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We explore how whole-genome duplications (WGDs) may have given rise to complex innovations in cellular networks, innovations
that could not have evolved through sequential single-gene duplications. We focus on two classical WGD events, one in bakers’
yeast and the other at the base of vertebrates (i.e., two rounds of whole-genome duplication: 2R-WGD). Two complex adaptations
are discussed in detail: aerobic ethanol fermentation in yeast and the rewiring of the vertebrate developmental regulatory
network through the 2R-WGD. These two examples, derived from diverged branches on the eukaryotic tree, boldly underline the
evolutionary potential of WGD in facilitating major evolutionary transitions. We close by arguing that the evolutionary importance
of WGD may require updating certain aspects of modern evolutionary theory, perhaps helping to synthesize a new evolutionary
systems biology.

1. Introduction

Characteristic changes in karyotype number have allowed
researchers to infer polyploidy events for many decades [1].
It was thus with a reasonably long history of research that
Susumo Ohno was able to suggest that polyploidy was a
vital route to evolutionary innovation [2]. Ohno was of
course a forceful proponent of a general role for duplication
in evolution: writing that “[if evolution occurred only
through changes allele frequencies] . . . from a bacterium only
numerous forms of bacteria would have emerged [. . .B]ig
leaps in evolution required the creation of new gene loci with
previously nonexistent functions” [2]. What is less obvious
on first reading is his distinction between the role played by
WGD and that played by other, smaller scale, duplications
(or SSDs). While the differences in the scales of these events
are self-evident, there are at least two other features of WGD
that are critical in giving rise to these differing roles. The first
is that, as many authors have reported, particular functional
classes of genes (e.g., transcription factors, kinases, ribo-
somal proteins, and cyclins) are duplicated by WGD more
frequently than by SSD [3–8]. Ohno had in fact explored the

most likely reason for this difference: “hub” genes with many
interactions with other loci, be those interactions regulatory,
protein interaction or metabolic, will tend to respond poorly
to a change in copy number. As a result, they will tend to
survive in duplicate after WGD but will not survive after
smaller scale events [2, 5, 9–11]. This idea has now been
termed the dosage balance hypothesis [12–14].

The second difference between single-gene and genome
duplication is the kind of adaptations each may give rise to.
Interest in gene duplication is intense in evolutionary biology
circles because, as Haldane recognized [15], duplication
is a powerful means for generating genetic material with
the potential for innovation. There are many models of
duplicate gene evolution [16]: probably the most discussed
are neofunctionalization [1, 2, 16], whereby one copy of a
duplicate gene pair acquires a new beneficial function after
the duplication, and subfunctionalization, where multifunc-
tioned genes have their functions subdivided by duplication
[17–19]. Since some of these subfunctions might themselves
be novel and suffer from antagonistic pleiotropy (e.g.,
one subfunction cannot be optimized without detrimen-
tally altering the other; [17, 20]) subfunctionalization can
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represent an important path to innovation. What genome
duplication brings to this story is the potential for multigene
novelties [21]: with a duplication of the entire genome to
explore, evolution has more space to innovate. In this paper,
we explore the evidence for multi-gene innovations in yeast
and animals resulting from their respective WGDs [8, 22–
25]. We then discuss in detail two key innovations that are
associated with WGD: aerobic ethanol fermentation in yeast
and increased complexity in the vertebrate developmental
regulatory network. In so doing, we will remind ourselves of
Francois Jacob’s insight as to the mechanisms of evolution:
the innovations produced are in keeping with the work of a
tinkerer, not an engineer [26], and are contingent on their
possessors’ evolutionary history [27].

