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Abstract: Relative humidity (RH) monitorization is of extreme importance on scientific and industrial
applications, and optical fiber sensors (OFS) may provide adequate solutions. Typically, these kinds
of sensors depend on the usage of humidity responsive polymers, thus creating the need for the
characterization of the optical and expansion properties of these materials. Four different polymers,
namely poly(vinyl alcohol), poly(ethylene glycol), Hydromed™ D4 and microbiology agar were
characterized and tested using two types of optical sensors. First, optical fiber Fabry–Perot (FP) tips
were made, which allow the dynamical measurement of the polymers’ response to RH variations,
in particular of refractive index, film thickness, and critical deliquescence RH. Using both FP tips
and Long-Period fiber gratings, the polymers were then tested as RH sensors, allowing a comparison
between the different polymers and the different OFS. For the case of the FP sensors, the PEG tips
displayed excellent sensitivity above 80%RH, outperforming the other polymers. In the case of
LPFGs, the 10% (wt/wt) PVA one displayed excellent sensitivity in a larger working range (60 to
100%RH), showing a valid alternative to lower RH environment sensing.

Keywords: hydrophilic polymers; refractive index; relative humidity sensors; Fabry–Perot interfer-
ometers; long-period fiber gratings; optical fiber sensors

1. Introduction

The real-time monitoring of relative humidity (RH) in scientific and industrial applica-
tions is of extreme importance, and many types of sensors were developed. Most of these
sensors are based on capacitive or resistive structures that are not immune to electromag-
netic radiation and are not fit to extreme and harsh environments. The usage of hydrophilic
polymers in optical fiber sensors (OFS) is a thoroughly explored field of research [1–4], with
most of these works using them as a functionalization layer that responds to RH variations.
These polymers display a refractive index (RI) that decreases with the absorption of water
molecules and exhibit considerable swelling. The changes in the polymers’ properties can
be tracked by analyzing the spectral characteristics of specific optical structures such as
fiber Bragg gratings (FBG) [5–9], Fabry–Perot interferometers (FPI) [10–12] or long-period
fiber gratings (LPFG) [13,14], thus enabling the fabrication of optical sensors to monitor
relative humidity.

Knowledge of the variation of RI and thickness of polymers with environmental
parameters (such as RH) is of extreme importance for the application of optical polymers
in sensors and other structures. Although several techniques were developed for the
measurement of these properties in polymers [15,16], a technique for the simultaneous

Polymers 2022, 14, 439. https://doi.org/10.3390/polym14030439 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14030439
https://doi.org/10.3390/polym14030439
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-3952-2311
https://orcid.org/0000-0003-1031-9261
https://orcid.org/0000-0003-3810-5943
https://orcid.org/0000-0001-6205-9479
https://doi.org/10.3390/polym14030439
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14030439?type=check_update&version=2


Polymers 2022, 14, 439 2 of 14

measurement of RI and thickness of polymer films with varying environmental parameters
is here presented. Using that technique, a consistent, continuous measurement of the
properties of four different polymers is reported. These RH responding polymers are
poly(vinyl alcohol) (PVA), poly(ethylene glycol) (PEG), Hydromed™ D4, and microbiology
Agar. These particular polymers were chosen for analysis due to the fact that they were
extensively used in optical sensors, even though their properties haven’t been thoroughly
studied. The work here presented provides the characterization of the optical and expansion
properties of these materials, which can be of extreme importance for fabrication and
optimization of relative humidity optical sensors.

Both PVA and PEG were used in relative humidity optical sensors [17–22], even though
only rough measurements of their optical properties were made, which are sometimes
contradictory. For the case of agar, there were several works regarding the usage of agarose
(a constituent of agar) in optical applications such as sensors and probes [23–25], but micro-
biology grade agar has only had a few studies [12,26]. On the other hand, in the case of
Hydromed™ D4, no measurement of the properties of this material was reported. Knowl-
edge of the precise variation of the properties of these materials with relative humidity may
allow optimization of sensor performance via simulations and adaptation of the optical
structures to maximize sensitivity. Using FPI’s fabricated with these polymers, the RI and
swelling properties are quantified for varying RH values. The critical deliquescence RH,
which is the RH value at which a phase transition from semi-crystalline to gel state [27–29]
was measured and was also characterized for each polymer. The polymers were then ap-
plied to LPFGs to test their performance as RH sensors, and a comparison with FPIs is made,
allowing one to define which sensor and polymer combination is best for a specific context.

