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Life-course body size and perimenopausal mammographic
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Dense mammographic parenchymal pattemns are associated with an increased risk of breast cancer. Certain features of body size
have been found to be associated with breast cancer risk, but less is known about their relation to breast density. We investigated the
association of birth size, childhood growth and life-course changes in body size with Wolfe grade in 1298 perimenopausal women
from a British cohort of women born in 1946. The cohort benefits from repeated measures of body size in childhood and adulthood.
We obtained mammograms for 90% of women who at age 53 years reported having previously had a mammogram. We found no
associations with birth weight or maximum attained height. Body mass index (BMI) at age 53 years and breast size were
independently and inversely associated with Wolfe grade (P-value for trend <0.001 for both). Women who reached puberty later
were at a greater odds of a higher Wolfe grade than women who had an earlier puberty (odds ratio associated with a | year delay in
menarche |.14,95% Cl: 1.01 —1.27, adjusted for BMI and breast size at mammography). A higher BMI at any age during childhood or
adult life was associated with a reduction in the odds of a higher Wolfe grade, after controlling for breast size and BMI at
mammography, for example, standardised odds ratio for height at age 7 was 0.72 (95% Cl: 0.64, 0.81). These findings reveal the
importance of taking life-course changes in body size, and not just contemporaneous measures, into account when using
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Mammographic density has been found to be strongly and
independently associated with an increased risk of subsequent
breast cancer. Several epidemiological studies have reported the
magnitude of this association to be about four- to six-fold
comparing women with percent densities (percentage of the
mammogram having a dense appearance) of 75% or greater to
those with no dense areas (Byrne et al, 1995; Boyd et al, 1995), and
about two- to four-fold when breast density was measured
indirectly using the qualitative classification of breast parenchymal
patterns proposed by Wolfe (DY/P2 vs P1/N1) (Gravelle et al,
1986). It has been estimated that having any area of dense
mammographic appearance is responsible for 46% of all breast
cancer cases in the US, with percent densities of 50% or more
accounting for 28% of cases (Byrne et al, 1995). Comparisons of
risk factor-breast density associations with corresponding estab-
lished risk factor -breast cancer associations may shed light on the
biological pathways through which risk factors operate. Such
comparisons may also inform strategies by which this important
modifiable risk factor and ultimately breast cancer risk might be
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mammographic density as an intermediate marker for risk of breast cancer.
British Journal of Cancer (2003) 89, 852—859. doi:10.1038/sj.bjc.6601207  www.bjcancer.com

Keywords: mammographic parenchymal patterns; breast density; growth; life-course; body size

reduced. Furthermore, the identification of factors that influence
breast density, but not breast cancer risk, may reveal associations
that need to be taken into account when using breast density as an
intermediate marker for breast cancer risk.

Various markers of a woman’s growth, such as birth weight
(Michels et al, 1996; De Stavola et al, 2000; McCormack et al, 2003)
and adult height (van den Brandt et al, 2000) have been shown to
be associated with breast cancer risk, but less is known about their
associations with mammographic density. To our knowledge, only
one study (Ekbom et al, 1995) to date has investigated the potential
role of perinatal characteristics and found a positive but
nonsignificant association with birth weight. Inverse associations
have been found between contemporaneous measures of adult
adiposity and breast density (Brisson et al, 1984; Grove et al, 1985;
Whitehead et al, 1985; De Stavola et al, 1990; Gram et al, 1997;
Boyd et al, 1998; Sala et al, 1999), but associations with adult
height have been less consistent (Brisson et al, 1984; Gram et al,
1997; Boyd et al, 1998; Sala et al, 1999). These studies were,
however, limited to anthropometric measures relating to a single
point in time, mostly at mammography, thus a detailed study of
the effect of growth and life-course changes in body size could not
be investigated. In this study, we had the opportunity to investigate
Wolfe mammographic parenchymal patterns in relation to life-
course changes in body size in a British cohort of women who have
been followed since their births in 1946.