2. WGD and Single-Gene Innovations

The existence of neutral models of duplicate gene resolution
[18, 19] and apparent examples of their action after WGD
[28] means that, before pursuing multi-gene adaptations
from WGD, it is worthwhile to pause and ask whether exam-
ples of single-gene innovations due to WGD are known. We
do so even though those innovations may appear no different
than what might be expected from an SSD event. As a matter
of fact, there are good examples from yeast. For instance,
consider the S. cerevisiae WGD-produced paralogs GAL1
and GAL3: a sugar kinase and a regulator, respectively [29].
In the non-WGD Kluyveromyces lactis, the single ortholog
of these two genes possesses both functions [30]. However,
these two ohnologs [31] are not simply an example of neutral
subfunctionalization: Hittinger and Carroll [20] have shown
an adaptive conflict in the promoter of the K. lactis gene
that was resolved by the gene duplication. In particular,
it would be more “cost-effective” to have highly dynamic
expression in the K. lactis GAL1 gene, with strong repression
in the absence of galactose. However, because this same locus
also encodes the regulatory function performed by the Gal3
protein in S. cerevisiae, such strong repression would result
in insufficient expression of GAL1 to perform its regulatory
function in the absence of galactose. Gene duplication
allowed a decoupling of the expression levels of these two
distinct functions. The WGD-produced duplication was thus
exploited as the last step in the evolutionary development of
a metabolic subsystem with a fine degree of transcriptional
control.

3. Multigene Adaptations

The most unique potential impact of genes duplicated at
WGD, however, is not in single-gene adaptations. Instead,
it is the potential for correlated changes across multiple
genes resulting in altered cellular networks, including sig-
nal transduction and transcriptional regulatory networks.
That such changes occur is indirectly suggested by the
observations that duplicates from the yeast WGD are more
likely to be part of protein complexes and more likely
to share protein interaction partners than SSD duplicates
[10, 32]. The products of such retained duplicates are also
enriched for proteins regulated by phosphorylation [33].

Both observations are in keeping with the expectations
of the dosage balance hypothesis [12]. Similarly, we have
shown an example of coherent changes in the coexpression
networks of S. cerevisiae. To do so, we used an algorithm
for detecting subdivided networks. This algorithm divides
genes (connected by edges if they are coexpressed across
multiple microarray experiments; [34]) into two columns,
where each row consists of a pair of WGD-produced paralogs
(Figure 1(a)). We then searched for the arrangement of
genes that minimized the number of edges crossing between
columns and compared that number to the number of
such crossing edges seen in randomized networks. The
relative paucity of crossing edges in the real network suggests
network subfunctionalization, where groups of ohnologs are
subdivided into two co-expression clusters [34].

3.1. WGD and the Crabtree Effect. While these global pat-
terns of change after WGD suggest large-scale alterations, the
best example of a change that can be at least provisionally
tied to a phenotype is the evolution of the Crabtree effect.
Baker’s yeast is somewhat unusual in its metabolism: even
when oxygen is available, it prefers to only partially oxidize
glucose into ethanol rather than fully oxidize it into CO2

and water (the Crabtree effect; [35, 36]). This fermentative
lifestyle is odd insomuch as it is energetically less favorable
than the complete conversion of sugars into carbon dioxide
(e.g., respiration). However, there is a general association
between whether or not a yeast species possesses the ancient
WGD and the Crabtree effect [37].

One clue to the source of this apparent paradox can
be found in a group of duplicated genes from the WGD,
all involved in the early stages of glucose metabolism.
These genes include two glucose sensors (SNF3 and RGT2),
two glucose transporters (HXT6/HXT1), and two duplicate
enzymes that catalyze the initial step of glycolysis (e.g.,
the hexokinases HXK1 and HXK2). Strikingly, in all three
ohnolog pairs, one member acts when glucose concentra-
tions are low and the other when they are high [38–40].
A second piece of the puzzle is due to theoretical work
on resource competition among organisms inhabiting a
large but ephemeral environmental resource. Such compe-
tition among cells can actually favor lineages that rapidly
oxidize glucose relative to their more efficient but slower-
growing competitors [41–43]. This tragedy of the commons
[44] occurs because even though the efficient cells are able
to convert more glucose into energy, they pay for this
efficiency in reduced temporal growth rates, meaning that
the fast, wasteful, cells can come to numerically dominate the
resource patch.