First, a general discussion regarding the performance of FPIs and LPFGs is presented
to establish the characteristics of each optical structure. The fabrication of the polymers,
the optical structures, and the method of simultaneous measurement of RI and thickness
are then explained. The experimental results regarding the measurement of the polymer
properties and the sensor performance are presented, followed by a discussion on both
the polymer and sensor characteristics to establish which combination suits a particular
context best.

2. Materials and Methods
2.1. Relative Humidity Responsive Polymers

The four different relative humidity responding polymers analyzed were PVA, PEG,
a hydrogel (HydroMed™ D4), and Agar. These polymers display a considerable variation
of their properties (RI and thickness) with the variation of RH, making them suitable for
incorporation in RH sensors.

PVA is a water-soluble polymer that was studied extensively in the past, in particular
as a humidity sensor, dehumidification agent [30–32] and in numerous biomedical applica-
tions [33,34] due to its ability to absorb and desorb water. Its RI was measured between
1.49 to 1.45 (at 1310 nm) [35] or between 1.49 to 1.34 (at 1550 nm) [19].

PEG is a polymer derived from petroleum containing ether linkages in its main chain,
thus being referred to as a polyether. Similarly to PVA, it is a hydrophilic polymer with a
large range of uses, mostly in biomedical and chemical applications due to its low toxicity
and ability to absorb water [33,36]. The RI of PEG is lower than that of PVA, varying from
1.455 to 1.413 (at 960 nm) [18]. It was also used in a mixture with PVA to develop an RH
sensor [22].

HydroMed™ D4 is part of a series of ether-based hydrophilic urethanes fabricated
by AdvanSource Biomaterials [37]. The polymer can be dissolved in several solvents, of
which ethanol was chosen. It was used previously as a sensing matrix for pH and ammonia
sensors [38–40] and in relative humidity optical fiber sensors [17], even though its optical
properties haven’t been documented.

Agar is a material derived from algae and is used in microbiology applications as a
growth medium for bacteria and fungi colonies. Even though its constituents may vary
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from the type of agar used (depending on the colonies, different nutrients are added), it
consists of a mixture of agarose and agaropectin generally in a 70–30% proportion [41,42].
Due to the different nutrients added, its RI may vary considerably. In ref. [25] the RI of
bulk agarose samples was measured as a function of the agarose concentration, with values
reported between 1.33 and 1.34 at 633 nm. On the other hand, in ref. [23], the RI of an
agarose gel was measured with an Abbe refractometer at 1550 nm with varying RH values,
displaying an RI that increases with RH from 1.455 (at 20%RH) to 1.48 (at 80%RH). Besides
allowing the fabrication of RH sensors, measurement of the optical properties of agar may
also provide useful information for the fabrication of optical sensors where agar may be
used as a growth medium.

For the fabrication of the solutions, a solvent with low boiling point such as ethanol is
preferred because it will lead to a faster evaporation and consequently the coating process
of the optical structures will be faster. Nevertheless, given the low solubilities of PVA, PEG,
and agar in ethanol, deionized water was used instead, which requires a longer time to
fully evaporate and thus deposit the coating. In the case of hydrogel, the solvent chosen
was ethanol.

Different concentrations of the polymer solutions were made to vary the thickness
of the coating deposited in the LPFGs. In the case of the hydrogel, solutions with three
different concentrations were produced, namely 10, 7.5 and 5% wt/wt, prepared by dissolv-
ing the high purity granules with the solvent and stirring for 2 h. The PVA solution was
obtained by adding PVA to water in a concentration of 10% wt/wt, and stirring for 3 h at
60 ◦C. The same procedure was applied to obtain the 5 and 7.5% concentration solutions.
In the case of the PEG solutions, the procedure was similar to the case of PVA, but different
concentrations (50, 75 and 100% wt/wt) were used due to the low viscosity properties of
PEG. For the case of agar, a 1% solution was fabricated by heating deionized water to 90 ◦C
(agar is insoluble in water below 80 ◦C) and the agar was mixed by magnetically stirring
for 30 min. For the fabrication of the FPIs, only the highest concentration solutions were
used for each of the polymers.

