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Abstract: Large-scale food-borne outbreaks caused by Salmonella are rarely seen nowadays, thanks to
the advanced nature of the medical system. However, small, localised outbreaks in certain regions
still exist and could possess a huge threat to the public health if eradication measure is not initiated.
This review discusses the progress of Salmonella detection approaches covering their basic principles,
characteristics, applications, and performances. Conventional Salmonella detection is usually per-
formed using a culture-based method, which is time-consuming, labour intensive, and unsuitable
for on-site testing and high-throughput analysis. To date, there are many detection methods with a
unique detection system available for Salmonella detection utilising immunological-based techniques,
molecular-based techniques, mass spectrometry, spectroscopy, optical phenotyping, and biosensor
methods. The electrochemical biosensor has growing interest in Salmonella detection mainly due to
its excellent sensitivity, rapidity, and portability. The use of a highly specific bioreceptor, such as
aptamers, and the application of nanomaterials are contributing factors to these excellent characteris-
tics. Furthermore, insight on the types of biorecognition elements, the principles of electrochemical
transduction elements, and the miniaturisation potential of electrochemical biosensors are discussed.

Keywords: Salmonella; electrochemical biosensor; aptamer; aptasensor; nanomaterials

1. Introduction

Salmonella infections cause various morbidity and mortality globally, especially in
developing countries [1]. The prevalence is high in low-resource regions, where poor
sanitation and lack of clean water supply are an issue [2]. Enteric fever (typhoid and
paratyphoid fever) is the febrile illness caused by Salmonella enterica serotype Typhi and
Paratyphi infection, characterised by a long persistent fever and other gastrointestinal
complications. Late treatment or misdiagnosis could increase the risk of death and can
lead to other problems such as antibiotic resistance [3].

To date, there are various types of Salmonella detection techniques available with
unique mechanisms of detection. They are immunological-based assays, such as enzyme-
linked immunosorbent assay (ELISA), latex agglutination method, and immunochro-
matography assay [4–6]; molecular-based assays, e.g., polymerase chain reaction (PCR),
loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplifica-
tion (NASBA), recombinase polymerase amplification (RPA), DNA microarrays, whole
genome-sequencing (WGS) [7–12]; mass spectrometry-based methods, e.g., matrix-assisted
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laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF MS), liquid
chromatography-mass spectrometry (LC-MS) [13,14]; spectroscopy-based methods, e.g., Ra-
man spectroscopy, near-infrared (NIR) spectroscopy, and hyperspectral imaging (HSI) [15–17],
optical phenotyping with light diffraction technology [18], and electrochemical biosen-
sors [19]. These methods can identify and discriminate Salmonella down to their serotype
level [14,20–23]. Apart from these detection methods, electrochemical biosensors could
potentially be an ideal tool for Salmonella detection, since they are capable of detecting the
presence of Salmonella or their cellular components in just a few hours.

Immunological-based assays and molecular-based assays provide excellent detection
of Salmonella with high affinity. However, the low stability issue of antibody and high
operation costs of PCR were deemed to be the drawback of these methods [23]. These
two methods are also prone to cross-reactivity issues among Salmonella serovar [24–26].
DNA microarray and whole-genome sequencing methods were able to provide detailed
information on Salmonella genotypes [14,27]. Mass spectrometry methods, spectroscopy
methods, optical phenotyping are culture-independent methods as these methods utilised
the phenotypic characteristics of Salmonella, such as peptides fingerprints, absorbance, and
imaging characteristics [23,28].

Electrochemical biosensors were developed to detect a variety of analytes of interest
such as glucose, cancer biomarkers, viruses, pathogenic bacteria, and heavy metals, among
others. In the case of pathogenic bacteria, current studies have reported extensively
on the use of electrochemical biosensors in detecting foodborne pathogens, especially
Salmonella. Electrochemical biosensors are known for their rapid, highly sensitive, specific
detection response, and can be integrated and miniaturised into a biosensor device, such
as in a microfluidic platform, which can provide an advantage in point of care (POC)
testing [22,29]. Additionally, the introduction of aptamer technology as a recognition
element in electrochemical biosensors has undoubtedly enhanced the specificity, selectivity,
and stability of biosensors [30]. Moreover, the integration of nanomaterials, such as
graphene derivates, carbon nanotubes, metallic nanoparticles, metal oxide nanoparticles,
and silica nanoparticles, as the surface modifier, has tremendously improved the limit
of detection (LOD), as compared to the electrochemical biosensors with only antibody
and molecular probes [31]. Thus, the selection of an exceptional biorecognition element
combined with a favourable surface modifier in electrochemical biosensor development
could contribute to rapid and highly sensitive POC diagnostic devices, particularly for
Salmonella detection.

2. Salmonella and Their Related Diseases

The Salmonella bacteria was discovered in 1855 by Theobald Smith from pig intestines
that been infected with classical swine fever [32]. Upon discovery, Salmonella underwent
controversial naming as it was named after Dr. Daniel Elmer Salmon, one of Smith’s
co-workers. Later, the Centre for Disease Control and Prevention (CDC) suggested a
resolution to the nomenclature issue of Salmonella by following the recommendation by the
World Health Organisation (WHO) collaborating centre [33]. This system suggested the
classification of Salmonella into two species namely Salmonella enterica and Salmonella bongori,
which were classified based on their 16S rRNA sequence analysis. Salmonella enterica
can be further grouped into six subspecies, where these subspecies are denoted with a
roman numeral symbol from I to VI [34]. Salmonella enterica I can be further classified
into typhoidal Salmonella (S. Typhi and S. Paratyphi), which only infect humans, and
non-typhoidal Salmonella (S. Typhimurium and S. Enteritidis), which infect both humans
and animals [35].

Salmonella is a flagellated Gram-negative bacteria, facultative anaerobe characterised
by O, H, and Vi antigens [36]. It is famously known as a foodborne pathogen, as most
infections are acquired from food sources. They cause salmonellosis, clinically ranging
from common gastroenteritis (e.g., diarrhoea, abdominal cramps, and fever) to enteric
fevers (typhoid and paratyphoid), which could be a life-threatening febrile illness if left
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untreated [2,36–38]. However, the degree of severity depends on the serotype involved
and human host status. Infants or children under five years old, elderly, and immuno-
compromised persons are among the high-risk groups who are susceptible to Salmonella
infection [32].

Salmonellosis can be acquired from ingestion of food contaminated with Salmonella.
The sources of contamination could be from the consumption of undercooked food from
infected animals in poultry products or other meats, ready-to-eat foods such as fruits
and vegetables that have been contaminated with faeces of infected animals, or water
that has been contaminated with faeces of infected people or animals [38]. In urban
areas, contaminated water sources contribute significantly to Salmonella outbreaks [3].
Contact infection can also be acquired through direct exposure to an object or environment
contaminated with faeces containing Salmonella [38].

Enteric fever is a potentially fatal systemic illness caused by Salmonella enterica sub-
species serovars Typhi and Paratyphi A, B and C [3,39]. This illness, which is also known as
typhoid or paratyphoid fever, was classified based on the serotype of Salmonella bacterium
infecting the host. Fatality in cases involving typhoid fever was reported to be 1.89 times
higher than in paratyphoid fever. These infections resulted in bacteraemic febrile illness,
with prolonged high fever, malaise, and headache [39]. If left untreated, it would lead to
gastrointestinal bleeding, intestinal perforation, ileus, septic shock, altered mental states
(termed the typhoid state) and, consequently, death [3,39–41].

In 2017, it was estimated that 14.3 million typhoid and paratyphoid cases occurred
globally with 136,000 estimated deaths. Children and the elderly were among the groups of
highest recorded fatality, especially in lower-income countries. Salmonella enterica serotype
Typhi is a major contributor to enteric fever with 76.3% [39]. Typhoid disease is rare
in developed countries, but still prevalent in certain areas of developing countries with
limited access to clean water and poor sanitation [42,43]. In Malaysia, it was estimated
that 0.5 to 0.7 confirmed cases of Salmonella infection per 100,000 population were reported
in 2015 [44]. Even though most of the outbreaks are endemic, the cases of both typhoid
and paratyphoid fever declined globally by 45% from the year 1990 to 2017. Since there
was limited use of typhoid vaccine in typhoid-endemic countries, other factors such as
the improvement of water supply and sanitation infrastructure, improved food handling
practices, and easy access to antibiotic treatment were likely to be the crucial factors that
contributed to this decline [39].

The incidence of antimicrobial resistance among bacterial pathogens is currently at
an alarming state which includes concern towards resistance in Salmonella. This issue was
relatively not new to Salmonella species as the first chloramphenicol-resistant S. Typhi was
discovered two years after it was used to treat patients with enteric fever in 1948 [3]. In
the 1980s, multidrug-resistant S. Typhi against chloramphenicol, ampicillin, trimethoprim,
and sulfonamides has become prevalent, followed by nalidixic-acid-resistant S. Typhi and
S. Paratyphi A in the 1990s [45]. In Asia, the majority of S. Typhi and Paratyphi A strains
are nalidixic-acid resistant and completely resistant towards ciprofloxacin and extended-
spectrum cephalosporins have emerged in some parts of the world [46]. It was reported
that the antimicrobial resistance of Salmonella was linked with the horizontal gene transfer
from the virulent multi-drug resistant S. Typhimurium DT 104 through its mobile plasmids
to other bacteria [47–49]. Thus, early detection of Salmonella could help to prevent the
spread of resistance genes and the optimal use of antimicrobial drugs are deemed necessary
to combat this issue.

3. Detection of Salmonella

Early and accurate detection of Salmonella infection could be a lifesaver, as necessary
and effective treatment can be provided to patients, thereby reducing the possibility of
selective pressure that can contribute to the emergence of antimicrobial drug resistance [50].
As the technology progresses, there are many new inventions and innovative approaches for
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Salmonella detection that provide fast, accurate, and reliable detection. Figure 1 illustrates
the currently available methods for Salmonella detection.

Figure 1. Available methods for Salmonella detection (adapted from ref. [14,20,21,23]).

3.1. Conventional Detection of Salmonella

The clinical diagnosis of typhoid in tropical disease-endemic areas is very difficult
and sometimes unreliable. This is due to the difficulties in distinguishing typhoid diag-
nosis from other co-endemic acute febrile illnesses such as malaria, dengue, leptospirosis,
influenza, brucellosis and other systemic infection [50].