Given these observations and expectations, we and others
proposed that the yeast WGD had several effects on its pat-
terns of glucose metabolism (Figure 2(a)). First, we proposed
that the increase in gene copy number produced by the
WGD gave rise (after some gene losses in other parts of the
genome) to an increased flux through glycolysis [37, 47, 51,
52]. Second, because oxidative phosphorylation of pyruvate
is constrained by oxygen concentrations and the spatial
structure of the mitochondria, the WGD-possessing cells
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Figure 1: Network evolution after the yeast WGD. (a) The yeast coexpression networks show evidence of subfunctionalization after WGD. A
co-expression network consisting of 65 pairs of WGD-produced paralogs (e.g., ohnologs) is illustrated. Each row contains a pair of ohnologs;
edges join genes with co-expression correlation (Pearson’s r) ≥0.75 across >200 microarray experiments. In each row, the position of the
two ohnologs can be exchanged: we searched for the arrangement that minimized the number of interactions between the two columns
(central diagonal edges). The number of such “crossing edges” is much smaller than what would be expected by chance (see [34]). (b) The
above patterns are at least partly driven by changes in transcriptional regulation. We have previously shown that WGD-derived duplicated
transcription factors have diverged considerably since WGD [45]. Here we show the relative lack of overlap between these duplicated
regulators’ functions. On the right are the transcription factors (TFs) that target other TFs but are not themselves targeted by a TF. On
the left are the TFs that are regulated by other TFs. Duplicated TF pairs from WGD (e.g., ohnologs) are shown in the same color.
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Figure 2: WGD and yeast carbon metabolism. (a) Illustrated are glycolysis, alcohol fermentation, and the mitochondrial TCA cycle. We
denote the enzymes catalyzing a reaction with circled gene names. Products of SSD events are indicated by single lines joining the pair
of enzymes. Enzymes duplicated at WGD are joined by three lines. WGD pairs in red are preserved in duplicate in four extant yeasts:
S. cerevisiae, S. bayanus, C. glabrata, and S. castellii. Protein localization for CIT, ADH, and ALD is taken from Huh et al. [46]. We indicate
the pyruvate dehydrogenase (PDH) multienzyme complex with a darker blue enclosure. There is a clear bias in where the duplicated enzymes
lie, particularly if only those preserved in duplicate across four species are considered. From [47]. (b) Duplicated enzymes losses immediately
after WGD were biased toward enzymes catalyzing low-flux reactions. The fluxes through all reactions in the yeast metabolic network [48]
were computed under a variety of nutrient conditions as previously described [49]. Then, using our tool for estimating the timing of gene
loss after WGD [50], we identified enzymes likely to have been lost along the short branch separating the WGD from the divergence of
K. polysporus from the remaining four yeast species. We compared the fluxes of those enzymes to that of enzymes retained in duplicate along
that same branch. The genes lost immediately after WGD were more likely to code for enzymes of low flux (P = 0.003, permutation analysis;
unpublished data).
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were required to redirect some of this increased glycolytic
flux to the (previously anaerobic) fermentative pathways
[47]. The result was likely to induce the sort of competitive
situation between efficient and inefficient cells just described.
A degree of independent confirmation to these ideas was
provided by Van Hoek and Hogeweg [53], who were
able to show computationally that similar WGD events
modeled in modern S. cerevisiae could also be expected to
result in over retention of glycolytic enzymes and increased
glycolytic flux. Recent work in our lab also supports this
contention, showing that duplicate losses immediately after
WGD were biased toward genes coding for low-flux enzymes
(Figure 2(b), unpublished data).

If the WGD was in fact a trigger for moving S. cerevisiae
and its relatives down a path toward increasing Crabtree
effect, we would expect it to have been followed by later
evolutionary changes reinforcing this propensity. Indeed,
at least two such post-WGD changes are known. First, in
yeasts with the WGD, loss of cis-regulatory elements among
the genes for the mitochondrial ribosomal proteins has de-
coupled the expression of the cytosolic and mitochondrial
ribosomal proteins [54]. This change had an important
effect: S. cerevisiae can now upregulate production of cytoso-
lic ribosomes independently of the mitochondrial ones, an
outcome that increases the efficiency of aerobic fermentation
by avoiding unnecessary ribosome synthesis in the quiescent
mitochondria. The second example is a post-WGD SSD
event in the alcohol dehydrogenase family. The result of this
event was two specialized ADH loci, one for the synthesis of
ethanol and a second isoenzyme responsible for the back-
conversion of ethanol to pyruvate (once glucose is exhausted
Crabtree yeasts can reimport and respire the ethanol they
previously produced; [55]). Such specialization likely would
only have been beneficial in the context of a preexisting
WGD-produced Crabtree adaptation.