2.2. Fabry–Perot Interferometers and Long-Period Fiber Gratings

Several solutions of different concentrations were used to produce the FPIs and the
coated LPFGs, which were both fabricated in single mode fibers (Corning SMF28e). This
combination of the humidity responding polymers with the fiber optical structures allows
a precise monitorization of the RH of the environment. Nevertheless, due to their different
characteristics, the choice of one specific structure over another can be made depending
on the polymer to be used or the context in which the sensor is to be employed. Figure 1
illustrates FPIs and LPFGs OFS.

Figure 1. Different optical structures used for relative humidity sensing: (a) Inline Fabry–Perot
interferometer; (b) Long-Period Fiber Grating.

Optical fiber tip FPIs (illustrated in Figure 1a) are fabricated by dipping the tip of a
cleaved fiber in the polymer and slowly removing it, thus creating a thin film after drying,
which acts as the cavity. When placed in an RH varying environment, both the RI and
the thickness of the polymer film will vary, creating a measurable change in the reflection
spectra. These types of sensors are very compact, easy to fabricate and can be placed inside
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a capillary tube for protection of the polymer tip, allowing them to easily be used to monitor
environmental parameters [11,12]. Another advantage of using FPIs is that the polymer
used for sensing can be directly characterized, particularly the RI and thickness response to
a certain environmental parameter. This process allows the optimization of the sensor and
implementation of computational simulations. Thus, fabrication of optical fiber FPI tips
works both as a method of characterizing the polymer and itself as a sensor.

LPFGs are illustrated on Figure 1b. They consist of a periodic modulation of the
optical fiber core RI, resulting in a resonance condition that couples light from the core
fiber cladding copropagating modes, creating a rejection band in the optical spectrum.
Given that the coupling condition is highly dependent on the external RI, it means that the
spectral features of the rejection band are highly sensitive to external RI variations. Thus,
when an LPFG is coated with a humidity responding polymer, the variations in the RI of
the polymer will modify the properties of the rejection band (minimum wavelength and
peak attenuation), resulting in a structure that can be used as a RH sensor.

LPFGs and FPIs have very different sensitivities, making them suitable for different
applications. Figure 2 displays the RI response of both structures.

Figure 2. Sensitivity to variation of coating refractive index: (a) FPI (using an insertion loss factor
α = 0.5); (b) LPFG.

In Figure 2, LPFGs and FPIs display opposite behavior in the variation of the coating
RI. While LPFGs display their higher sensitivity for coatings near the cladding RI, FPIs
show higher variation the farther the RI is from both cores’ RI and air (because they make
the two interfaces of the structure). When developing a humidity sensor, ideally the optical
properties of the polymer are known, and the best optical structure can be chosen. Table 1
also shows several advantages and disadvantages of each structure.

Table 1. Comparison of properties of FPIs and LPFGs.

Fabry–Perot Interferometers Long-Period Fiber Gratings

Fabrication Very simple Harder
Equipment Reflection Mode interrogation Transmission Mode interrogation
Integration Easy in capillary tube Harder in solid environments
Sensitivity Low for polymers near ncore High (adjusting film thickness)

Table 1 displays some characteristics of both FPIs and LPFGs. FPIs present several
advantages such as simple fabrication and integration on a specific context, because they
can be placed in a metallic capillary tube, which protects the tip and is easily placed.
On the other hand, LPFGs display very high sensitivity and may allow sensing of multi-
ple parameters, but are harder to fabricate and may require calibration of the polymers
thickness, which can be difficult. After knowing the context and the characteristics of
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the available polymers, the optical structure chosen for the sensor can be optimized to
maximize sensitivity.