The culture method has been the gold standard since the discovery of enteric fever
etiological agent in 1880 (as cited in [50]). This traditional isolation method involves enu-
meration of the targeted bacteria according to their unique morphological and biochemical
properties, and it has been standardised by several regulatory agencies [20]. In a clinical
diagnostic setting, blood culture is a basic method of detection for Salmonella, or else body
fluids such as bone marrow, urine, stool, duodenal aspirates, and rose spot extracts can be
used as well [51].

To date, the guideline has been standardised by the International Organisation of
Standards (ISO) (ISO 6579:2002) for Salmonella detection [5]. Through this method, the
sample will undergo a pre-enrichment by using buffered peptone water followed by a
selective enrichment by using Rappaport Vassialidis soy (RVS) broth and Muller Kauffmann
tetrathionate-novobiocin. Finally, the enriched sample will be streaked on a differential
medium (e.g., Xylose Lysine Deoxycholate (XLD) and Hoektoen) [5,52]. In general, the
proposed guidelines by other regulatory agencies are essentially similar to ISO 6579:2002,
which involve four principle stages: non-selective pre-enrichment, selective enrichment,
plating on selective isolation agar, and biochemical and serological tests [20,53].

The colonies that appeared on the medium will then proceed for biochemical and
serological detection. Until present, a miniaturised form of the biochemical assay was
developed to assist in rapid confirmation of isolated organisms from a large number of
samples [20]. This system greatly reduces the volume of reagents, media, and apparatus
required, as compared to conventional biochemical assay, and produces more results in a
short period of time [54,55]. This system comprises a sterilised, disposable microtiter plate,
which contains up to 20 specific media or substrates targeting specific microorganisms.
Identification of Salmonella to species level will be determined after a 16–24 h incubation
period at desired temperature. A biochemical identification test kit API 20E and Biolog
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automated microbial identification system are some examples of commercial biochemical
assays available that are still currently being used [56,57].

Salmonella serogroup can be assessed through an agglutination test with polyvalent
antisera for somatic O antigens. Specific serovar can then be determined by slide agglutina-
tion tests with monovalent antisera to specific O antigens and tube agglutination tests with
antisera to flagella H antigens [53]. However, there is a critical downside of serotyping
identification where the same Salmonella serotype could have a different antigenicity. This
is due to the loss or modification of surface antigen of the bacterial cells and consequently
lowering of the sensitivity of serological tests [58]. If this problem occurs, pulsed-field gel
electrophoresis (PFGE) characterisation could be a suitable replacement method [20].

3.2. Rapid Salmonella Detection Methods

There is no doubt that the conventional culture method is preferred in many foods’
safety and health diagnostic laboratories as a routine detection due to its ease of use, high
sensitivity, reliability, and reasonable operating cost. However, this method requires a
minimum of three days to be completed, starting from pre-enrichment to the identification
process depending on the biochemical test used [20]. Furthermore, in a certain condition
that requires high throughput screening with high number of samples to be analysed, this
method might be of huge disadvantage. Some modifications to the conventional method
have been made by researchers to reduce labour, time, cost, and it offers much more
rapid detection and identification. For instance, the use of fluorogenic and chromogenic
growth media (e.g., Rambach agar, SM-ID agar, and BBL CHROMagar Salmonella), which
shows direct detection, enumeration, and identification on isolation media are some of
the good ways to reduce the processing time by one day, compared to the conventional
method [59–62]. Yet, this improvement is still considered lacking in response to Salmonella
outbreak, bioterrorism, or product recall [20].

To date, several rapid methods with different identification techniques were developed
which include immunological-based assays, molecular-based assays, mass spectrometry-
based detection, spectroscopy-based detection, optical phenotyping detection, and electro-
chemical biosensors. From the past two decades, immunological-based, and molecular-
based assays are the fastest analytical detection methods developed due to the advancement
in molecular sciences. A huge improvement to these methods has been made with the
introduction of more specific target antibodies and genes [21]. Vibrational spectroscopy,
spectral imaging, and machine vision have gained interest in bacterial detection due to
their non-destructive analysis, rapid, and convenient ability to retrieve visual data from
specimens and cloud libraries [17]. Another famous method to date is the electrochemi-
cal biosensors method, which already received tremendous attention and innovation in
research communities in various kinds of applications.

3.2.1. Immunological-Based Assay

Immunological-based assays utilise the specificity of antibodies (monoclonal or poly-
clonal) for antigen capture that is usually located at the surface of the Salmonella cellular
membrane [22]. These assays include enzyme-linked immunosorbent assay (ELISA), the
latex agglutination method, and immunochromatography assay. Figure 2 summarises the
illustration process of immunological-based assays.
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Figure 2. Illustration of a rapid Salmonella detection method based on immunological methods: (a) schematic
diagram of direct enzyme-linked immunosorbent assay (ELISA) that generates a coloured signal with
the presence of the target (adapted from ref. [63]); (b) illustration of the latex agglutination method
that formed a visible clump in the presence of Salmonella (adapted from ref. [64]); and (c) the basic
structure of a lateral flow assay (reproduced from ref. [65] with permission from Elsevier).

Enzyme-linked immunosorbent assay ELISA is the most famous and frequently used
labelled immunological-based assay for Salmonella detection, where it is considered the
gold standard of all immunoassays [4]. It can be used for the detection and quantification of
a variety of samples such as antibodies, antigens, hormones, proteins, and glycoproteins [4].
This assay utilises an immobilised anti-Salmonella antibody in a solid matrix and, once a
specific antigen is bound to the antibody and formed antigen–antibody complex, it triggers
colour changes due to enzymatic cleavage of a chromogenic substrate (Figure 2a) [66,67].

Improvement on the ELISA method also has been made with a fluorogenic reporter [68],
polymerase chain reaction (PCR) [69] and electrochemiluminescence reporters [70] to
improve signal generation. The recent major advancement of ELISA was the manipulation
of gold nanoparticles, as chromogenic reporters that greatly improve the sensitivity of
detection. This assay provides qualitative results by generating a distinct coloured solution
with the presence of analyte. The lowest detection limit was recorded at 1 × 10−18 g/mL
(attomolar) of prostate-specific antigen (PSA) and HIV-1 capsid antigen p24 in a whole
serum sample [71].

The latex agglutination method is one of the simplest Salmonella detection techniques,
which utilises latex particles coated with antibodies. The presence of Salmonella will
form a visible latex agglutination as the antigens on the Salmonella surface react with the
immobilised antibody on latex particles (Figure 2b) [54,72]. Even though this assay is
relatively outdated, it can still be used as a confirmatory analysis, since it offers a specific,
easy, and reliable technique [73–77].

Immunochromatographic assays also known as lateral flow assays were the basis
behind the dipstick assay, lateral flow device (LFD), and lateral flow immunochromato-
graphic assay (LFIA) [6]. This assay consists of four parts namely the sample pad, conjugate
pad, reaction membrane and absorbent pad (Figure 2c). The sample pad is the sample
receiving region, the conjugate pad is a region where probe hybridisation takes place,
the reaction membrane is where the test line and control line for target antigen–antibody
or DNA–probe hybridisation interaction is located and absorbent pad served as a waste
collection region [65]. These separations of component mixture based on their movement
through the reaction membrane are called a chromatographic system [78].
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3.2.2. Molecular-Based Assay

Molecular-based assay involves the hybridisation of short oligonucleotide fragment
known as a DNA/RNA probe or primer to detect specific targeted DNA/RNA sequences [21].
Specific primer/probe can be isolated from microorganisms or engineered according to
their specific target bioreceptor [79]. This method offers high sensitivity and specificity
and greatly reduced detection time to only a few hours. They were polymerase chain reac-
tion (PCR), loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based
amplification (NASBA), recombinase polymerase amplification (RPA), DNA microarrays,
and whole-genome sequencing (WGS). Figure 3 shows the illustration process of a few
molecular-based assays based on DNA/RNA amplification.

Figure 3. Schematic illustration of a molecular detection method based on an amplification technique: (a) the polymerase
chain reaction (PCR) amplification process (adapted from ref. [80]); (b) the nucleic acid sequence-based amplification
(NASBA) process (reproduced from ref. [81] with permission from Elsevier); (c) the loop-mediated isothermal amplification
(LAMP) process (reproduced from ref. [82] with permission from John Wiley and Sons); and (d) Recombinase polymerase
amplification (RPA) flow (reproduced from ref. [9] with permission from Elsevier).
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The polymerase chain reaction (PCR) is considered the gold standard in bacterial
identification, as well as in diagnostic application due to its reliability, high accuracy, and
very specific detection outcome. PCR utilises the amplification of nucleic acid and has been
extensively utilised for Salmonella detection and identification for quite some time [7]. PCR
works by amplifying or selectively amplifying a unique defined DNA region, by using
special molecular ingredients at a specific condition, generating thousands to millions of
copies of targeted DNA sequences (Figure 3a) [21,83]. A short turnaround time within 16 h
from start until detection has made PCR an excellent tool in a diagnostic application [84,85].
To date, PCR is still being used as a mandatory microbial identification confirmation and
PCR technology continues to evolve.

Multiplex PCR (mPCR) is one of the PCR methods developed for multiple detections of
microorganisms. This method has been used for Salmonella detection and other foodborne
pathogens as it allows rapid multiplex detection in various food matrices [82,84,85]. Real-
time PCR or known as quantitative PCR (qPCR) is a PCR method that is capable of
quantitatively detecting the target sample in real-time [21]. This method can detect the
target DNA and bacterial cells as time progresses by using a fluorescent technology known
as SYBR green and TaqMan dyes. These dyes will bind on the DNA groove as the double-
strand DNA is amplified, which then increases the fluorescent intensity [86–88]. qPCR
has been widely used for Salmonella detection in various food, poultry, and veterinary
products [89–91]. In the majority of studies, the invasion gene (invA) and tetrathionate
reductase gene (ttr) were the most targeted gene for Salmonella identification using the qPCR
method [92]. However, as the research progressed, new target genes such as Salmonella
enterotoxin gene (stn) [93], outer membrane porin F gene (ompF) [94], hyperinvasive locus
A (hilA) [95], virulence plasmid gene (spvC) [96], and many more have been used, providing
high sensitivity and specificity. Multiplex qPCR targeting many genes simultaneously in
real-time was also developed to assist in food safety inspection [21].

