bacteria [36, 37], it is critical to highlight that short- read MAG 
approaches are currently insufficient to thoroughly profile them. 
Within public- health metagenomic research, as well as other 
research areas that study MGEs, it is vital we utilize MAGs in 
conjunction with other methods (e.g. targeted AMR assembly 
[92], long- read sequencing, plasmid optimized assembly [70] 
and read- based sequence homology search [11]) before drawing 
biological or epidemiological conclusions.
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