2.3. Polymer Coating of the Optical Structures

The FPIs were fabricated by dipping a cleaved optical fiber tip in a polymer solution,
allowing the formation of a thin film when the tip is slowly pulled upwards (Figure 3a).
For all polymers except agar, this process consisted of placing a drop of the solution in a
microscope slide and dipping the tip of the cleaved fiber on the solution. In the case of
agar, which solidifies at room temperature, the gel was heated to 80 ◦C to ensure that the
solution is fully liquid and the microscope slide was placed on a hot plate, and the tip of
the fiber was dipped in the hot solution. After fabrication, the tips were left to dry for 24 h,
to guarantee the evaporation of the solvent. For each polymer, four FPIs were fabricated, to
allow uncertainty measurements in the RI and thickness measurements in varying RH.

Figure 3. Coating process of OFS with humidity responding polymer: (a) FPI; (b) LPFG.

LPFGs were fabricated with the electric arc technique following the procedure de-
scribed in [43,44]. The fabricated LPFGs were coated with all the polymers by stretching
and dipping horizontally with a small angle between the longitudinal axes of the fiber and
a U groove filled with the polymer (Figure 3b). For the case of agar, the U groove was
heated at 80 ◦C. The fiber was then left at room temperature to ensure solvent evaporation.
In this process, different concentrations of the solutions have different viscosities and thus
will create thicker coatings the more concentrated the solution is, justifying why different
concentrations of the various polymers were fabricated and coated different LPFGs.

2.4. Humidity Measurements

To calibrate the fabricated sensors, an experimental setup was devised in which the
environment humidity could be controlled and measured (Figure 4).

Figure 4. Experimental setup created to measure changes in LPFG and FPI spectra in varying values
of relative humidity.

The RH chamber was made from a container with two valves that connected to the
exterior (where the RH was around 50%), and a side container with water connected by a
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valve to the main one. The purpose of these valves consists in allowing the increase and
decrease of internal RH by opening the valve connected to the water container (Valve 1 in
Figure 4) or the valve connected to the exterior (Valve 2 in Figure 4), respectively. A small
fan was also placed inside the container to promote faster diffusion of the water molecules
in the air. This setup allowed the variation of internal humidity in varying rates, depending
on the fan speed.

The humidity chamber allowed for the insertion of two LPFGs at once, one with the
humidity sensor and another for thermal compensation. The two fibers were placed in a
stand with weights in their extremities, guaranteeing that the sensor was fully stretched.
The FPIs were fixed inside the chamber, and four tips were monitored at the same time. The
fibers were connected to an interrogation unit (Model FS22 Braggmeter, HBK Fibersensing,
Porto, Portugal) on the outside, which recorded the spectra at all times. Also inside the
container was a humidity and temperature sensor (DHT22), which has a typical accu-
racy of ±2%RH and ±0.5 ◦C and a working range of 0%RH to 100%RH and −40 ◦C to
80 ◦C [45]. This sensor was connected to a microcontroller which recorded the humidity
and temperature values every 12 s.

To provide a characterization of the sensors, the LPFG spectra were taken in descend-
ing RH values. First, the valve to the side container with water was opened and the fan
was turned on, ensuring that the internal RH reached around 99%RH. After this process,
the valve was closed and the external one was opened, allowing a controlled decrease of
RH. This procedure allowed for a slow and stable decrease of the internal RH, with each
variation in 1%RH taking over two minutes. This process of slow variation of internal RH
allows for the polymers to fully respond to the environmental RH changes. The spectra
were recorded for every decrease in 1%RH. The data were plotted in real time to determine
the spectral evolution and the working range of the fabricated sensor.

2.5. Simultaneous Measurement of Refractive Index and Thickness of polymers

Knowledge of the variation of the properties of the polymer is of extreme importance
for the application in the optical structures, to create the optimal sensor. The advantage of
using FPIs is that the RI and thickness of the polymer film can be dynamically measured
with the varying external relative humidity. For each polymer, four FPI tips were fabricated,
allowing to obtain uncertainty on the optical properties of the materials.