MATERIALS AND METHODS

Data sources

The MRC National Survey of Health and Development consists of a
socially stratified sample of all single legitimate births in Britain
during 3-9 March 1946 and initially included 2547 girls. Home
visits to members of the cohort were made at ages 2, 4, 6, 7, 11, 15,
26, 36, 43 and 53 years, providing data on age at menarche, parity,
age at first birth and social class, as well as height and weight
(measured at all ages except 26 when it was self-reported). Ninety
percent of women had complete height data on at least four of the
six occasions analysed (i.e. ages 2, 4, 7, 11, 15 and one adult
measure), with a similar percentage (89.7%) of completeness for
BMI on at least six of the nine occasions (i.e. ages 2, 4, 7, 11,15, 26,
36, 43 and 53). Birth weight data, recorded to the nearest quarter of
a pound, were obtained from hospital records within a few weeks
of delivery and converted into grams. Data on the use of hormone
replacement therapy (HRT) and menopausal status at the time of
mammography, and, where appropriate, age at menopause were
derived from information on menstrual and HRT histories
obtained from annual questionnaires sent to the women from
ages 47-54 years (Kuh and Hardy, in press). Women were
considered retrospectively to be postmenopausal after 12 months
of amenorrhea, perimenopausal if periods had stopped for
between 3 and 12 months or had become more irregular in the
preceding 12 months and premenopausal if still menstruating.
Menopausal status could not be determined for women who had a
hysterectomy or bilateral oophorectomy or who were taking HRT
preparations that cause bleeding prior to inception of the
menopause.

In the UK, all women aged 50-64 years are invited for 3-yearly
mammographic screening as part of the NHS Breast Screening
Programme. At a home visit in 1999 (when the women were aged
53 years), women were asked permission for us to obtain copies of
their mammograms and details of the date(s) and clinic(s)/
hospital(s) where they were undertaken. Copies of the mammo-
grams (two views for each breast) taken when the women were
closest to age 50 years were then requested from the relevant
centres for all women who gave consent, providing a cross-
sectional sample. The mammograms were jointly classified by two
radiologists (NP and SV) using the Wolfe grade. This classification
consists of four categories in order of increasing breast density:
N1 - predominantly fat, no ducts, only small amounts of dysplasia;
P1-mainly fat, with ducts up to 25% of the breast; P2-ductal
pattern in 25-75% of the breast; DY - dysplasia/fibrocystic change,
sheet-like areas of higher density (Wolfe, 1976). Breast size was
measured as the distance (to the nearest 0.1 cm) between the
pectoralis muscle and nipple on the film. To assess within-observer
agreement of the Wolfe grade, 110 randomly selected sets were
reclassified by the same two radiologists several months later.

Of the original 2547 women in the cohort, no attempt was made
at age 53 years to contact women who had previously refused to
participate (12%), emigrated with no further contact (8%), or had
died (8%). Of the 1848 eligible women, 1600 (87%) participated
and of these, 1494 (93%) reported having had a mammogram, of
whom almost all (n=1471) consented access to their mammo-
grams.

Statistical methods

We used cumulative logit models for ordinal outcomes (Armstrong
and Sloan, 1989) to study factors that might influence Wolfe grade.
These models assume that the effect of each explanatory variable
on any dichotomy of the ordinal outcome is constant and can be
summarised by a common odds ratio. In our study, this
corresponds to assuming a common odds ratio independently of
whether Wolfe grade is dichotomised as (P1, P2, DY) vs (N1); (P2,
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DY) vs (N1, P1); or (DY) vs (N1, P1, P2). This assumption was
tested via an approximate log likelihood ratio test that compares
the cumulative logit model with a polytomous logistic model
(Anderson, 1984) in which three separate logistic regressions are
performed. Hereafter, the reported common odds ratios are
referred to as ‘odds ratios for a higher Wolfe grade’ (with N1 as
the lowest and DY as the highest grade), and they should be
regarded as prevalence odds ratios as the Wolfe grade information
was obtained cross-sectionally.

The main exposures of interest were birth weight, age at
menarche and body size in infancy, childhood and adulthood, as
measured by height and, as a measure of adiposity, body
mass index (BMI) (calculated as weight (kg) x height > (m?))
at ages 2, 4, 7, 11, 15, 26, 36, 43 and 53 years. Age-specific attained
height and BMI were analysed as continuous variables. Average
height and BMI velocities between consecutive ages, calculated as
the change in height and BMI respectively divided by the time
interval (in years, to the nearest month) between the two visits,
were also analysed as continuous variables. These velocities
capture growth during particular age intervals, whereas attained
heights or BMIs reflect cumulative exposure up to a particular age.
We calculated standardised heights and BMIs for each age and
standardised velocities for each interval so that a standardised
measure of effect could be compared across different ages/
intervals.

To overcome the loss of subjects from multivariable analyses
that included several height/BMI measurements simultaneously,
we imputed missing growth data. Firstly, we modelled the height
and BMI trajectories (separately) using random effects growth
models. Height was modelled as a linear function of age between
ages 2-4 and 4-7 years and a quadratic function from age 7 to
adulthood. Body mass index was modelled as a quadratic function
of age during ages 2-7 and 7-15 years and a linear function
between ages 15-26, 26-36, 36-43 and 43-53 years. In both
growth models, all effects were random, except for the quadratic
terms, and the random effects parameters depended on the final
Wolfe grade. Imputed values for missing heights/BMIs were
generated by firstly taking a random draw of the error terms,
then taking a random draw of the growth parameters and using
these to predict imputed values for the missing growth data. This
procedure was repeated five times to create five datasets with
complete data (observed data plus those imputed if missing).
Complete case analyses were then carried out on each dataset.
Summary odds ratios (geometric means of the five odds ratios)
and their 95% confidence intervals were calculated as in Schafer
(1999).