Even though PCR is considered an excellent choice for reliable and specific microbial
identification, there are some limitations and disadvantages to this assay that can contribute
to a major problem. In PCR, the presence of walnut components was reported, inhibiting
the product amplification [97]. Meanwhile, in qPCR, the presence of fat, black tea and
cocoa also inhibit the amplification process [98,99]. PCR is also unable to differentiate
between live and dead cells, since it will amplify any targeted sample available regardless
of the cellular condition [20]. This lack of discrimination could cause false-positive results,
therefore introducing other problems down the line, such as product recall [100]. The
PCR process is also laborious, requiring expensive machines (e.g., a thermal cycler, gel
electrophoresis, etc.) and trained personnel to conduct and analyse the PCR product [86].

Loop-mediated isothermal amplification (LAMP) is a novel alternative method to
amplify DNA aside from PCR. This method can amplify DNA with excellent specificity,
rapidity and efficiency under isothermal conditions (constant temperature) [8]. LAMP
employs a special DNA polymerase (Bst) and a set of four primers that can recognise six
distinct target regions of DNA (Figure 3c) [8,101]. This method has several advantages
over the traditional PCR, as it requires only a simple heating block, e.g., a water bath or dry
bath, to keep the temperature constant during operation, apart from its lesser sensitivity
to the PCR inhibitor and higher yield outcome [101–103]. Due to these excellent charac-
teristics of LAMP, it has been widely used for Salmonella detection [104–106]. A multiplex
LAMP-based system was also developed to detect multiple bacterial targets. Liu N. et al.
developed multiplex-LAMP to detect Salmonella spp. and Vibrio parahaemolyticus with 100%
specificity [107] and EMA-Rti-LAMP assay ethidium bromide monoazide (EMA) treatment
to detect and quantify S. Enteritidis in real-time [108].

Nucleic acid sequence-based amplification (NASBA) is another isothermal amplifi-
cation method, which is based on a molecular transcription system targeting exclusively
RNA (Figure 3b). [81,109]. This method can selectively detect viable microorganisms in
the sample and successfully eliminate the problems that arise from PCR techniques [10].
NASBA was found to be effective and sensitive for Salmonella detection [110–112].
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Recombinase polymerase amplification (RPA) is another new, novel isothermal ampli-
fication technique that is capable of amplifying a minimum of 1–10 DNA target copies in
less than 20 min [9]. This selective and highly sensitive technique is operated at 37–42 ◦C,
requires minimal sample preparation without prior DNA extraction and purification
(Figure 3d). It has been used to amplify ssDNA, dsDNA, RNA, miRNA from diverse
samples and organisms [9,113]. Integration of RPA with other detection strategies such as
lateral flow [114], real-time fluorescent detection [113], and microfluidic [115] was found
to be a success. As soon as their inception, RPA-based methods have been applied in
the detection of Salmonella in food samples [116–118]. Since the success of the isothermal
amplification method for Salmonella detection, the RPA system is likely the most convenient
choice for point of care application due to its short turnaround time, simple implementation,
and minimum sample preparation [119].

DNA microarray is an advanced molecular technology that performs a parallel hybridi-
sation of hundreds to thousands of specific and selective DNA probes to their respective
target DNA in a single assay [11,27]. This method was initially used to study gene ex-
pression analysis [120], but its application had gained widespread expansion for use in
comparative genomics, sequence analysis and diagnostics [27]. Reports on microarray-
based S. enterica detection are available [121–123]. Guo D. et al. successfully developed a
microarray system that can detect and identify 40 Salmonella O serogroups from a simulated
food samples [124]. This method is highly specific, as it correctly identifies 98% (n = 288) of
Salmonella strains in a mixed sample with other bacterial species.

Whole-genome sequencing (WGS) or next-generation sequencing (NGS) is another
advanced molecular method referring to highly automated and parallelised genome se-
quencers that are used to sequence the entire genomes of bacterial pathogens [14]. Un-
like a DNA microarray that targets certain genes, WGS works by sequencing the en-
tire fragments of bacterial DNA, aligning them into a complete genomic sequence and
subsequently compare them in genome sequence databases [23,125]. There are num-
bers of established genome sequence databases available such as NCBI genome database
(https://www.ncbi.nlm.nih.gov/genome/) (accessed on 8 September 2021), CFSAN-FDA
(https://github.com/FDA/open.fda.gov) (accessed on 8 September 2021) and other public
domains such as GenomTrakr (https://www.fda.gov/food/science-research-food/whole-
genome-sequencing-wgs-program) (accessed on 8 September 2021) [14].

With the aid of these databases, WGS can provide detailed information on identified
bacterial species including their antimicrobial resistance genes, any mutations to the se-
quence and even their source-level, such as source of isolation, geographic regions, etc. [14].
Ibrahim G. M. and Morin P. M. in their study successfully predicted Salmonella accord-
ing to their serotypes with a success rate of 89% (n = 899) by using WGS and SEQSERO
programme as a data analysis tool [12].

3.2.3. Mass Spectrometry-Based Method

The matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry
(MALDI-TOF MS) is a recent mass spectrometry technology used for rapid and reliable
microorganism identification [126]. This method utilises a protein spectrum profile of
a microorganism as a basis of the identification system, which is called a peptide mass
fingerprint (PMF) [23,126]. The obtained PMF is compared in an open PMF database,
using a scoring algorithm to match the analysed PMF spectrum with reference spectra and
consequently identify the microbial species with a high degree of certainty [23].

There are many reports on the use of MALDI-TOF MS for Salmonella detection. Mang-
mee S. et al. develop a MALDI-TOF MS-based method for simultaneous identification of
non-typhoidal Salmonella (NTS) in the Thai broiler industry. They successfully identified
NTS with high accuracy up to species and subspecies level and the method could support
faster large-scale screening with efficient cost [13]. Yang S. M. et al. uses MALDI-TOF MS
to identify and discriminate three different Salmonella serovars, Enteritidis, Typhimurium,
and Thompson, that are epidemiologically important in Korea [127].

https://www.ncbi.nlm.nih.gov/genome/
https://github.com/FDA/open.fda.gov
https://www.fda.gov/food/science-research-food/whole-genome-sequencing-wgs-program
https://www.fda.gov/food/science-research-food/whole-genome-sequencing-wgs-program
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Liquid chromatography-mass spectrometry (LC-MS) is an alternative mass spectrome-
try method to MALDI-TOF MS. This method showed promising results in the identification
of a closely related bacterial species and has been used for serovar level identification
of Salmonella ([128] as cited in [14]). This method separates the intact bacterial protein
lysates through chromatographic separation and detected with MS [14]. Mc Farland M.
A. et al., uses LC-MS coupled with electrospray ionisation (ESI) to identify Salmonella
serovars (S. Typhimurium vs. S. Heidelberg) based on their single nucleotide polymor-
phisms (SNPs) [129]. However, the LC-MS method is slower compared to MALDI-TOF MS
analysis [14].

3.2.4. Spectroscopy Method

Raman spectroscopy is a spectroscopy technique based on inelastic scattering of
monochromatic light (usually from a laser source). Upon the interaction with the sample,
the frequency of photons in monochromatic light changes as they are absorbed by the
sample and then reemitted. The shifting frequency of the reemitted photons from the
sample is then compared with the original monochromatic frequency to form a Raman
effect [23,130]. Surface-enhanced Raman spectroscopy (SERS) is the enhanced version of
Raman spectroscopy with a better amplification of electromagnetic fields created by the
excitation of localised surface plasmon. SERS can detect samples in a low concentration
of analytes with high sensitivity [23]. This technique has been used to rapidly detect
foodborne pathogens [15]. Duan N. et al. utilised a SERS-based aptasensor to detect
S. Typhimurium in a real food sample where they successfully detected the pathogen with
a detection limit of 15 CFU/mL [131].

Near-infrared spectroscopy (NIR) is a technique that utilises a specific spectral region
called near-infrared (780–2526 nm), where the occurrence of the overtones and combination
of vibration response is likely related to the changes in chemical bonds such as O-H, C-H,
N-H, C-O, and other organic molecules [23,132]. Since the membrane structure of bacteria
consists of combinations of macromolecules that are unique to their respective species,
thus the NIR spectrum of each bacterium has a highly specific absorption signature [133].
Pereira J. M. et al. reported fast detection of S. Typhimurium in a milk sample by using
NIR spectroscopy and evaluated using the chemometric method of partial least squares
with discriminant analysis [16]. Their study was able to discriminate S. Typhimurium with
a good prediction and all samples were correctly classified. Gao X. et al. also reported
a compilation studies of foodborne bacteria detection and identification using NIR spec-
troscopy [133]. This technique provides a non-destructive, fast, and accurate measurement
of the target in complex sample matrices.

Hyperspectral imaging (HSI) is an emerging rapid method for bacterial identifica-
tion. This method utilises the integration of conventional imaging and spectroscopy to
provide both spatial and spectral information of a sample [23,134]. Thus, HSI will pro-
vide more specific detection and identification compared to a single source of modality.
This non-destructive method is usually being used in foodborne pathogen detection and
the development of a complete hyperspectral graph of common foodborne pathogens is
still under development [135]. Seo Y. N. et al. reported on the development of an HSI
method for automated screening of S. Enteritidis and S. Typhimurium in poultry carcass
rinses [136]. They use five different machine learning algorithms to analyse and train the
systems and the best performance was achieved by quadratic discriminant analysis (QDA)
with a prediction accuracy of 99%.

3.2.5. Optical Phenotyping Using Light Diffraction Technology Method

Microbial identification through light diffraction or a forward light scattering phe-
nomenon is an interesting new way to identify bacteria. This method provides a non-contact
and non-destructive measurement as it directly observes the microorganism colonies grown
on a culture plate to produce acquisition of scattering images and consequently compare
it with reference scatter image libraries of known bacteria [28,137]. BARDOT (Bacterial
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Rapid Detection using Optical Scattering Technology) and BISLD (Bacteria Identification
System by Light Diffraction) are two available methods based on this technique [137,138].
Abdelhaseib M. U. et al. utilised BARDOT the system in their study coupled with a
multi-pathogen selective medium to identify S. enterica, E. coli and L. monocytogenes in a
single assay [18]. Singh A. K. et al. utilised BARDOT and a laser optical sensor to detect
36 different Salmonella serovars in a food sample [139]. Real-time detection in food samples
showed 84% detection accuracy in 24 h comparable to those of the USDA Food Safety
Inspection Service method, which require ~72 h.