3.2. Other Examples of Coordinated Evolution in Post-WGD
Yeasts. There are at least two other cellular subsystems in
S. cerevisiae that show evidence of large-scale changes after
WGD, although the details are less well understood than
is the case for metabolism. First, in the transcriptional
regulatory network, pairs of transcription factors duplicated
at WGD, while still showing detectable similarities in their
targets inherited from the WGD, have diverged considerably
(Figure 1(b); [45, 56]). More interestingly, the cytosolic
ribosomal proteins in S. cerevisiae were highly over-retained
after-WGD [6], representing roughly 10% of all retained
duplicates, despite being less than 4% of the pre-WGD
genome [57, 58]. These duplicates are extremely curious
in that many of them have undergone considerable gene
conversion, such that, despite their divergence at the ancient
WGD, they have virtually identical protein sequences in
modern bakers’ yeast [23, 58]. At first blush, this result
could be explained in terms of selection for high copy
number [59] and the dosage balance hypothesis. The story
became mysterious, however, with the discovery that several
of these paralogs, while nearly identical in protein sequence,
have distinctly different knockout phenotypes [60–62]. In

keeping with the idea of coordinated evolution among
multiple paralogs, a number of these duplicated pairs show
asymmetric specialization of one of the two ohnologs to
expression in the developing bud of the yeast cell [61, 62].
We speculate that these ribosomal proteins will represent
another example of a system-level specialization induced by
the WGD. In this view, the rampant gene conversion is a
result of the highly interactive nature of the ribosome. Thus,
both paralogs must “fit” exactly into the complex ribosomal
structure and what differs is not their protein function but
their expression domain.

3.3. WGD and Evolutionary Innovations in Plants. WGD is
rampant in plant genomes, particularly those of angiosperms
[63, 64]. The systems and network biology of these events
have recently been extensively reviewed [65–68], and we
will not attempt to do justice to the subject here. However,
we do note that while the complexity of plant biology
makes identifying precise evolutionary trajectories quite
difficult, there are several suggestive coincidences of timing
between the origins of new traits and the duplication of
regulatory genes involved in those traits [66]. For example,
glucosinolates are a class of secondary metabolites, the
diversity of which has become expanded in the model
plant Arabidopsis thaliana and its relatives. If one maps this
expansion onto the phylogeny of these plants, it is curiously
close to one of the Arabidopsis WGD events. Even more
strikingly, several of the regulators and enzymes responsible
for glucosinolate production in Arabidopsis have surviving
duplications from that WGD [69]. More generally, we have
recently shown [70] that the pattern of post-WGD duplicate
retention in the Arabidopsis metabolic network seems to be
driven by two different forces: a tendency to initially retain
clusters of related enzymes (as would be expected under the
dosage balance hypothesis) followed by a selective regime
that appears to retain duplicates for reactions of high flux
(similar to situation seen in S. cerevisiae).