The theoretical description of these structures can be consulted in [46], and the inter-
ference spectrum is given by

IR(λ) = R1 + (1 − α)2(1 − R1)
2R2 − 2

√
R1R2(1 − α)(1 − R1) cos φ (1)

in which α is the insertion loss factor, Ri are the Fresnel power coefficients, defined as

R =
(

n1−n2
n1+n2

)2
(where n1 is the RI of medium 1 and n2 is the RI of medium 2), and

φ =
4πnpol L

λ , where npol is the RI of the polymer, L is the length of the polymer cavity and λ
is the wavelength.

In the case of a cavity made with a hydrophilic polymer, changes in the interference
spectrum of Equation (1) will be noticeable via both the change in RI (the absorption of
water decreases the RI of the cavity) and the cavity length (the cavity expands due to the
water absorption). Due to the fact that Equation (1) describes a simple cosine function, it
is possible to calculate the RI and cavity length of the polymer by determining the offset
and amplitude of the spectrum. By comparing the experimental values of the offset and
amplitude of the spectrum with Equation (1), the RI of the polymer is determined. Then,
by placing the value of RI in the parameter of Equation (1) and solving for L, the cavity
thickness is determined. This method allows for the characterization of the polymer’s
response to variations in RH, thus enabling computational simulations and optimization of
the sensor’s performance.
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3. Results
3.1. Measurement of Refractive Index and Cavity Length

Figure 5 displays the spectra registered for PEG and agar FPI tips. The response of
the PEG tip differs from the agar tip. While the increase of humidity leads to a decrease
of signal amplitude in the case of the agar FPI, the opposite is seen in the PEG, where the
amplitude of the signal displays a clear increase with the increase of humidity. This is
most likely due to the fact that PEG displays an RI below the RI of the fiber’s core, and
the absorption of water will decrease the polymers RI, increasing the reflectivity of the
core-polymer interface and consequently the signal’s amplitude. The opposite happens
in the agar FPI, meaning that its RI is above the cores RI and water absorption decreases
reflectivity. Also, it is possible to see that the signal’s period (free spectral range, FSR)
increases considerably with increasing humidity for both tips, even though in the PEG
tip this is much more evident. This variation is due to the absorption of water by the
polymer, which expands the cavity length and decreases the FSR. It is possible to predict
from Figure 5 that the PEG tips will display a much bigger swelling than the agar tips.
Figure 6 shows the variation of the RI and thickness of the polymers, measured using the
procedure described in Section 2.5.

Figure 5. Spectra of FPI tips at different RH values, displaying considerable variation due to polymer’s
response: (a) PEG FPI; (b) Agar FPI. Arrow points in direction of ascending humidity.

Figure 6 displays the variation of both RI and cavity thickness of the three polymers
tested. (a) shows the three polymers displaying different RI values, making them suitable
for different uses. The observations made in Figure 5 are clear, namely the fact that PEG
displays an RI below the core’s RI (as opposed to agar) and that it displays swelling effects
considerably larger than the other polymers.
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Figure 6. Characterization of response of various polymers to relative humidity variations: (a) refrac-
tive index variation; (b) cavity thickness variation.

All polymers display a phase transition from a solid semicrystalline state to a gel
state at a specific RH value, which is called the deliquescence relative humidity (DRH). In
the case of PVA, agar, and the hydrogel, this transition is seen at approximately 90%RH,
where it is possible to see an abrupt decrease of RI and increase of film thickness. On the
other hand, in the case of PEG this transition is seen at approximately 80%RH, which is
in agreement with [18]. In this case, the swelling caused by the absorption of water is
larger than in the cases of PVA and hydrogel, leading to a very large deformation of the
polymer cavity.

Below the DRH, it was not possible to retrieve any information from the spectra of the
PEG FPIs. When analyzing the tips on a microscope, it was possible to verify that there
were significant defects (Figure 7), explaining why the RI and cavity thickness values below
80%RH could not be determined.

Figure 7. Degradation of multiple PEG films caused by shrinking at low RH: (a) FPI tip, side view;
(b) FPI tip, front view; (c) optical fiber coated with PEG film.