Age at first birth, parity, years since last birth, HRT use,
menopausal status and years postmenopausal were considered as
potential confounders. We adjusted for breast size and BMI at age
53 years in all analyses in order to investigate associations with
changes in body size independent of body size at mammography,
as obesity at mammography is known to be a strong confounder of
the mammographic parenchymal pattern (Bartow et al, 1995;
Salminen et al, 1998; Sala et al, 1999) and needs to be taken into
account when separate measures of the areas of dense and
nondense breast are not available.

RESULTS

We successfully obtained copies of mammograms for 1319 of the
1471 women who gave consent (90% tracing rate), the large
majority (1249 (95%)) from NHS breast screening centres. Films
were not obtained for the remaining women due to insufficient
information to contact hospitals/clinics (37 in UK, 12 overseas),
logistic difficulties in certain centres (57) and other problems (45).
We obtained both cranio-caudal and oblique views of each breast
for 89% of received sets. In all, 21 women with a diagnosis of breast
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cancer prior to mammography were excluded from analyses, as
treatment for breast cancer may influence the outcome. Thus, the
present analyses are based on 1298 women.

Eighty-two percent (90 out of 110) of mammograms that were
read twice had the same Wolfe grade on both occasions and the
remaining pairs differed by only one grade. The weighted
statistic (to account for the ordered nature of the categories) was
0.79 (P<0.001) and using the binary classification (combining DY
with P2 and P1 with N1) was 0.83 (P<0.001). Table 1 shows the
distribution of breast cancer risk factors by Wolfe grade and their
associated odds ratios for a higher Wolfe grade. Just over half
(53%) of the women in the study had a P2 grade and 6% a DY
grade. The mean age of women at mammography was similar in

each Wolfe category. On average, higher Wolfe grades were
significantly associated with a later age at menarche, a later age at
first birth, low parity or nulliparity, and with being pre-/
perimenopausal. Women in nonmanual social classes were also
more likely to have a higher Wolfe grade relative to women in
manual social classes. There was no association between Wolfe
grade and smoking status or HRT use. The distribution of
reproductive factors and anthropometric measures did not differ
between women for whom we did and did not obtain a
mammogram (results not shown).

The mean BMI at each age was lower for higher Wolfe grades
and the differences between Wolfe-specific means increased from
age 11 years onwards (Figure 1). Wolfe grade-specific height

Table | Characteristics of the study population by Wolfe grade and associated odds ratios for a higher Wolfe grade®
Wolfe grade
Odds ratio® 95% confidence
NI Pl P2 DY (P for linear trend where appropriate) interval
(N (column %) unless stated otherwise)
N® (row %) 175 (13.5) 358 (27.6) 682 (52.5) 83 (6.4) — —
Age at mammogram (years) 51.5 (1.0) 51.5 (1.0) 51.6 (1.1) 514 (1.2) 1.06¢ 096, I.16
(mean (s.d.)) (P=0.24)
Age at menarche (years) 127 (1.3) 129 (1.2) 13.1 (1.3) 134 (1.2) 1.20° I.10, 1.30
(mean (s.d.)) (P<0.001)
Age at first birth (years)®
<20 18 (11.5) 49 (153) 69 (11.9) 3 (4.3) I —
20-24 83 (529) 146 (45.6) 265 (45.5) 26 (37.1) 112 0.80, 1.58
25-29 41 (26.1) 91 (284) 186 (32.0) 31 (44.3) 1.56 1.09, 2.25
>30 15 (9.6) 34 (10.6) 62 (10.7) 10 (14.3) 141 0.89, 222
(P°=0.02)
Nulliparous Parity 15 (8.7) 34 (9.6) 89 (13.3) 10 (12.5) [.19 0.77, 1.85
I 19 (123) 41 (13.1) 83 (14.4) 12 (17.6) I —
2 70 (45.2) 161 (51.3) 308 (53.6) 39 (574) 0.94 067, 133
3 43 (27.7) 73 (232) 148 (25.7) 14 (20.6) 0.82 0.56, 1.20
4+ 23 (14.8) 39 (12.4) 36 (6.3) 3 (44) 041 0.26, 0.66
(P*=0.001)
Menopausal status
Post 47 (26.9) 89 (24.9) 158 (23.2) 13 (15.7) I —
Peri 28 (16.0) 55 (154) 119 (17.5) 16 (19.3) 133 095, 1.85
Pre 22 (12.6) 57 (15.9) 127 (18.6) 18 (21.7) 1.53 [.10, 2.12
Hysterectomy 38 (21.7) 70 (19.6) 123 (18.0) 13 (15.7) 1.02 0.74, 1.40
NK as on HRT 29 (16.6) 74 (20.7) 118 (17.3) 21 (25.3) 121 088, 1.67
NK, other I (63) 13 (3.6) 37 (54) 2 (24) — —
HRT use
Never users 102 (58.3) 191 (534) 370 (54.3) 42 (50.6) I —
Ex-users 29 (16.6) 56 (15.6) 108 (15.8) I (133) 0.99 0.74, 133
Current users 25 (14.3) 63 (17.6) 93 (13.6) 18 (21.7) 1.02 075, 1.37
Other® 19 (109) 48 (134) 108 (15.8) 12 (14.5) 1.27 093, 1.74
Smoking status’
Never smokers 80 (45.7) 168 (46.9) 333 (48.8) 40 (48.2) I —
Ex-smokers 54 (309) 101 (282) 200 (29.3) 20 (24.1) 092 072, 1.17
Current smokers 39 (22.3) 82 (229) 135 (19.8) 17 (20.5) 0.86 066, 1.12
NK 2 (1.1) 7 (2.0) 14 (2.1) 6 (7.2) — —
Social class
Manual 94 (537) 217 (60.6) 440 (64.5) 60 (72.3) I —
Nonmanual 53 (30.3) 90 (25.1) 146 (21.4) 8 (9.6) 1.60 1.25, 2.06
NK 28 (16.0) 51 (14.3) 96 (14.1) 15 (18.1) — —