3.4. 2R and the Remodeling of the Vertebrate Developmental
and Signal Transduction Networks. Another example of
WGD-induced functional innovation at the systems level
concerns the vertebrate developmental toolkit and signal
transduction engines. The metazoans, because they have
bodies organized into distinct tissues, are clearly charac-
terized by significant phenotypic complexity. They seem
to have appeared about 640 million years ago and may
have been preceded by other multicellular lineages of
uncertain relationships [71]. On the basis of mitochondrial
DNA sequence comparisons, the choanoflagellates have been
identified as the closest single-celled animal relatives [72, 73]
with the basal metazoan being either the placozoans [74–
76] or the sponges [77, 78]. Although the role of WGD in
metazoan evolution is not fully understood, several examples
of WGDs among the vertebrates have been identified [21].
These include two rounds (2R) of genome duplication at the
base of vertebrates (2R-WGD; [25]), the fish-specific genome
duplication (FSGD; [4, 79, 80]), and WGDs in the genus
Xenopus [81].
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Despite their phenotypic complexity, animals’ gene con-
tent is not vastly greater than that of other organisms [82,
83]. Part of the explanation for this relative paucity of extra
genes is the nature of development, which occurs by sequen-
tial differentiation in bifurcating cell lineages rather than
through entirely distinct differentiation programs for each
tissue. Nonetheless, the transformation to multicellularity
must have been accompanied by appearance of new genes
coding for adhesion molecules, extracellular matrix proteins
(such as collagen), and cell-to-cell communication. Indeed,
considerable progress has been made in identifying the novel
signaling pathways involved in control of development and
body plan formation [84]. In keeping with the theme of
relatively little genome expansion coupled to the appearance
of the metazoans, only a small fraction of the genes in the
genome contribute to the development of the body plan.
However, these genes make up a developmental toolkit that is
strongly conserved across the eumetazoans. Transcriptional
factors of particular interest are homeobox genes (Hox,
ParaHox, EHGbox, and NK-like); KLF, Osr and Sp1/Egr
genes, tlx, Snail, and slug zinc-finger proteins; MASH, myoD,
mef, hairy, and twist helix-loop-helix transcriptional factors;
T-box transcriptional factors [85–87]. These transcriptional
regulators interact with the outside world through signal
transduction pathways, the most important of which are
those employing transforming growth factor-β (TGF-β),
Wnt, Notch, Hedgehog, Toll, tyrosine kinase receptors,
the nuclear hormone receptors, and the G-protein-coupled
receptors. The identification of the shared toolkit of sig-
nalling pathways underlying animal development is a key
discovery of modern biology. Following this work, we have
recently found that the vertebrate signal transduction engine
was highly modified by the 2R-WGD [88], suggesting that
some of the complexity of vertebrates may have required the
innovative capacity of WGD [89].

3.5. Gene Duplications in the Transforming Growth Factor-β
Pathway. Our initial study, focused on the TGF-β pathway,
provided early evidence of the impact of the 2R-WGD on
vertebrate signaling. This signaling pathway has been long
recognized as one of the most fundamental and versatile in
metazoans, with central roles in development, organogene-
sis, stem-cell control, immunity, and cancer [90]. After an
investigation of 33 genomes, we showed that the evolution
of the TGF-β pathway in animals can be best explained
according to the 2R model, with additional duplications in
teleost fishes [91]. The components of the core pathway
(both receptors and Smads) expanded dramatically and
permanently at the base of vertebrates as a result of the
2R-WGD. In particular, four ancestral Smads (an I-Smad,
a Co-Smad, and two R-Smads of the BMP and TGF-β
sensu stricto channels) gave rise to the eight known Smads
of the human genome, classified as two TGF-β sensu stricto
(Smad2,3) and three bone-morphogenetic-protein- (BMP-)
type (Smad1,5,8) receptor-activated Smads (R-Smads), one
common mediator Smad (Co-Smad; Smad4), and two
inhibitory Smads (I-Smads; Smad6,7).

3.6. General Expansion of Signaling Pathways after 2R. In a
more general analysis, we found that the 2R-WGD affected
the overwhelming majority (three quarters) of human signal-
ing genes, with the strongest effect on developmental path-
ways involving receptor tyrosine kinases, Wnt and TGF-β
ligands, GPCRs, and the apoptosis pathway. Unlike genes
deriving from recent tandem duplications, genes retained
after 2R were enriched in protein interaction domains
and multifunctional signaling modules of Ras and MAP-
kinase cascades. The set of human 2R-ohnologs (2ROs),
corresponding to 9,958 unique Entrez Genes, is enriched
in many classic signaling domains (such as tyrosine and
serine/threonine kinase domains, the seven-transmembrane
receptor domains of the rhodopsin and secretin families,
and the Ras family domain), as well as well-known protein
interaction domains, including the SH2, SH3, PTB, and PDZ
domains.