3.2.6. Electrochemical Biosensors

Electrochemical biosensor is an integrated receptor–transducer device that captures
a biological signal, processes it through electrochemical means, and translates it into
a detectable electrical signal [140]. To date, electrochemical biosensors have received
tremendous attention in Salmonella detection due to their rapid detection, high specificity
and sensitivity and possible on-site testing [23,141–143]. A study by Jia F. et al. showed
a very sensitive detection of S. Typhimurium ATCC 50761 with a limit of detection of
25 CFU/mL in one hour [144]. A similar result was obtained when tested in a spiked
chicken sample, which represents good reproducibility. Further details on electrochemical
biosensors will be discussed in Section 4.

3.2.7. Advantages and Disadvantages of Salmonella Detection Methods

Table 1 summarises the advantages and disadvantages of each discussed Salmonella
detection method and their examples. The electrochemical biosensor method was found
to be the most promising method, as it offers attractive advantages such as low cost
per test, user-friendliness, and possible on-site testing. Despite rapid, sensitive, and
specific detection, the electrochemical biosensor method struggles with drawbacks such as
high early instrument cost (potentiostat), non-standardised sample preparation due to its
dependence on the bioreceptor used, and lack of multiplex detection [23,145]. However,
recent creation of a low-cost smartphone-controlled potentiostat could solve the expensive
potentiostat issue in the near future [146].
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Table 1. Overview of Salmonella identification method used in the literature including their advantages, disadvantages, and examples.

Detection Method Advantages Disadvantages Example a Time to Results Detection Limit Ref.Input Sample
Conventional method

Microbiological culture
method

Sensitivity, selectivity with chromogenic
media, low cost

Labour intensive, lengthy
analysis, requires a sterile
environment, no on-site

testing, VBNC

Food samples ** Several days
(3 to 7 days) - [52]

Immunological-based method

ELISA High specificity, rapid, user friendly, high
throughput, qualitative and quantitative

Batch to batch variation,
low sensitivity, antigen
cross-reaction, difficult

synthesis of target antibody

Chicken meat ** 2–3 days (detection in few
hours) - [147]

Latex agglutination
method

High specificity, user friendly, high
throughput, low cost, rapid detection

Qualitative, susceptible to
false negative results Blood culture broth ** 2–3 days (detection in few

hours) - [148]

Immunochromatographic
assay

Lightweight, disposable, on-site testing,
low detection limit compared to other

immunological method
Antibody instability Water sample ** 2–3 days (detection in

5–7 min) 104 CFU mL−1 [149]

Molecular-based method

PCR
High sensitivity and specificity, reliability,

multiplex detection (mPCR), real-time
detection (qPCR)

PCR inhibitor, unable to
distinguish between live
and dead cells, expensive

equipment, requires
well-trained personnel

Seafood sample ** 2 days (detection in few
hours) - [150]

LAMP

High specificity, real-time detection,
requires less equipment due to isothermal
properties, less sensitive to PCR inhibitor,

low detection limit

Complex sample
preparation, indirect

detection method
Pork product and carcass ** 2 days (detection in

90 min) 101 CFU mL−1 [105]

NASBA High specificity, rapid, able to detect only
viable cell, low detection limit

RNA is more labile than
DNA Beef, pork, and milk * <24 h (detection in <2 h) <101 CFU mL−1 [110]

RPA High specificity, rapid, minimal sample
preparation, low detection limit - Milk * <12 h (detection in

15 min) 50 CFU mL−1 [118]

DNA microarray Easy to operate, online database for
analysis and comparison

Expensive equipment,
requires well-trained
personnel for analysis

Spiked tomato sample ** 2 days - [124]

Whole genome
sequencing

Highly automated, wide variety of
databases publicly available, able to detect

genotypic Expensive equipment,
requires well-trained

personnel
Lettuce * 3–4 days - [151]

characteristics of bacteria such as
antimicrobial susceptibility or

virulent profile
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Table 1. Cont.

Detection Method Advantages Disadvantages Example a Time to Results Detection Limit Ref.Input Sample
Mass spectrometry method

MALDI-TOF MS

High sensitivity and selectivity, high
throughput, rapid, low cost per testing,

non-destructive, can be used in a
complex sample

High early instrument cost,
database limitations, no
on-site testing, requires
well-trained personnel

Blood culture ** 1–2 days
(detection in <5 min) - [152]

LC-MS High sensitivity and selectivity,
Expensive equipment,
requires well-trained

personnel,
Pure culture ** 2 days (detection in few

hours) - [129]

Spectroscopy method

Raman spectroscopy
High sensitivity, high specificity,

non-destructive, culture independent,
multiplex detection, easy device handling

Fluorescent background, no
on-site testing, expensive

equipment,
Pure culture ** 2 days (detection in few

hours) - [131]

Near-infrared
spectroscopy (NIR)

High sensitivity, non-destructive, real-time
detection, real-time detection

Signal saturation due to
water content, no on-site

testing, expensive
equipment, requires

well-trained personnel,

Milk ** 2 days (detection in few
hours) - [16]

Hyperspectral imaging
(HSI)

High specificity and selectivity,
non-destructive, real-time detection

High detection limit, no
on-site testing, expensive

equipment, requires
well-trained personnel,

Chicken carcass rinse ** 2 days (detection in few
hours) - [136]

Optical phenotyping method

Light diffraction/forward
light scattering

High specificity and selectivity,
non-destructive, real-time detection

database limitations, no
on-site testing, expensive

equipment, requires
well-trained personnel,

Peanuts, spinach, chicken
carcass, pork, and turkey

samples **

2 days (detection in few
hours) - [139]

Biosensor

Electrochemical biosensor

High sensitivity and specificity, rapid, high
throughput, user friendly, low cost per

testing, real-time detection, low detection
limit, on-site testing

High early instrument cost,
sample preparation

depends on bioreceptor
Raw chicken sample * 4 h (detection in 5 min.) 101 CFUmL−1 [153]

a Time to results is the time taken from initial sample processing until detection results. ** Require a long pre-treatment and enrichment of sample >16 h. * Require simple pre-treatment for few hours.
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Detection sensitivity is one of the important aspects in Salmonella detection and it
is dependent on the minimum amount of analyte that can be detected. The detection
limit represents the lowest concentration of analyte required to give a positive result [154].
The electrochemical biosensor showed the highest sensitivity with the lowest detection
limit, and it can detect an analyte down to the femto-molar scale or a small number of
cells [155,156]. Meanwhile, in the molecular-based method, the detection limit is expressed
in the form of minimum genomic copies for the amplification process. RPA can amplify a
minimum of 1–10 DNA targets and PCR requires 32 genome copies in 1 µL of the DNA
sample [9,157]. Meanwhile, for other methods, they normally require the initial sample
in high concentration. Thus, a pre-enrichment process is one crucial step to increase the
analyte concentration.

Cross-reactivity among Salmonella serotypes is a common selectivity problem in
Salmonella identification. This problem not only occurs in immunological-based assay but
also in molecular-based identification, which might lead to a false positive result [24–26].
This problem can be easily avoided in DNA microarray and whole-genome sequencing
(WGS) as a database library of specific serogroups is available [12,124]. Other methods
such as MALDI-TOF MS, LC-MS, Raman spectroscopy, NIR spectroscopy, HSI imaging
and optical phenotyping usually developed their own specific spectral data, mass finger-
print data or scattering images data that are specific enough to discriminate Salmonella
serovars [16,127,128,136,139]. In the electrochemical biosensor method, the use of aptamer-
based bioreceptor is the best strategy to avoid cross-reactivity problems. In a study con-
ducted by Hyeon J. Y. et al., they successfully developed an RNA aptamer for S. Enteritidis
with no cross-reactivity to other Salmonella serovars [158]. Thus, the use of a highly specific
aptamer biorecognition element could prevent cross-reactivity problems. Few studies that
utilise aptamer as a biorecognition element showed a good selectivity detection between
Salmonella serovar [153,159,160].

On the other hand, sample preparation is also a crucial part of the Salmonella detection
process as the sample might be isolated in variety of forms (solid/liquid). Most of the
Salmonella detection methods discussed require an input sample in a liquid form except
for MALDI-TOF MS, NIR spectroscopy, HSI spectroscopy, and optical phenotyping (BAR-
DOT) as they require bacterial colonies grown on an agar plate [18,127,132,135]. Most
of the immunological and molecular-based methods also require sample pre-treatment
or pre-enrichment, while other methods such as mass spectrometry, spectroscopy and
electrochemical biosensor can be perform in a mixed sample with minimal pre-treatment.
These pre-treatment and pre-enrichment processes will increase the overall detection time
of sample.

4. Biosensors Developed for Salmonella Detection

The discovery of a glucose sensor by Clark and Lyons in 1962 was considered the start-
ing point for the development of biosensors in the biomedical field [161]. This technology
was then commercialised by the Yellow Springs Instrument Company, by introducing the
world first commercial glucose sensor (Model 23A YSI analyser) for the direct measurement
of glucose in 1975 [162]. Later, biosensor technology has bloomed with the development
of many kinds of biosensor such as cancer biomarker biosensors [163], protein biomarker
biosensors [164], and many more.

4.1. Biosensors

A biosensor is defined as an analytical device that converts a biological signal or
response into a quantifiable and processible signal [165,166]. Generally, a biosensor consists
of three main components, namely a biorecognition element, transducer components and
the electronic system, e.g., a signal amplifier, processor and electronic display as shown
in Figure 4 [167]. The biosensor can detect biological samples in a very specific, fast,
and reliable manner utilising a sensing method such as optical, physical changes such as
strain or piezo effect due to difference in sample mass or volume, electronic or field-effect
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transistor (FET) and electrochemical techniques [31]. The generated signal will then be
translated into an electrical signal, proportional to the number of analyte–bioreceptor
interaction events [31].

Figure 4. Schematic diagram of three main components of a biosensor and examples (adapted from ref. [167]): (A) biorecog-
nition elements that interact with the analytes such as cells, tissues, antigens, nucleic acids and many more; (B) transducer
elements that convert the analyte–bioreceptor interaction into a quantifiable signal; and (C) electronic systems amplify and
process the signal from the transducer and display the output as digital data.