*Common odds ratio for three binary outcomes: DY vs P2/PI/NI, DY/P2 vs PI/NI and DY/P2/P| vs NI.

°N varies due to missing data.
“Odds ratio associated with a | year increase in the explanatory variable.
9Parous women only.

“Women who commenced HRT before mammography, but date of end of HRT episode not known.

Reported at age 53 yearsNK = not known.

British Journal of Cancer (2003) 89(5), 852—-859

© 2003 Cancer Research UK



Mean height

DY
160 A P1
P2
140 | N1

120 4 a DY
oP1
o P2

+ N1

Height (cm)

100 -

80 1

11 15 Adult height
Age (years)

N 4
N
~

Mean body mass index

35 A

30 A

25 A

BMI (kg m2)

20

15 A

Age (years)
Mean standardised height

0.4
0.3 1

0.2 DY
0.1 -
P1

0.0 - P2
~0.1 N1

Standardised height

—0.2
-0.3 A

T T T T T T

2 4 7 1 15 Adult height
Age (years)

Mean standardised body mass index

1.0
0.8 N1
0.6
0.4 1

0.2 4 ‘_H’/’\—____,___,_______’______‘
0.0 .
-0.2 ‘_\\__.—'M—,/' P2
Dol \\\/\r

-0.6 4 ,_._.—a———a--...______‘_‘ﬂ DY
-0.8 -

Standardised height

247 1115 26 36 43 53
Age (years)
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profiles were less distinct from each other. Mean height among
women with a DY grade was slightly higher up to age 7 years and
again in adulthood, but was lower during adolescence. Breast size
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and BMI at age 53 years had strong inverse associations with Wolfe
grade (Table 2), that is, women with a lower BMI and smaller
breast size had on average more dense Wolfe patterns. The
univariable odds ratios were attenuated when each of these
variables was controlled for the other, due to their positive cor-
relation; however, both remained independently associated with
Wolfe grade and are thus controlled for in subsequent analyses.

We found no evidence of an association between birth weight
and Wolfe grade (Table 3). By contrast, women who were taller at
age 2 years had an increased odds of a greater Wolfe grade. In
univariable analyses, women who had greater height velocities in
early childhood (2 -4 years), later childhood (7-11 years) or were
taller at age 11 years had a statistically significant lower odds of a
greater Wolfe grade, whereas those with greater height velocities
after age 11 years were at an increased odds. These associations
were not confounded by breast size or BMI at mammography.
Controlling for all components of the height growth trajectory
(height at age 2 and height velocities thereafter), breast size and
BMI at age 53 years simultaneously, height velocities during two
intervals remained statistically significantly associated with Wolfe
grade: greater height velocity from age 2 to 4 years was associated
with a reduced odds, whereas greater height gain beyond age 15
years was associated with an increased odds of a greater Wolfe
grade.