PDZ domains are particularly interesting as they are
abundant in vertebrate neuronal synapses, serving as
scaffolds for the assembly of large neurotransmission signal-
ing complexes [92]. Thus, these results suggest that 2R may
have provided evolutionary material for subsequent changes
in vertebrate brain development. Further evidence for this
contention came when we found that 2ROs are preferentially
expressed in Gene Expression Atlas samples associated with
brain and nervous tissue. These brain-expressed 2ROs are
also enriched in Gene Ontology (GO) terms related to
synaptic transmission. Studies in fly and mouse have shown
that vertebrate synapses are more complex than those of
invertebrates [93]: it is thus intriguing to speculate as to a
role for 2R in inducing this phenomenon.

Another potential source of vertebrate neuronal com-
plexity is their use of apoptosis to shape brain structures
and compartments. We found that the apoptosis pathway
was dramatically remodeled through 2R [88]. Figure 3
illustrates the complex topology of the human apoptosis
signaling subnetwork created by 2R [88]. It is clear that
coordinated duplications of caspases resulted in a substan-
tial evolutionary novelty. Moreover, the complexity of the
evolutionary changes introduced by 2R is best appreciated
by examining the conservation of regulatory interactions
(directed edges in the network). To better illustrate changes
in network topology induced by the 2R-WGD, we subdivided
the conserved edges into those originating from a shared
regulator and acting on a pair of 2ROs (conserved incoming
edges—CIEs), and those originating from a paralogous
pair directed towards a shared target (conserved outgoing
edges—COEs). CIEs suggest a common conserved regulator,
located upstream in terms of information flow. In contrast,
COEs indicate evolutionary conservation of a common
regulatory target, located downstream (Figure 3).

Finally, while many genes for ancient cellular functions
were not retained in duplicate after 2R, the genes of the
cell cycle are an exception to this rule (an interesting link
to the overretention of cyclins after the yeast WGD; [8]).
Most cyclins, including key cell cycle-regulating groups
A, B, and D, underwent diversification at the base of
vertebrates and are represented by between two and four
vertebrate-specific paralogs derived from the 2R-WGD [88].
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Figure 3: 2R-ohnologs in the apoptosis pathway. A network diagram of the vertebrate apoptosis pathway is shown with pairs of 2R-ohnologs
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Similarly, cyclin-dependent kinases, cyclin-dependent kinase
inhibitors, and orthologs of the S. pombe WEE1 inactivator
of the CDK/cyclin complex (Wee1 and Wee2) were also
retained in duplicate after 2R [88]. Strikingly, cyclins D1-
D3 respond to extracellular mitogens, cytokines, hormones,
and juxtacrine ligands, providing an interface between signal
transduction and the cell cycle. These cyclins then pair with
CDKs 4 and 6, driving the transition to G1 [94–96]. It
would be very informative to test if cyclins D1-D3 and
CDK4/6 simply increase robustness of the cell cycle. If not,
there may be functional differences between the 2R-derived
cyclin D/CDK complexes in terms of the upstream signaling
pathways they integrate or the downstream target genes they
activate [88].

3.7. 2R and Vertebrate Complexity. In contrast to the
predictions of the dosage balance hypothesis, vertebrate
genes having developmental expression were more likely
to revert to single copy after whole-genome duplication
[97, 98]. However, this observation may be qualified by
the fact that, after the FSGD, almost all retained duplicates
have diverged in spatial and/or temporal expression during
embryogenesis, and many were key developmental genes
that function as transcription factors or signaling molecules
during embryogenesis [99]. These general trends of retention
and expression change, as well as the above functional
analyses, clearly indicated that 2R fundamentally altered
vertebrates’ signaling pathways and cell cycles [88]. In
consequence, it may have set the stage for the emergence of
other key vertebrate evolutionary novelties (such as complex
brains, the circulatory system, or heart, bone, cartilage,
musculature, and adipose tissues; [71, 100]).

It should also be noted that the methodology used in
these studies of the 2R-WGD [88] precluded an investigation
of the amphioxus genome, as this genome was not included
in release 6 of the TreeFam database. However, in other
studies, the genome of the cephalochordate Branchios-
toma floridae (e.g., amphioxus or lancelet) provided very
strong evidence in support of the 2R hypothesis [101, 102].
Another strategically positioned pre-2R genome, that of sea
urchin, is being developed as a developmental and systems
biology model for understanding gene regulatory network
evolution, which, together with the signal transduction
pathways of this species, has been particularly well annotated
[103–105]. Comparisons of sea urchin’s developmental reg-
ulatory networks with those of vertebrates is likely to reveal
further insights into the impact of the 2R-WGD.