Some researchers have also further classified the biorecognition element into analyte
and bioreceptor and the electronic system into electronics and display [154]. The analyte
is a component of interest or a solution containing a component of interest to be detected
such as nucleic acid, proteins, enzymes, antibodies, microorganisms, cellular components,
tissues and also drugs [20]. A bioreceptor is a biorecognition element used to detect the
presence of the analyte. It could be an enzyme, antibodies, nucleic acid, aptamers, viruses,
and cells. A recognition signal will be generated once the target analyte binds to the
biorecognition element and the signal can be generated in a variety of ways such as current,
charge transfer resistance, potential difference, mass change, absorbance, reflectance, and
many more [73,154]. The transducer is an element that converts the biorecognition signals
into measurable signals. Electronics is a part that processes the transduced signal through
complex electronic circuitry, which then amplifies or transforms the signals into a digital
form. Finally, display components will quantify the processed signal generated in a form
of a specific graph, numerical data or any format depending on the requirements of the
end-user [154].

Biosensors have been broadly classified based on their biorecognition element and
transducer [31,168]. These two components are a crucial first step in developing a reliable,
sensitive, and robust biosensor combined with good microelectronics systems for data
processing and interpretation. The bioreceptor must bind with high affinity to the targeted
analyte to ensure high selectivity and sensitivity, and the transducer must be highly
sensitive and accurately transform the signals generated for processing [154].

4.2. Electrochemical Biosensors

Each type of sensing mechanism has its advantages and disadvantages. Among
many kinds of biosensors, electrochemical biosensors have sparked a lot of interest in
pathogen detection including Salmonella [169]. Electrochemical biosensors offer signifi-
cant advantages over other biosensors due to their high sensitivity, low cost, versatile
detection strategy, automation, miniaturisation potential, sustainability (i.e., low sample
volume and minimal solvent use in its development and application) and possible real-time
quantification [22,170]. The electrochemical biosensor is also capable of sensing a sample
with high turbidity and not being affected by quenching or interference from absorbance
and fluorescent compounds as optical-based techniques struggle with [171]. Moreover,
the electrochemical biosensor set-up requires relatively simple instrumentation that is
low-power compared to surface plasmon resonance techniques that need a light source
and receiver, which adds more complexity to the system [171]. This sensing system also
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can detect a sample in a large linear detection range and a wide variety of solvents and
electrolytes compared to a field-effect transistor (FET), which only can detect the target at
a certain range of concentration due to a Debye length effect [171–173]. Those excellent
characteristics are the advantages of electrochemical systems, which make them a reliable
sensing system for pathogen detection. A discussion on other transducing elements, such
as optical and piezoelectric ones, can be found elsewhere. Figure 5 shows the schematic of
typical electrochemical biosensors, including their types of receptors and materials used
for electrode surface modification, which will be further discussed in the next section.

Figure 5. Schematic illustration of a typical electrochemical biosensor with different types of biorecog-
nition elements, materials for signal amplification and electrochemical transducing techniques for
Salmonella detection (adapted from ref. [22] and the graphene scheme from ref. [174]).

Theoretically, the electrochemical biosensor uses electrical means to analyse or examine
biochemical reaction (the charge transfer process) that occurs on the surface of the electrode
(electrode–solution interface) [166,170]. The electrode itself is one of the crucial components
in an electrochemical reaction as its materials, surface modification and dimensions can
greatly influence the performance of electrochemical reactions. The working electrode
serves as the main region where an electrochemical transduction process takes place,
and the counter electrode will complete the circuit by establishing a connection to the
working electrode through the analyte as the current is applied. The reference electrode,
usually positioned at a distance from the reaction site, serves to maintain a known stable
potential [166]. As the reaction takes place, the electrochemical reaction (redox potential
changes) can be detected and measured in terms of current, voltage, impedance and
capacitance [175,176]. Table 2 summarises the types of electrochemical biosensors based
on their electrochemical transduction principle namely potentiometric, amperometric,
impedimetric, and voltammetric biosensors.
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Table 2. Summary of electrochemical biosensor types according to their transduction principle, their performances and examples of studies conducted.

Types of Electrochemical
Biosensor Working Mechanism Advantages Disadvantages Biosensor Developed Ref.

Potentiometric

Measure the charge accumulation
(potential) on the working electrode
due to the interaction between the
analyte and bioreceptor relative to

the reference electrode under zero or
negligible current flow. Usually, an

ion-selective electrode and
ion-sensitive field-effect transistors

are used.

-Miniaturisation potential
-Electrode surface area does not

affect signal

Aptasensor for Salmonella detection using an
ion-sensitive electrode (ISE) modified with
single-walled carbon nanotubes (SWCNT).

[177]

Immunosensor for S. Typhimurium detection
using cadmium and sodium ion-selective

electrodes as an indicator and pseudo-reference
electrodes.

[178]

Immunosensor for S. Typhimurium detection
using a paper strip ion-selective electrode

integrated with a filter paper pad as
solution reservoir.

[179]

Amperometric

Measure the current produced at the
working electrode due to

electrochemical oxidation or
reduction of electroactive species

when a constant potential is applied
with respect to the reference electrode.
Amperometric biosensor can operate
in either two or three electrodes. The
current produce is proportional to the

analyte concentration present in
the solution.

-Suitable for mass production
-Sensitive, fast, precise, and
provides a linear response

compared to
potentiometric biosensor

-Poor selectivity
-Interference from other
electroactive substances

Label-free immunosensor for S. Typhimurium
detection using the as-grown double wall (DW)
carbon nanotube bundles as an electrode and
chronoamperometry as transducing method.

[180]

Immunosensor for S. Typhimurium detection
using an enzymatic substrate and mediator for

response detection
[181]

Impedimetric

Measure the electrical impedance
(change in electrical conductance or

capacitance) produced at the
electrode/electrolyte interface in a

constant potential.

-Miniaturisation potential
-Fast response

-Signal instability due to the
electrode to electrode and

probe variations

Aptasensor for S. Typhimurium detection using
a diazonium-supporting layer SPE in spiked

apple juice.
[141]

Immunosensor for S. Typhimurium detection
using cetyltrimethyl ammonium bromide
(CTAB) functionalised MoS2 nanosheets

(CTAB-MoS2-NS) for protein conjugation on a
microfluidics ITO-hydrolysed microelectrode.

[182]

Immunosensor for S. Typhi detection using gold
nanoparticle (AuNPs)-tagged bacteria via

high-affinity antigen–antibody interactions in
interdigitated microelectrodes.

[183]
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Table 2. Cont.

Types of Electrochemical
Biosensor Working Mechanism Advantages Disadvantages Biosensor Developed Ref.

Impedimetric

Aptasensor for S. Typhimurium detection using
an aptamer-coated gold interdigitated

microelectrode for target capture and antibody
modified nickel nanowires (NiNWs) for
magnetic target separation in the spiked

chicken sample.

[184]

Voltametric
Measure the changes in current

during the controlled variation of
applied potential.

-Highly sensitive measurement
-Simultaneous

detection of multiple analytes
-Less prone to noise

Immunosensor for S. Typhimurium LT2(S)
detection using magneto-immunoassay and
gold nanoparticles (AuNPs) as a label in the

skimmed milk sample.

[185]

Aptasensor for S. enterica detection using a
pencil graphite electrode decorated with

chitosan (Chi)-electrospun carbon nanofibers
(CNF)/gold nanoparticles (AuNPs).

[186]

Immunosensor for S. Typhi detection using a
disposable microfluidic device (DµFD) based on

a carbon electrode array and magnetic gold
nanoparticles (AuNPs) as a label.

[187]

Aptasensor for S. Typhimurium detection using
a metal-organic framework–graphene

composite of type UiO-67/GR as a base
substrate and

aptamer–gold nanoparticles–horseradish
peroxidase (Apt-AuNP-HRP) conjugate as the

signal amplification probe.

[188]

The details on the types of electrochemical transducing mechanisms and their advantages and disadvantages were adapted from ref. [22,31,145,166,168]. Limit of detection (LOD); colony-forming units (CFU);
phosphate buffer solution (PBS).
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4.3. Bioreceptors Used in Salmonella Biosensors

Bioreceptors or the biorecognition elements are one of the crucial parts in developing
Salmonella biosensors. The interaction of the bioreceptor and the Salmonella will determine
the specificity, selectivity, and sensitivity of the developed biosensor [167]. Each type of
biorecognition element available has its advantages and disadvantages. Table 3 presents
the summary of the pros and cons of each biorecognition element, which are an important
consideration for biosensor development.

Table 3. Summary of biorecognition elements used in biosensors.

Bioreceptor Advantages Disadvantages

Antibody High affinity and specificity
Possible for reusability

Low stability
Possibility of batch variation
High cost
Laborious production

Bacteriophage

Can discriminate live and dead cells
Phage structures can be engineered
for better affinity, specificity, and
robustness
Low cost

Potential of bacterial lysis during
detection
Low capture efficiency when dry

AMPs

High affinity and stability
Simple synthesis process
Access to modification
Low cost

Low specificity

Nucleic acid

High stability
Simple synthesis process
Access to modification
Low detection limit

Laborious production
Low specific binding
Restricted to DNA target only

Aptamer

High affinity, stability and specify
Simple synthesis process
Access to modification
Low cost
Low detection limit

Sensitive to nuclease

Adapted from ref. [168,189,190].

4.3.1. Antibody–Antigen or Immunosensors

Immunosensors, also known as an antibody–antigen biosensors are a widely utilised
analytical tool for Salmonella detection especially in dairy and food processing settings [191].
This biosensor works by immobilising a specific anti-Salmonella antibody on a surface of a
transducer, and the coupling of an antigen to the antibody will trigger an immunochemical
reaction, which will be used as a detection signal [192]. Recently, there were quite extensive
studies reported on Salmonella detection using an immunosensor.