A later menarche was associated with an increased odds of a
greater Wolfe grade, which persisted after controlling for BMI at
age 53 years and breast size. Evidence that women with higher
Wolfe grades had, on average, later puberty was found with other
pubertal indicators in this cohort. For example, the percentage of
women who had signs of breast development by age 11 years were
56.5, 51.3, 42.0 and 32.9% for women with Wolfe grades N1, P1, P2
and DY, respectively.

We found no evidence of an association between measured adult
height at age 36 years and Wolfe grade (odds ratio for 6cm
increase: 1.06, 95% CI: 0.95, 1.19). However, in the same group of
women, measured adult height at age 53 years had a statistically
significant association with Wolfe grade (corresponding odds ratio
1.15, 95% CI: 1.04, 1.28). This apparent discrepancy was explained
by greater height reduction, on average, in women who
subsequently had lower Wolfe grades, for example, mean (95%
CI) height loss between these ages was 1.29cm (1.07, 1.50) and
0.79cm (0.66, 0.92) in women with N1 and P2 Wolfe grades,
respectively.

We found strong and highly statistically significant crude
inverse associations with BMI at every age (Table 4), findings that
were partially confounded by BMI at age 53 years and breast size.
After controlling for these measures, however, an s.d. increase in
adult BMI at any previous age remained associated with
approximately a 40% reduction in the odds of a higher Wolfe
grade. Similarly, BMI velocities from age 4 years onwards were
inversely associated with greater Wolfe grades in the crude
analysis. Comparing women of similar BMI at age 53 years and
breast size, greater rates of increase in BMI during preadolescent
years, considered one at a time, remained significantly associated
with a lower Wolfe grade, whereas a greater increase in BMI during
ages 43-53 years (which reflects a lower BMI at age 43 years when
BMI at age 53 years is held constant) was associated with an
increased odds. Once breast size at mammography and all other
components of a woman’s BMI trajectory up to age 53 years were
controlled for, an increase in BMI during any period up to age 43
years was associated with a reduced odds of a greater Wolfe grade,
particularly during preadolescent years (7-11 years). Conditional
on a woman’s BMI trajectory up to age 43 years and breast size at
mammography, changes in BMI thereafter were not associated
with Wolfe grade.

Odds ratios in analyses that were restricted to the observed data
were very similar to those that included imputed values that where
missing (first two sets of odds ratios in Tables 3 and 4). Further
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Table 2 Odds ratios and 95% confidence intervals (95% Cl) for a higher Wolfe grade® associated with

breast size and BMI at age 53

Univariable analysis

Bivariable analysis®

Odds ratio® 95% ClI Odds ratio® 95% ClI
Breast size (cm)
3-6 4.07 2.50, 6.62 2.62 1.54, 4.45
7-8 1.76 .31, 2.38 1.45 1.06, 1.99
9-10 I I
=12 0.66 049, 0.88 0.85 0.63, I.15
>13 0.40 0.30, 0.54 0.75 0.52, 1.06
(P°<0.001)
Fifths of BMI at age 53 (kgm™2)
<231 I I
23.1-25.15 0.67 047,097 0.79 0.55, I.14
25.16-27.57 0.45 0.32, 0.64 0.57 0.39, 0.82
27.58-31.39 0.32 023, 046 045 031,065
>314 0.13 0.09, 0.19 0.21 0.14, 0.32
(P°<0.001)

“Common odds ratio for three binary outcomes: DY vs P2/PI/NI, DY/P2 vs PI/NI and DY/P2/P| vs NI.
®Breast size adjusted for fifths of BMI at age 53 years and vice versa.

P-value for linear trend.

Table 3 Odds ratios, 95% confidence intervals (Cl) and P-values for a higher Wolfe grade® associated with an s.d. increase in birth weight, age at

menarche, age-specific heights and interval-specific height velocities

Observed data only

Including imputed values where missing and controlling for:

Age at mammography, All other height components, age

Crude BMI at age 53 years and at mammography, breast size,
Crude (N=1263) breast size (N=1253) BMI age 53 (N=1253)
n® Mean (s.d.) Odds ratio® 95% Cl Odds ratio® 95% Cl Odds ratio> 95% CI P-value Odds ratio® 95% Cl  P-value
Birth weight (g)
1294 3318 (468) 1.03 093, I.14 — 1.03¢ 092, 1.I5 059 — — —
Age at menarche (years)
1214 130 (1.3) 1.26 I.13, 140 — 114 .01, 127 003 — — —
Height (cm) at age
2 1033 847 (4.6) [.15 1.02, 1.29 1.09 098, 1.21 I.13 .01, 126 003 1.07 094, 122 031
4 1123 1029 (5.0) 096 0.86, 1.08 096 0.86, 1.07 0.94 0.84, 1.05 025 — — —
7 1122 119.8 (5.5) 097 0.86, 1.08 0.94 0.85, 1.05 093 0.84, 1.04 022 — — —
Il 1090 1412 (7.0) 0.85 0.76, 0.95 0.88 0.79, 097 0.89 0.80, .00 0.04 — — —
I5 1002 1587 (6.2) 0.95 0.84, 1.07 0.99 0.89, 1.10 0.96 0.86, 1.07 047 — — —
36 1174 1625 (6.3) 1.07 0.96, 1.20 1.08 097, 120 1.03 093, 1.I5 055 — — —
Height velocity (cm/year) during ages
2-4 966 794 (22) 0.87 0.77, 098 0.87 0.78, 097 0.82 0.74, 092 <0.00I 0.85 0.76, 0.96 0.0l
4-7 1015 6.10 (1.4) 097 0.86, 1.08 098 0.88, 1.09 1.00 090, .12 097 0.97 0.86, 1.09 0.60
711 1030  5.64 (I.1) 0.85 0.76, 0.96 0.88 0.80, 0.98 092 082,102 0.3 1.00 0.86, I.15 096
[1-15 950  4.77 (1.3) [.19 1.05, 1.34 I.18 1.06, 131 [.11 1.00, 124 0.06 [.11 099, 1.24 0.08
I5—adulthood 927  1.07 (1.0) 1.22 1.08, 1.38 I.18 1.06, 1.32 I.15 103, 129 00l I.16 1.03, 129 0.0l

*Common odds ratio associated with | s.d. increase in explanatory variable for three binary outcomes: (DY vs P2,PIN1), (DY,P2 vs PI,NI) and (DY,P2,PI vs NI).
®Number of women with nonmissing data for analyses on observed data only (excluding imputed values).

“Observed data only, that is, no imputed values.

adjustment for the potential confounders (age at first birth, years
since last birth, parity, menopausal status, years postmenopausal
and HRT use) did not alter the results for height and BMI.

DISCUSSION

Advantages and limitations

Advantages of this study include the representativeness of the
participants (Wadsworth et al, in press) and a high tracing rate of
mammograms (91%). However, we were less likely to include
mammograms taken privately or overseas or those taken for

British Journal of Cancer (2003) 89(5), 852—-859

diagnostic (symptomatic) rather than screening reasons. Diagnos-
tic mammograms are more likely to be of higher densities, hence
there may be a small underestimate of P2 or DY proportions. We
avoided the loss of subjects in multivariable analyses by modelling
the growth curve and imputing missing values. We used BMI as a
measure of weight relative to height at all ages for reasons of
consistency and familiarity; however, this index is not independent
of height at younger ages (Cole, 1986). Furthermore, we did not
have BMI exactly at the time of mammography-the closest
measurements at age 53 years were taken a mean of 2.1 years (90%
reference range: 0.0-3.6 years) after mammography.

The Wolfe grade is not only a measure of breast density, but also
includes other radiological features of the breast. Less subjective
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Table 4 Odds ratios, 95% confidence intervals (Cl) and P-values for a greater Wolfe grade® associated with an s.d. increase in age-specific BMI and

interval-specific BMI velocities

Original observed data only

Including imputed values where missing and controlling for

Age at mammography, All other BMI components,

Crude BMI at age 53 years and age at mammography and
Crude (N=1263) breast size (N = 1287) breast size (N =1287)
n® Mean (s.d.) Odds ratio> 95% Cl Odds ratio®> 95% Cl Odds ratio> 95% Cl P-value Odds ratio®> 95% Cl P-value
BMI (kgm™?) at age
2 994 17.6 (2.4) 0.85 0.76, 096 0.89 0.80, 0.99 0.88 0.79, 0.98 0.02 0.54 043,071  <0.00l
4 1093 6.1 (1.6) 083 0.74, 092 0.83 075,092 0.89 0.80, 0.99 0.03 — — —
7 1074 157 (1.5) 0.63 0.56,0.71 0.62 0.56, 0.69 072 0.64,080 <0.00l — — —
I 1079 174 (2.5) 046 041, 052 0.46 041, 052 0.56 049, 063  <0.00l — — —
I5 989 20.6 (2.8) 047 041,053 0.45 040, 0.51 0.56 049, 064  <0.00l — — —
26 1129 222 (32) 0.45 0.39, 0.51 0.45 0.39, 051 0.62 0.53,073 <0.00l — — —
36 I168 233 (39) 047 041,053 047 041,053 0.64 0.54,0.78 <0.00l — — —
43 1209 249 (4.6) 0.45 040, 0.51 0.45 040, 0.51 0.54 043,068 <0.00l — — —
53 1255 275 (5.5) 049 0.44, 0.56 049 0.44, 0.56 — — — — — —
BMI velocity ((kgm™2) year™') during ages
2-4 oL =067 (I.1) 1.02 090, 1.15 0.99 0.89, 1.10 1.05 094, 1.17 041 0.56 049, 0.64 <0.00l
4-7 950 —0.13 (0.6) 0.8l 0.71, 091 0.79 0.71,0.88 0.85 0.76, 0.95 0.004 0.62 054,071 <0.00l
7-11 975 045 (0.5) 053 046, 0.60 0.54 0.48, 0.60 0.63 0.56,071  <0.00l 0.50 043,059 <0.00l
[1=15 929 0.86 (0.5) 0.89 0.78, 1.00 0.89 0.80, 0.98 098 0.87, 1.09 0.69 0.72 063,081 <0.00l
15-26 904 0.15 (0.2) 0.85 0.74, 096 0.88 0.78, 0.99 [.11 098, 1.26 0.1 0.72 0.63,083 <0.00l
26-36 1054 0.10 (0.3) 0.82 0.73,092 0.82 0.73, 092 I.13 099, 129 0.06 0.86 0.75, 0.99 0.03
36-43 1119 0.23 (0.3) 0.78 0.70, 0.88 0.78 0.70, 0.88 0.99 0.87, 1.12 0.85 0.85 0.75, 098 0.02
43-53 1188 0.26 (0.3) 0.90 0.80, 1.00 0.90 0.80, 1.00 1.46 1.27, 168  <0.001 0954 0.82, 1.07 033