Figure 7a,b shows the defects seen in the PEG FPI tips after the RH run. Also, in
Figure 7c a simple optical fiber was coated with a high concentration PEG solution, to
create a thick PEG layer to test the effect of RH variations. Structures fabricated with PEG
coatings of several micrometers (such as FPIs) are unsuitable for sensing applications below
the DRH, due to the appearance of defects in the film caused by the abrupt phase transition
seen in Figure 6. On the other hand, several cycles were performed for the hydrogel, PVA,
and agar tips with no clear degradation seen, meaning that these polymers could be used
on both FPIs and LPFGs.

Table 2 summarizes the results of the characterization of the different FPI tips. Several
conclusions can be drawn from the polymers properties, starting with the fact that PEG
shows very good results to be used in contexts where the RH is always higher than 80%RH,
because both RI and thickness variations show very high sensitivities, making it an ideal
polymer for high RH monitoring. On the other hand, regarding the properties of the other
three polymers, PVA and agar display a higher RI variation in the region below DRH,
while the hydrogel flattens out below 90%RH (Figure 6). This leads to the conclusion that
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for RH monitoring in lower humidity contexts, PVA and agar sensors could display more
advantages than the hydrogel. On the other hand, the stability of the optical properties of
the hydrogel could be a desirable feature when it is used as a sensing matrix. Regarding
the expansion properties, agar displays a slightly bigger expansion rate in the region below
DRH, while PVA and the hydrogel have similar values.

Table 2. Characteristics of different polymers with variation of relative humidity.

Polymer
Refractive Index Expansion Deliquescence

ObservationsSensitivity Coefficient Relative
(RIU/%RH) (µm/%RH) Humidity

PVA (−4.0 ± 0.2)× 10−4 0.033 ± 0.007 90%RH Below DRH
PEG (−2.9 ± 0.1)× 10−3 1.58 ± 0.05 80%RH Above DRH

Hydrogel (−1.4 ± 0.2)× 10−4 0.040 ± 0.008 90%RH Below DRH
Agar (−3.6 ± 0.1)× 10−4 0.064 ± 0.006 90%RH Below DRH

In principle, all polymers could be used as coatings on LPFGs, but in different regimes.
In the case of PEG, the RI values seem to lie below the RI of the cladding of an optical
fiber, meaning that (at least in the 80% to 100%RH regime) this polymer will not induce
transitions from guided to leaky modes of the cladding, and that a thick coating could be
employed. In the case of PVA, agar and hydrogel, the RI is clearly above the cladding RI,
meaning that only very thin overlays could be applied to an LPFG. This process makes the
fabrication of LPFG sensors with these polymers considerably harder, because control of
the thickness of the deposited layer is very difficult.

3.2. Fabry–Perot Interferometers as Relative Humidity Sensors

Regarding the performance of the FPIs as RH sensors, the visibility was chosen as the
figure of merit. In an FPI, the visibility is defined as (with Pmax and Pmin and the maximum
and minimum values of optical power, respectively):

V =
Pmax − Pmin
Pmax + Pmin

(2)

Comparing Equation (2) with Equation (1), it is possible to see that the visibility is
dependent only on npol and α. Figure 8 shows the visibility variation of the three polymers
from 60% to 100%RH.

Figure 8. Variation of visibility with relative humidity of various FP tips for PVA, PEG, and hydrogel,
normalized to visibility at 60%RH.

Figure 8 shows the different response of the visibility of the FP tips, normalized at
60%RH. The variation is as expected from Figure 6a). The PEG tip increases its visibility
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with larger values of RH because nPEG < ncore, and the increase in RH further distances
the two RI values, making PEG a good choice for RH sensing at high RH values (above
80%RH). In the case of PVA, agar and the hydrogel, the opposite happens: the increase of
RH leads to the RI of both polymers being closer to ncore, thus justifying the decrease in
visibility. Again, the transition from solid to gel state is clearly seen, and in the gel state
the sensitivity to RH variations is increased. Below DRH (approximately 90%RH), the
sensitivity of the polymers applied to the FPIs is much lower.

3.3. Long-Period Fiber Gratings as Relative Humidity Sensors

The results shown in Figure 6 display the existence of two clear groups of polymers
(grouped by similar properties). The first of these groups is composed of PVA, agar and
hydrogel, which display similar RI and thickness variations under changes in RH; the
second is composed of PEG, which displays very high variations under RH changes above
DRH. These polymers were then applied to LPFGs to test them as RH sensors.