Melo et al. reported on the detection of S. Typhimurium in contaminated milk sam-
ples via the chronoamperometry method [143]. The polyclonal anti-Salmonella antibodies
were immobilised on the gold working electrode using carboxymethylated cashew gum
(CMCG) film through electrodeposition and the limit of detection (LOD) was observed
at 10 CFU mL−1 with a detection time of 125 min. Alexandre et al. also reported similar
results as Melo in their study for S. Typhimurium detection in milk samples with LOD of
10 CFU mL−1 and 125 min of detection time [193]. The only difference in this study was
that the polyclonal antibodies were immobilised using the cysteine–thiol self-assembly
monolayer (SAM) method on a gold screen-printed electrode. A study by Sannigrahi
et al. used magnetosome (biogenic nanoparticles synthesised in a magnetotactic bacteria
Magnetospirillum sp. through biomineralisation) functionalised with anti-Salmonella anti-
body to detect lipopolysaccharide (somatic “O” antigen) of S. Typhimurium in food and
water samples [194]. Electrochemical impedance spectroscopy (EIS) confirmed the detec-
tion of lipopolysaccharide at 0.001–0.1 µg/mL and the LOD of bacteria at 1 × 101 CFU/mL
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in water and milk samples. A labelled immunoassay was also reported by Bu et al., where
they used ferrocene (Fc)-functionalised nanocomposites to amplify the electrochemical
signals [195].

4.3.2. Bacteriophage-Based or Phagosensors

A phagosensor is a type of biosensor that uses bacteriophages as their detection vector.
Bacteriophages, also known as phages, are viruses that strictly infect and replicate inside
bacterial cells [196]. The nature of bacteriophages that only infect a very specific, single-
cell host species, and sometimes even specific strains within the species, is an excellent
characteristic to employ as a bioreceptor [196]. This strategy is similar to antigen–antibody
binding and DNA hybridisation, which provide an exclusive, specific binding of the
target [19].

Reports on electrochemical phagosensors for Salmonella detection are not widely avail-
able as compared to immunosensor and DNA sensors as they are opting for different
detection methods. A study by Vinay M. et al. successfully developed a prototype of
a phage-based fluorescent biosensor to detect enteric bacteria such as E. coli and S. Ty-
phimurium in water samples [197]. Their limit of detection was 10 bacteria per mL of
solution without concentrating or enriching the sample. Moreover, their prototype is also
robust as it can detect target bacteria in seawater sample. Another rapid, sensitive, and
direct detection of S. Typhimurium based on a wireless magnetoelastic (ME) biosensor has
been reported and tested on eggshell samples [198]. This biosensor utilises the E2 phage as
the biomolecular recognition element that selectively binds with S. Typhimurium and their
limit of detection was found at 1.6 × 102 CFU/cm2 in a humidity-controlled chamber.

4.3.3. Antimicrobial Peptide-Based Biosensor (AMPs)

Antimicrobial peptides (AMPs) is a short fragment of peptides consisting of around
12 to 15 amino acid residues [199]. AMPs can be found as an innate immune system of
living organisms, which provide defence mechanisms against invading pathogens [200].
Generally, AMPs are amphipathic and cationic and they can bind to the bacterial cell
membrane via electrostatic and hydrophobic interaction [201]. Their excellent properties
such as being intrinsically stable in harsh conditions, their possibility of being produced
synthetically in a large quantity, and ease of modification with low production costs, make
them suitable candidates as a bioreceptor [168,202].

The number of recent reports for AMP biosensors for Salmonella detection is also lim-
ited. For example, novel AMPs known as nisin were used in an electrochemical impedance
biosensor to detect pathogenic and non-pathogenic Salmonella spp. in milk samples. The
lowest limit of detection (LOD) was recorded at 1.5 × 101 CFU/mL [142]. Another study
by Mannor et al. reported that immobilisation of semi selective AMPs called magainine I
on micro capacitive electrode arrays showed a good recognition capability towards E. coli
and Salmonella [203].

4.3.4. Nucleic Acid-Based Sensors or Genosensors

Genosensors also known as DNA biosensors utilise genetic materials such as DNA and
RNA sequences as the biorecognition element. Similar to immunosensors and phagosensor,
this approach utilises the complementary hybridisation signal of the DNA probe with
the target nucleic acid of pathogens, which then translates into a specific transduction
signal [204]. In this method, the majority of the target DNA/RNA isolated or extracted
from microorganisms undergoes denaturation and is then exposed to the DNA/RNA
probe. The hybridisation of probe and target occurs at the sensor surface, which then
triggers signal generation [205].

A study by Das Ritu et al. on a Salmonella genosensor showed promising results.
Biosensor detection response was found to be linear with the target sequence concentrations
ranging from 1.0 × 10−11 to 0.5 × 10−8 M and the lowest detection limit found at 50 (±2.1)
pM. This study employed the Salmonella Vi gene as a molecular marker. The DNA probe was
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immobilised on a gold nanoparticle (AuNP)-modified SPE and the signal was monitored
using the differential pulse voltammetry (DPV) method [206].

4.3.5. Aptamers as a New Bioreceptor for Salmonella Biosensors

Aptamer-based biosensors or aptasensors can be considered as a new technology
in biosensors. The aptamer is a single-stranded nucleic acid (ssDNA) or RNA known
as oligonucleotides, firstly discovered and reported by Gold and Szostak in the early
1990s [207,208]. The first aptasensor was reported by Kenneth A. Davis and colleagues
in 1996 with the development of an optical biosensor based on a fluoresceinated DNA
ligand for detection of human neutrophil elastase (HNE) antigen [209]. The aptamer can
be obtained through a process called Systematic Evolution of Ligands by Exponential
Enrichment (SELEX). Through this process, a pool of nucleotides (nucleotides library)
will be incubated with the targeted molecules, and a specific random sequence will form,
binding with the target. This process will be repeated for many cycles until a sequence with
strong binding to the target molecule is found (Figure 6a) [210]. Aptamers can bind with
high affinity and specificity to a broad spectrum of molecules such as nucleotides [211],
proteins [212], peptides [213], toxins [214], antibiotics [215], and small molecules [216]. The
whole cell SELEX is one of the SELEX methods that received much attention for aptamer
development for Salmonella [217–219]. Through this method, an aptamer specific to the
characteristics of the target cell, e.g., specific surface protein, that can be developed and
enriched in further steps (Figure 6b) [167].

Figure 6. (a) Schematic diagram of the SELEX method. (b) Whole-cell SELEX method for aptamer
selection against live bacterial cells. (Reprinted with permission from ref. [167]).

Aptasensors have also been widely utilised for Salmonella detection. For instance, a
study by Dinshaw et al. utilised an aptamer specific for the outer membrane of S. Typhimurium
for detection in artificially spiked raw chicken samples. The aptasensor exhibited a low limit
of detection of 101 CFU mL−1 [220]. Ma et al. also reported a Salmonella biosensor using
a Salmonella-specific recognition aptamer with a low detection limit of 3 CFU mL−1 [221].
Other studies reported a duplex detection of pathogenic microorganisms using an evanes-
cent wave dual-colour fluorescence aptasensor and a fibre nanoprobe. Two fluorescence
labelled aptasensors, namely, Cy3-apt-E and Cy5.5-apt-S, for the detection of E. coli O157:H7
and S. Typhimurium, respectively, were able to perform detection in less than 35 min. The
limits of detection were recorded at 340 CFU/mL for E. coli O157:H7 and 180 CFU/mL
for S. Typhimurium [222]. Bagheryan Z. et al. developed a label-free impedimetric ap-
tasensor by using diazonium-modified screen-printed carbon electrodes for the detection
of S. Typhimurium in food samples [141]. They successfully detect the Salmonella with
a limit of detection of 6 CFU mL−1. Figure 7 illustrates the overview of their aptasensor
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preparation method and the EIS results obtained. To date, the aptamer biosensor is in
the limelight due to its prominent advantages compared to other bioreceptors. Table 4
demonstrates the number of available publications regarding electrochemical aptasensors
targeting Salmonella sp. from 2010 to 2021.

Figure 7. (a) The overview of the Salmonella aptasensor preparation utilising a screen-printed elec-
trode (SPE); and (b) EIS results of aptasensor-based charge transfer resistance (Rct) when incubated
with different concentrations of S. Typhimurium. This figure has been reproduced from ref. [141]
with permission from Elsevier.
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Table 4. Research published on electrochemical aptasensors for the detection of Salmonella.

No. Serotype Aptamer Target Sample Immobilisation Method Detection
Method

Linear Detection
Range (CFU mL−1)

Limit of
Detection (CFU mL−1)

Time to Results/
Detection Time Ref.

1 S. enterica - -
Chitosan (Chi)-electrospun
carbon nanofibers (CNF)/gold
nanoparticles (GNPs)

DPV 10–105 1.223 - [186]

2 S. Typhimurium Outer membrane
proteins (OMPs)

Food/raw chicken
sample

Reduced graphene oxide–carbon
nanotubes (rGO-CNT) DPV 101–108 101 4 h/5 min [153]

3 S. Typhimurium Outer membrane
proteins (OMPs) Chicken meat

Reduced graphene
oxide–titanium dioxide
(rGO-TiO2)
nanocomposite

DPV 101–108 101 5 h/60 min [223]

4 S. enterica Vi polysaccharide
antigen

sera and urine
specimen

Molybdenum disulfide (MoS2)
and reduced graphene oxide
composite

CV, DPV and SWV 0.1–1000 ng mL−1 0.1 ng mL−1 3 h/45 min [224]

6
S. Enteritidis
S. Typhimurium Outer membrane

proteins (OMPs) - Multi-walled carbon nanotubes
(MWCNTs) CV and EIS 5.5 × 101–5.5 × 106

6.7 × 101–6.7 × 105
5.5 × 101

6.7 × 101 -/10 min [225]

7 S. Typhimurium Outer membrane
proteins (OMPs) -

Reduced graphene
oxide–chitosan (rGO-CHI)
composite. Glutaraldehyde as a
cross linker

CV and DPV 102–106 101 - [220]

8 S. Typhimurium Outer membrane
proteins (OMPs) Apple juice Diazonium supporting layer EIS 101–108 101 2 h/30 min [141]

10 Salmonella sp.
ATCC 50761 - Spiked fresh

chicken

Reduced graphene oxide (rGO)
and carboxy-modified
multi-walled carbon nanotubes
(MWCNTs)

EIS 75–7.5 × 105 25 Few hours/60 min [144]

11 S. Typhimurium - Spiked chicken Gold interdigitated
microelectrode EIS 102–106 80 -/120 min [184]

12 S. Typhimurium - Spiked mineral
water and milk Gold nanoparticles (AuNPs) CV and EIS 20 to 2 × 108 15 - [156]

13 S. Typhimurium Outer membrane
proteins (OMPs)

Spiked food
sample

Poly
[pyrrole-co-3-carboxyl-pyrrole]
copolymer

EIS 102–108 100 2 h/45 min [159]