“Common odds ratio for three binary outcomes: DY vs P2/PI/NI, DY/P2 vs PI/NI and DY/P2/P| vs NI associated with | s.d. increase in explanatory variable.
PNumber of women with nonmissing data for analyses on observed data only (excluding imputed values).

and possibly more informative outcomes would have been a
quantitative measure of breast density and separate measures of
the areas of dense and nondense breast tissue. These measures
were not available to us at the time of publication and require
further study. We took the ordered nature of the outcome variable
into consideration by using a cumulative logit model that is more
appealing than a binary logistic model (P2/DY vs N1/P1),
commonly used to analyse such data, as the latter has reduced
statistical power and disregards valuable information by combin-
ing categories (Armstrong and Sloan, 1989). We found very good
within-observer agreement in a subsample. Differential error in the
assessment of mammograms was avoided since reading was done
without knowledge of a woman’s risk factors, so any misclassifica-
tion is likely to be nondifferential, which would result in the
possible attenuation of effects. The Wolfe grade data were obtained
cross-sectionally, so we were unable to investigate the effect of
changes in body size on changes in density.

Main findings

The strong inverse association of breast size with Wolfe grade is
consistent with previous findings (Brisson et al, 1984; Salminen
et al, 1998; Sala et al, 1999). Thus, despite measurement error due
to varying degrees of breast compression during mammography,
this crude measure of breast size (pectoralis muscle to nipple
distance) is useful when no others are available.

We found no evidence of an association between birth weight
and Wolfe grade, consistent with the small positive but
nonsignificant association found in the only other study that has
investigated in utero influences (Ekbom et al, 1995).

Differential height reduction between ages 36 and 53 years,
which was greatest for women who subsequently had less-dense
Wolfe grades, explained the differences between the null associa-
tion with height at age 36 years and the positive association at age
53 years. Height loss between these ages was comparable to
changes found in women in the Baltimore Longitudinal Study of
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Aging (Sorkin et al, 1999). Thus, the age to which ‘adult height’
refers and whether it was measured or self-reported may explain
the conflicting previous findings (Brisson et al, 1984; Gram et al,
1997; Boyd et al, 1998; Sala et al, 1999). This observation may
reveal the role of common determinants of both breast density and
bone mineral density/height loss, such as changes in oestrogen
levels.

We found that early maturers (characterised by a greater height
velocity up to age 11 years, greater height at this age and an earlier
menarche) were at a reduced odds of a higher Wolfe grade
compared to later maturers. In view of the association of early
maturation with high adult BMI (Parsons et al, 1999) and the
strong inverse association of the latter with breast density, we
expected these associations in the crude analysis. The association
with timing of maturation persisted, however, even after control-
ling for BMI at mammography.

Our results for adult BMI are in agreement with previously
reported associations of adiposity and breast density at mammo-
graphy (Brisson et al, 1984; Whitehead et al, 1985; Bartow et al,
1995; Gram et al, 1997; Boyd et al, 1998; Sala et al, 1999). As
several studies have illustrated a tracking of obesity from
childhood to adult life (Parsons et al, 1999), we envisaged the
observed crude inverse association with childhood BMI. The
associations with BMI and BMI changes during childhood
remained, however, after controlling for breast size and adult
BMI. Comparing women of similar breast size and BMI at
mammography, women who had a high BMI throughout life were
at lower odds of a higher density Wolfe grade than women who put
on weight more recently.