Notice the sensitivity to external RH variations seen in Figure 2b, which shows that
near an external medium with npol ≈ nclad the sensitivity will be high. This provides the
ideal context for the application of PEG above DRH, because its RI is always below but
close to nclad. On the other hand, the other polymers have RI above nclad, meaning that
the thickness of the deposited layer will have to be controlled. If the evanescent field of
the cladding modes is fully contained within the polymer layer, the modes will not be
guided and will become radiative, displaying poor sensitivity to external RI changes. On
the other hand, if the thickness of the deposited layer is controlled, the sensor fabricated
with either PVA and agar could work with high sensitivity below DRH, because the RI
response of these polymers shows some variation from 60 to 90%RH, as opposed to the
hydrogel, which is approximately flat in this region, see Figure 6. Figure 9 displays the
collected spectra for the 10% (wt/wt) PVA coated LPFG at varying values of RH.

Figure 9. Variation of 10% (wt/wt) PVA-coated LPFG spectra with varying RH. Arrow points in
direction of descending humidity.

In Figure 9, the good performance seen in the spectra was only possible to achieve
by coating the LPFG with several polymer thicknesses (by varying the concentration of
the solution) and testing the LPFG. As stated above, for each polymer several solutions
of different concentrations were made and deposited on LPFGs. Given that all other
fabrication parameters are kept as constant as possible, the variation of the coating thickness
on the LPFG can be attributed to the variation of solution concentration only. This process
allows the optimization of the sensor’s performance by controlling the thickness of the
layer deposited, which is important in polymers with RI above the cladding RI. Figure 10
shows the comparison of the best performing LPFG sensor for each polymer and Table 3
summarizes the results seen in Figure 10.



Polymers 2022, 14, 439 11 of 14

Figure 10. Response of different polymer-coated LPFG sensors: (a) Wavelength Shift; (b) Optical
Power Shift.

Table 3. Sensitivities of different polymer-coated LPFGs in both Wavelength and Optical Power.

Polymer Working Range Wavelength
Sensitivity

Optical Power
Sensitivity

(%RH) (nm / %RH) (dB / %RH)

PVA 65–90 0.290 ± 0.006 −0.276 ± 0.007
90–100 1.03 ± 0.08 −0.84 ± 0.04

PEG 65–80 −0.8 ± 0.2 -
80–100 0.58 ± 0.02 −1.43 ± 0.08

Hydrogel 65–95 −0.22 ± 0.03 −0.23 ± 0.04

Agar 65–95 −0.100 ± 0.005 −0.089 ± 0.005

Of the four sensors presented, the PVA (at 10% wt/wt) displays the best performance,
showing no dead zones, a working range from 60%RH to 100%RH and two regions of
different sensitivity, below 90%RH (the DRH of the polymer) and above that value. Above
DRH, the sensitivity is further increased (from 0.290 ± 0.006 to 1.03 ± 0.08 nm/%RH in
wavelength shift and from −0.275 ± 0.007 to −0.84 ± 0.04 dB/%RH in optical power shift),
which is expected from the polymers characteristics seen in Figure 6. The sensor displays
high sensitivity in both wavelength shift and optical power shift, making it an ideal sensor.

The PEG sensor fabricated with a 75% (wt/wt) solution also displays interesting
properties. Above DRH (80%RH), the wavelength shift response shows a linear region
to approximately 100%RH, with high sensitivity (0.58 ± 0.02 nm/%RH). In optical power
shift, a good sensitivity is also attained (−1.48 ± 0.08 dB/%RH), but displaying dead zones
below 80%RH and above 95%RH.