DPV: Differential pulse voltammetry, CV: cyclic voltammetry, EIS: electrochemical impedance spectroscopy, SWV: square wave voltammetry. Time to results is the time taken from initial sample processing until
detection results.
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5. Miniaturisation of Electrochemical Biosensors

Sensor miniaturisation could promise an excellent return in terms of possible large-
scale production, low production cost, low sample volume analysis, low power analysis,
reduced weight, and on-site testing and monitoring on a real-world sample, which is
hardly to be achieved with bulky conventional electrodes [226]. Screen-printed electrodes
(SPEs) are one of the miniaturised electrode technologies widely utilised in the develop-
ment of commercial sensors nowadays. They have been used for the detection of heavy
metals [227], toxins [228], antibiotics [229] as well as microorganisms [230]. Aside from
portability, SPEs are also excellent in avoiding some of the common problems faced by
the traditional solid electrode such as memory effects and tedious cleaning process [231].
Figure 8 shows the differences between the conventional electrode platform compared to
SPE. The conventional electrodes (e.g., glassy carbon, graphite, etc.) require the presence
of external counter electrode (CE) and reference (RE), rigorous polishing and cleaning
process prior to use and higher sample volume. Meanwhile, SPE is ready to use without a
polishing and cleaning process, smaller in size, disposable and requires much lower sample
volume [232]. There are several reports available of SPE-based electrochemical biosensors
for the detection of Salmonella in various samples (Table 5). However, the reports on the
use of SPEs with an aptamer as the biorecognition elements are scarce.

Figure 8. Schematic overview of a classical electrochemical sensing process using a conventional electrode (a) and SPE (b)
adapted from ref. [232].

SPEs are usually configured based on three-electrode systems, which include a work-
ing electrode, counter electrode, and reference electrode similar to those conventional
electrodes. They are printed on an inert, non-conductive substrate such as plastics, ceramic,
or a printed circuit board (PCB). The nature of SPE development through layer by layer
deposition of a conductive ink using a screen or mesh system on a solid substrate provides
wide opportunity and flexibility of using different materials of choice based on the applica-
tion of interest [226]. Moreover, the introduction of binders, mediators or any conductive
components that modify the electrode surface such as polymers or electroactive metals
could enhance the sensor efficiency by having better electron transfer kinetics compared to
the unmodified electrode [233,234].
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Table 5. Salmonella electrochemical biosensors utilised in the use of SPE.

Working
Electrode

Signal
Monitoring Surface Modification Biomarker Ref.

Carbon DPV Gold nanoparticle (AuNp) S. Typhi Vi gene [206]

Carbon CV Gold nanoparticle (AuNp)
and ionic liquid Antibody [235]

Gold CV Cysteamine Antibody [193]
Gold CV Carboxymethyldextran Antibody [236]
Gold EIS Cysteamine Antibody [237]

Carbon CV Fe3O4/SiO2/AuNPs
nanocomposites Antibody [238]

Carbon EIS Diazonium supporting layer Aptamer [141]

However, the miniaturisation process of the sensor does not always translate into good
results. Some problems related to the miniaturisation of the sensor have been addressed by
Andreas B. Dahlin in his finding [239]. These include the complicated fabrication process
as they require more sophisticated and expensive machines to reach precision up to a micro
or nano-scale level, are typically more hassle to handle due to their miniaturised size, and
produce reduction in measurement precision, which lead to a poor detection limit as well
as noise and stability issues [239]. Nevertheless, plasmonic nanoparticle sensors could be
one important exception as they are relatively simple to produce and measure on [240].
The development of an open-source format in the form of printed electrodes, circuit boards,
electric circuits, components, microcontrollers, software, etc. has made this miniaturised
sensor system accessible to the ground as they offer lower production costs [232].

5.1. Nanomaterials as the Surface Modifier of Electrochemical Biosensors

In the construction of a sensor, the types of material used, their formula and composi-
tions directly affect the capability and performance of the sensor. The number of particles
loaded to build the electrode itself strongly influence the electron transfer process, which
translates into a better performance [226]. However, the maximum threshold of the sensor
performance is restricted to the surface area of the working electrode itself. This is the
area where the miniaturised biosensor is lacking, as the surface area for the biomolecule
immobilisation is limited.

To date, the utilisation of nanomaterials as surface modification materials has become
eminent. These nanomaterials not only provide a large surface area for biomolecule attach-
ment but also have excellent electrical conductivity, electron transfer and biocompatibility
with capture biomolecules [241,242]. Aside from immobilisation, various strategies can
also be implemented by using these nanoparticles as an electrochemical label [185]. In
general, these nanomaterials can be classified into two groups, which are carbon-based
nanomaterials and non-carbon nanomaterials [242].

5.1.1. Carbon-Based Nanomaterials

Graphene and carbon nanotubes are examples of carbon-based nanomaterials. These
types of nanomaterials are famous in the research setting and widely applied in the
industrial field [243]. Graphene is a two-dimensional (2D) hexagonal pattern of carbon
atoms with one single atomic layer, which is densely organised in a regular sp2 orbital
hybridisation and serves as a basic structure of other sp2 carbon-bonded materials such
as fullerenes and carbon nanotubes [244,245]. Since its discovery in 2004 [246], graphene-
based research has been tremendously popular in a wide variety of research fields with
substantial publication beginning in 2013, including the biosensor field [245,247].

Graphene in a 2D hexagonal lattice form has received tremendous attention in sensor
research [248]. Its excellent physicochemical characteristics such as large surface area, ex-
ceptional electron transfer, high thermal conductivity, good mechanical stability, flexibility
and biocompatibility have made graphene a preferable choice in biosensor development
compared to other carbon materials [249]. However, the use of the hydrophilic solution
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as the analyte target of the biosensor (e.g., buffers and fluid samples) has exposed the
downside of graphene as graphene itself is hydrophobic. However, this problem can easily
encountered by the functionalisation of graphene with hydrophilic functional groups such
as a carboxyl group (-COOH) or hydroxyl group (-OH) to obtain a graphitic structure
called graphene oxide (GO) [242]. This process can be performed by oxidative stripping
of graphite [250,251]. To remove the oxygen-rich functional group on GO, a simple heat
or chemical treatment can be conducted to obtain another derivative of graphene called
reduced graphene oxide (rGO) [251]. Both GO and rGO retained the basic structure of
graphene with modification only applied on the surface and at the edge structure of
graphene, but their excellent physicochemical characteristics remain unchanged [245].
To date, there are many biosensor studies reporting on the use of graphene-based nano-
materials for Salmonella detection (Table 6). However, since graphene is still considered
a new material of interest in the biosensor field, the reliability and reproducibility for
high-performance analysis and real-world performance are still under development.

Carbon nanotubes (CNTs) are a carbon structure with an electron orbital hybridisa-
tion type sp2 between adjacent carbon atoms such as graphene. Unlike sheet-structured
graphene, the CNTs’ structure comprises a distinct tube-like hollow cylindrical carbon
nanostructure, which is made up of rolled-up graphene sheets [244,252]. This structure
grants CNTs a strong mechanical structure, large surface area and excellent electrical
conductivity [248]. Most of the carbon nanotubes’ physical properties are derived from
graphene [244]. There are two types of CNTs, namely single-walled carbon nanotubes
(SWCNTs) and multi-walled carbon nanotubes (MWCNTs).

As the name suggests, SWCNTs are made up of a single cylindrical shape of car-
bon nanostructure while MWCNTs are composed of multilayer concentric single-walled
graphene cylinders supported by Van der Waals forces [242]. MWCNTs have a few advan-
tages over SWCNTs such as high purity, easy bulk synthesis, catalyst-free synthesis, being
less prone to defects, have more accumulation in the CNTs’ body (provides more surface
area) and having a rigid structure. Meanwhile, SWCNTs offer less purity, are difficult to
synthesis in bulk, require a catalyst for synthesis, are prone to defects during functionalisa-
tion, have less accumulation of the CNTs’ body and can easily bend and be twisted [244].
Both CNTs have been used in biosensor technology to enhance the electrical properties.
Their huge surface area could provide a better immobilisation base for the bioreceptor,
improved electrical conductivity and translated into a better signal response [253].

5.1.2. Non-Carbon Nanomaterials

Non-carbon nanomaterials are nanomaterials that originated from sources other than
carbon such as metals, silica, polymers and many more. They have been employed as
alternative supporting materials of the electrode to improve the electrochemical perfor-
mance of biosensors. Examples of non-carbon nanomaterials are metallic nanoparticles,
silica nanoparticles, nanowire, indium tin oxide (ITO) as well as organic polymers and they
have become more popular options in biosensor research [242]. Table 6 shows some of the
Salmonella biosensors that utilise non-carbon nanoparticles in their systems.
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Table 6. Integration of nanomaterials in biosensor application for Salmonella detection.