Determinants of breast density and their relation to breast
cancer risk

A comparison of the determinants of breast density, and their
mechanisms, with their corresponding associations with breast
cancer risk may provide useful insights into ways in which breast
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density and ultimately breast cancer risk may be reduced. Breast
density is a measure of the relative proportions of radiolucent
adipose tissue and radiodense epithelial (parenchyma) and
connective (stroma) tissue. Radiodense tissue possibly reflects
the number of cells at risk of carcinogenesis as it is in the ducts
and lobules of the epithelium where the vast majority of breast
cancers originate. In support of this mechanism, Brisson et al
(1984) found that the percentage of the breast with nodular
densities was shown to have a stronger association with breast
cancer risk compared to Wolfe grade or percentage of breast with
homogeneous densities. Dense mammographic patterns have been
associated with changes of the parenchymal tissue such as
epithelial hyperplasia and proliferation of the breast stroma where
growth factors that influence the breast epithelium are produced
(Oza and Boyd, 1993).

The strong associations of adiposity and body size with breast
density are more likely to be driven by associations with the area of
radiolucent rather than the area of dense breast tissue, as other
studies have found positive associations between weight/BMI and
the area of nondense tissue and less strong, but inverse,
associations with the area of dense tissue (Boyd et al, 1998).
Associations of body size with the area of dense tissue or with
features of the parenchymal pattern that may reflect breast cancer
risk are likely to be dwarfed by these. Associations of adiposity
with breast cancer risk are, on the contrary, of much smaller
magnitude. Adiposity has an inverse association with breast cancer
risk at premenopausal ages (Willett et al, 1985) and a positive
association at postmenopausal ages (Hunter and Willett, 1993).
Findings from the present cohort are also consistent with an
association of BMI with breast cancer at premenopausal ages
(hazard ratio 0.76, 95% CI: 0.54-1.10, for 1s.d. increase in BMI at
age 36 years); the women in the cohort are still too young to allow
analysis at postmenopausal ages. Endogenous oestrogen produc-
tion in fatty tissue has been suggested as a possible mechanism
through which adiposity affects breast cancer risk in postmeno-
pausal women in whom ovarian oestrogen production has ceased
(Pike et al, 1993).

Similar to body size, the observed associations of age at
menarche and breast size with Wolfe grade are more likely to
predominantly reflect associations with nondense breast tissue.
Earlier menarche was associated with a decreased odds of a higher
Wolfe grade. In contrast, and similarly to other studies (Hsieh et al,
1990), early menarche was associated with increased breast cancer
risk in this cohort (odds ratio 1.43, 95% CI: 0.73-2.80, comparing
women who had menarche under 12.5 years to those whose
menarche was 13.5 years or over). Increasing breast size was
strongly associated with a decreased odds of a higher Wolfe grade,
but its association with breast cancer risk has not been consistent
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across studies (Hsieh and Trichopoulos, 1991; Byrne et al, 1995).
Taller women have increased rates of breast cancer (van den
Brandt et al, 2000), and although a similar association was found
for breast cancer in this cohort (hazard ratio 1.37, 95% CI: 1.02 -
1.84 per s.d. increase in height at age 36 years), we did not observe
a similar association with breast density. Similarly, the null
findings for birth weight with Wolfe grade in the present analysis
are in contrast to the positive associations found in this cohort (De
Stavola et al, 2000) and other studies (Michels et al, 2002;
McCormack et al, 2003). These contrasting associations of age at
menarche, breast size, birth weight and adult height with breast
density and breast cancer risk are suggestive of different biological
pathways through which these pairs of associations operate.

The complex and long-term associations of the timing of
maturation and life-course changes in body size with Wolfe grade
have implications for studies that use breast density as an
intermediate marker of breast cancer risk. Our findings suggest
that life-course changes in body size, and not just adiposity at
mammography, need to be taken into account to avoid spurious
findings for exposures that are associated with these factors. The
findings also imply that the association of Wolfe patterns and
breast cancer risk previously reported may have been under-
estimated as they only took into account adiposity at the time of
the mammography. These findings further emphasise the need to
identify measures of mammographic features that are not so
strongly influenced by adiposity (Boyd et al, 1998).

In summary, we have found that mammographic parenchymal
patterns as measured by the Wolfe grade are not only strongly
associated with contemporaneous adiposity and breast size, but
also have strong complex associations with the trajectory of growth
and body size throughout the life-course. It remains to investigate
whether these associations differ for the areas of dense and
nondense tissue as these associations may have implications for
using these measures of breast density as intermediate markers of
breast cancer risk.
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