For the case of the hydrogel and agar LPFGs, the performance obtained was below
the other cases. The hydrogel LPFG, coated with a 7.5% (wt/wt) solution, shows a good
response in optical power shift from 80%RH to 100%RH (−0.23 ± 0.04 dB/%RH), but falls
short under comparison with the PEG LPFG. In the case of the agar LPFG, no optimization
of the sensor’s concentration was possible. This is due to increased free variables in the
fabrication which affect coating thickness, because the agar needs heating to 80 ◦C to
become a gel and allow the coating of the LPFGs. Variations in the temperature of the
polymer may influence viscosity, which in turn makes thickness control harder. Given the
fact that PVA displays similar properties to these polymers (as can be seen in Figure 6), it is
recommended over the hydrogel and agar for LPFG coating, due to easier fabrication and
good RI variation under DRH.
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4. Discussion

The determination of the optical and expansion properties of the different polymers
used do not always agree with works published previously. In previous publications, the
RI of PVA was measured using a calibrated side polished fiber coating [35] at 1310 nm,
reporting a linear variation of RI from approximately 1.49 (below 30%RH) to 1.45 (at
100%RH); or a tilted fiber Bragg grating [19], reporting a variation from 1.49 (below 20%RH)
to 1.34 (at 98%RH) at approximately 1550 nm. The results here presented are in agreement
with [35], assuming that there is negligible chromatic dispersion from 1310 nm to 1550 nm,
which is not unusual in many materials.

The PEG measurements were also in agreement with previous publications [18], in
which the RI of PEG films was measured at 632.8 nm using a prism configuration. In this
work, the RI of PEG was reported to vary from 1.452 (at 13%RH) to 1.413 (at high RH
values). These results are in qualitative agreement (due to chromatic dispersion) with the
results presented in Figure 6. In ref. [18], the reported DRH was also around 80%RH, the
same as reported in this work.

Regarding the measurement of the optical properties of agar, they show considerable
difference from values reported for the agarose gels. In ref. [25], the low RI reported could
be due to the absence of agaropectin, which is the other constituent of agar. This result
could also prove useful for optical RH sensors, depending on whether a low RI (agarose)
or high RI (agar) polymer is needed. On the other hand, the measurements reported in [23],
which show that the RI of agarose increases from 1.45 to 1.48 with the increase of external
RH, are in disagreement with the measurements here reported. In general, RH-sensitive
polymers and gels decrease their RI with the absorption of water, as shown in Figure 6.

In the case of the hydrogel, no previous works reporting the optical properties of this
material were found.

The results described previously allow for the comparison between the different
sensors and the different polymers analyzed. Regarding the FPIs, PVA, agar and hydrogel
FPIs display a very similar response, while the PEG displays an increase in visibility with
increase of external RH (which is explained by Figure 6, because the RI of PEG is getting
further away from the RI of the core of the fiber). In this case, the PEG tip displays a higher
sensitivity than the other polymers and a working range between 80%RH and 100%RH
(above DRH). In the other polymers, the FPIs visibility shows almost no variation below
80%RH, making PEG the most suitable choice for high-sensitivity, high-RH measurements.

Regarding the LPFGs, the results obtained in the 10% wt/wt. PVA coated LPFGs show
that this sensor has the best performance by far in both wavelength shift and optical power
shift, in the range of 60%RH to 100%RH, with no drawbacks seen. The RI curve measured
for PVA (Figure 6) indicates that the RI is considerably higher than the optical fiber cladding
RI, meaning that the coating deposited on the fiber is most likely of the order of hundreds
of nanometers and repeatability could be hard to obtain. The results presented demonstrate
that it is possible to fabricate a high-sensitivity RH sensor with an LPFG, but future work is
needed to develop sensors with coatings of controlled thickness, which is essential in these
types of sensors.

5. Conclusions

The RI and thickness response of PVA, PEG, agar, and Hydromed D4 were analyzed
and quantified using a dynamical method of measurement. This process allowed for the
characterization of the RH response of each polymer and a discussion of which polymer
may be used in two different optical sensors, Fabry–Perot Interferometers and Long-Period
Fiber Gratings. For the case of FPIs, the results showed that PEG is a suitable choice for
high RH sensing due to its response above deliquescence RH. In the case of LPFGs, the
PVA one displays suitable properties for RH sensing, mostly due to its variations of optical
properties below DRH. In the case of Hydromed D4, the optical stability was demonstrated,
making it a suitable choice for sensing matrix in other applications.
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