Class of Nanomaterials Types of Nanomaterials Biorecognition
Elements Transducer Type Detection

Technique
Input Sample/Sensitivity

(LoD) * Analysis Time Ref

Carbon-based nanomaterials
Graphene’s derivatives

Laser induced graphene
electrode Immunosensor Electrochemical EIS Chicken broth/

13 ± 7 CFU mL−1 48 h/22 min [254]

rGO–MWCNTs
nanocomposite Aptasensor Electrochemical EIS Spiked fresh chicken/

25 CFU mL−1 Few hours/60 min [144]

rGO–CNTs nanocomposite Aptasensor Electrochemical DPV Raw chicken sample/
1 × 101 CFU mL−1 4 h/5 min [153]

rGO–chitosan complex Aptasensor Electrochemical CV and DPV 1 × 101 CFU mL−1 - [220]
rGO–polypyrrole
nanocomposite Genosensor Electrochemical DPV 8.07 × 101 CFU mL−1 -/60 min [255]

Carboxylated GO decorated
with Fe3O4 NPs Genosensor Electrochemical DPV 3.16 × 10−18 M - [256]

Graphene oxide-modified SPE Phagosensor Electrochemical EIS 1 × 10−1 CFU mL−1 -/4 min [257]

Carbon nanotubes (CNTs)

MWCNTs Aptasensor Electrochemical EIS

5.5 × 101 CFU mL−1 for
S. Enteritidis;
6.7 × 101 CFU mL−1 for
S. Typhimurium

-/10 min [225]

SWCNTs Genosensor Electrochemical EIS 1 × 10−9 mol L−1 - [258]

SWCNTs Aptasensor Optical Chemiluminescent City water sample/
1 × 103 CFU mL−1 48 h/- [259]

Non-carbon nanomaterials
Metallic nanoparticles

AuNPs Immunosensor Electrochemical DPV Skimmed milk/
143 cells mL−1 -/90 min [185]

AuNPs Oligonucleotides Optical Colorimetric Chicken meat and
blueberry/<10 CFU mL−1 48 h/~35 min [260]

AuNPs–chitosan composite Immunosensor Electrochemical DPV Tap water and milk/
5 CFU mL−1 -/240 min [261]

silver nanoclusters (AgNCs) Genosensor Electrochemical DPV 0.162 fM -/80 min [262]

Silica nanoparticle
Mesoporous silica
nanoparticles capped with
Zinc oxide (ZnO)

Immunosensor Optical Colorimetric
Fluorescent

Chicken meat sample/
63 CFU mL−1

40 CFU mL−1
-/90 min [263]

Silica nanoparticle
Mesoporous silica
Nanoparticles–GO–cobalt
nanocomposite

Aptasensor Electrochemical EIS ~1 × 101 CFU mL−1 - [264]
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Table 6. Cont.

Class of Nanomaterials Types of Nanomaterials Biorecognition
Elements Transducer Type Detection

Technique
Input Sample/Sensitivity

(LoD) * Analysis Time Ref

Indium tin oxide (ITO)

3D nanostructured indium–tin
oxide (ITO)

Lipopolysaccharide
(LPS) Electrochemical EIS 2–3 ng mL−1 - [265]

Gold modified ITO electrode Aptasensor Electrochemical DPV 10 fM - [155]
Indium–tin oxide (ITO)
electrode Genosensor Electrochemical DPV Detection of Salmonella

down to 10 genomes -/60 min [266]

Nanowires

Nickel nanowire bridge Immunosensor Electrochemical EIS Poultry meats/
80 CFU mL−1 -/120 min [184]

Highly suspended carbon
nanowires Apasensor Electrochemical Conductivity 10 CFU mL−1 -/5 min [267]

Silicon nanowire Genosensor Electrochemical Amperometric

Hybridisation of the DNA
probe gives a current of
1.05 × 10−10A at 1 V
compared to 5.86 × 10−11A
at 1 V before hybridisation

- [268]

* Analysis time (time to detection including sample preparation/detection).
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Gold nanoparticles (AuNPs) are the most famous metallic nanoparticles studied in
the biosensor field [269]. They comprise thousands of atoms, which can be electrochemi-
cally oxidised or reduced and essentially serve as an electrochemical mediator to improve
electron transfer [270]. They offer a large surface to volume ratio due to that nanoscale
size, unique electron transfer ability, and great biocompatibility [271]. AuNPs also can be
handily conjugated with many biomolecules without affecting their respective biochemical
activities [272]. Thiolation of respective biomolecules, e.g., oligonucleotides (DNA-AuNPs)
is probably the most simple and best way to attach biomolecules to AgNPs through a self-
assembled monolayer (SAM) [273]. In the electrochemical DNA sensor field, AuNPs can be
utilised through many kinds of strategies such as a modified DNA probe with AuNPs for
signal enhancement, DNA hybridisation detection through AuNP labels, surface modifica-
tion of electrode with AuNPs to increase DNA probe adsorption, and silver deposition on
AuNPs [270]. There are other metallic nanoparticles such as silver, copper, and platinum
nanoparticles, but the research on their function as Salmonella biosensors are quite scarce.
Iron oxide (Fe3O4) magnetic nanoparticles are also an excellent nanoparticle in biosensor
study. It has been used in various research fields such as biotechnology, pharmacology,
drug delivery and cell separation. This is due to their excellent superparamagnetic property,
biocompatibility, fast electron transfer, low toxicity, and good catalytic action [274,275].

Mesoporous silica nanoparticles (MSN) have received interest in biosensors due to
their high load capacity, simple preparation and easy manipulation of morphology, size
and pore diameter [276]. An excellent electron transfer of MSN could be achieved through
proper manipulation, design and tailoring of the nanostructure [277]. In biosensors, MSN
are usually used as a capture agent or controlled release process of biomolecules or redox
probes by external stimuli [278].

Indium tin oxide (ITO) is usually employed as an electrode due to its great electrical
conductivity, cost-effective nature and special optoelectronic characteristics and transmit-
tance [279,280]. ITO contains hydroxyl groups (-OH) on its surface, which can be further
functionalised with a wide variety of chemical compounds to capture biomolecules [242].
ITO can be deposited as a thin film on the electrode and its glass-like properties provide an
effective immobilisation of biomolecules through surface modification. However, ITO has
a slow electron transfer rate compared to a metallic and carbon-based electrodes [242,248].

Nanowires are a cylindrical nanostructure quite similar to those of carbon nanotubes,
but with a lower length to diameter ratio. Usually, the aspect ratios of nanowires are in the
range of thousands while nanotubes are far beyond that [281]. Nanowires have an excellent
surface to volume ratio, electron transfer properties and improved charge carrier motions
compared to bulky wires [281,282]. They can be synthesised from metals (e.g., Cu, Ni, Pt,
Au, etc.), metal oxides (e.g., Fe2O3, ZnO, SnO2, etc.) and semiconductors (e.g., Si, InP, GaN,
etc.), where each material will directly influence their electrical conductivity [248]. For
instance, silver nanowires were found to have extraordinary electrical properties such as
rapid response, excellent electrocatalytic behaviour and reproducibility, which then was
used as a component in electrochemical immunosensors [277].

The conductive polymer is a class of organic polymer, which has characteristics
similar to some inorganic semiconductors and metals (e.g., good electrical conductor) while
retaining polymer properties such as flexibility, ease of synthesis and processing, low cost
and possible miniaturisation [283]. It can be printed on diverse solid supports and has
been used in transistor and electrode fabrication [242]. For example, the conductive organic
polymer has been used in glucose oxidase sensors by incorporating organic thin-film
transistors (OTFT) into the sensor [284]. To date, conductive organic polymers are usually
used as a synergy combination nanocomposite with metal nanoparticles or graphene
derivatives. This combination has received considerable attention due to the excellence in
electrochemical properties, as well as improved catalytic stability [285].
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5.2. Lab-on-Chip Platforms for Rapid Detection of Salmonella

A lab-on-chip (LoC) is a system that brings all the analytical assays conducted on a
laboratory scale into a single, miniaturised, and autonomous device. This system works by
integrating microfluidic technology coupled with biochemical or chemical processes that
serially work to conduct the analysis [286]. Some diagnostic applications that successfully
utilise the LoC concept are glucose and HIV detection systems [287,288].

LoC systems have also been implemented for pathogen detection including Salmonella.
For example, Tsougeni et al. developed a LoC platform based on an oxygen plasma
nanotextured polymeric chip containing bacteria immunoaffinity capturing chamber, chem-
ical lysis, DNA isothermal amplification and a label-free Surface Acoustic Wave (SAW)
biosensor. This system successfully detects the bacteria in less than 4.5 h [289]. Another
LoC system integrated with loop-mediated isothermal amplification (LAMP) showed a
promising detection result within 1.5 h with a low detection limit of 14 CFU mL−1 [290].
The VerebeefTM Detection Kit is one of the commercial detection kits that incorporate
multiplex PCR and microarray technology on the LoC system for the detection of multiple
pathogenic microorganisms including Salmonella species. This kit has been extensively
tested on raw beef trim samples, and it was able to successfully detect each pathogen
without any false-positive or false-negative detection [291].

Even though there are only a few numbers of LoC systems have been reported for
Salmonella detection, the likelihood of finding the LoC system integrated with an electro-
chemical system, especially the electrochemical aptasensor system, is scarce. This might
be due to the aptamer technology still being at its early stage in miniaturised biosensor
technology and probably progressing well in the near future. The integration of LoC
systems with a miniaturised electrochemical aptasensor could be a huge leap on Salmonella
detection, as this system can provide a very specific, rapid, sensitive, and sustainable
microorganism detection.

6. Conclusions and Future Impact of Salmonella Biosensors

The research on pathogen detection, especially on the Salmonella enterica species, is
still progressing from year to year, emphasising the importance of a rapid and precise
detection to prevent any casualty and fatality to humans. Even though the world statistics
of Salmonella infection are gradually declining, provident preparation must be made to
prevent any potential outbreak. In this review, we have presented the progression of
Salmonella detection technology from the conventional culture-based method to an ad-
vanced electrochemical biosensing system. The conventional culture method is still being
used nowadays, especially in clinical settings where the target sample (e.g., blood, plasma,
stool, etc.) is sometimes difficult to process with the latest sensing technology or the sam-
ples might need to be clinically diagnosed in detail, such as for their antimicrobial resistance
properties, etc. Rapid detection methods based on immunological assay, molecular assay,
mass spectrometry, spectroscopy, optical phenotyping are also reliable and they have their
specific niche in the Salmonella detection system. Biosensors are undoubtedly one of the
best Salmonella detection systems available, offering versatile applications in various fields,
such as medical diagnostic, food safety, environmental monitoring, drug delivery, and
many more. The bioreceptor is one of the important aspects of the biosensor to ensure
specific and selective detection of the target. Amongst the discussed bioreceptors (i.e.,
antibody–antigen, bacteriophage, AMPs, nucleic acids, and aptamer), the aptamer was
found to be the most reliable bioreceptor due to its outstanding advantages compared to
that of the others. The integration of nanomaterials to the already sensitive electrochemical
sensing technology can further enhance the Salmonella detection limit down to the femto-
molar concentration, as well as the detection of individual Salmonella cells. Theoretically,
these combinations could be a plausible move for the development of Salmonella point of
care detection devices (in a form of a lab-on-chip device) that have rapid, highly specific,
selective, and sensitive detection, are small enough for on-site application (miniaturised
form), are potentially easy and cheap to build, and are user friendly. Furthermore, the
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development of big data analytics and artificial intelligence (AI) technology could further
enhance Salmonella biosensor technology to reach the next milestone.
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