4. Concluding Thoughts

The broader significance of these changes for our under-
standing of the forces and mechanisms driving the evolution-
ary process could well be extremely significant. Firstly, we
propose that WGDs, like human technical innovations such
as the railroad, greatly expand of genotypic and phenotypic
space that might be explored by evolution. For example, the
2R quadrupling of components of the vertebrate signaling
network not only immediately expanded the available space

of signaling network states, but also kick-started rapid
co-evolution of nodes into novel topologies during the
subsequent “diploidization.” We have also recently proposed
that WGD has an important role in evolutionary transitions
by relaxing epistatic constraints [70], effectively increasing
the size of the neutral genetic space in which innovation
can occur [106]. Secondly, an exciting possibility exists that
at least some WGDs may be instantaneous speciations: if
so, they would be evolutionary events whose occurrence is
somewhat in contrast to an exclusively gradualist view of
evolution. Early authors of modern synthesis, coming from
background in population genetics, were perhaps overly
wedded to gradualism, where natural selection acts on small
variations in large populations. The molecular mechanism
of WGDs is most likely auto- or allopolyploidy. WGDs
could therefore be interpreted as saltations, that is, sudden
evolutionary changes occurring within a single generation.
However, population genetic processes are of course of
central importance during subsequent re-diploidization.
During that gradual process of duplicate loss over millions of
years, there may be losses driven by natural selection acting
to fix null mutants for duplicated loci, a process which fits
well with Neo-Darwinian views.

In a related vein, gene duplications may have a role in
enhancing robustness—the organism’s resilience to genetic
or environmental perturbations [107]. At the simplest
level, duplication provides short-term robustness through
genetic “backups.” However, WGDs could also lead to an
increase in distributed robustness, which is a consequence
of the existence of multiple solutions to the same biological
problem. A well-known example of this idea is the redundant
paths through metabolic networks that confer robustness
[48, 108]. It is fairly straightforward to envisage an analogous
situation in signal transduction or the cell cycle: multiple
regulatory mechanisms could in that case increase the level of
control, allowing, for instance, the development of complex
vertebrate embryos with many novel organs and tissue types.

Genome duplication might have also facilitated inno-
vation in other ways. For instance, the establishment
of crosstalk between signaling pathways [109] may have
resulted from WGD. The post-WGD redundancy would
have allowed the partial subdivision of duplicated pathways,
resulting in a network of a higher degree of connectivity and
robustness. Thus, it is striking that few novel signaling genes
emerged through post-2R events [88], since SSD events lack
the opportunity for this type of change. Another area for
future investigation is the impact of 2R-WGD on non-coding
genes [110]. Published studies and our own observations
indicate that no preferential retention of miRNA genes
can be attributed to 2R-WGD [111]. Instead, functional
innovation in miRNA regulation appears to have occurred
during the more recent mammalian diversification [112].
This suggests a model where major evolutionary transitions
exploit expansions in different classes of genomics elements:
protein-coding genes at the transition to vertebrates and
miRNA genes during diversification of mammals.

It is tempting to hypothesize that gene duplication
can initially promote redundancy of system parts, allow-
ing evolutionary tinkering, while genome duplications are
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correlated with an increase in distributed robustness. In
the future, we propose testing this hypothesis by asking
if more WGD-produced duplications are found in distinct
signaling pathways when compared to SSD gene duplicates of
similar age. More generally, both redundancy and robustness
provide the evolutionary space for adaptations, and there are
suggestions that WGD facilitated the colonization of novel
environments and ecological niches [52, 113].

Genome duplication undoubtedly represents a tremen-
dous evolutionary opportunity: the release of epistasis alone
that results from WGD may have important implications
[45]. However, as the examples described here suggest, the
resulting innovations are unlikely to fit neatly into the neo-
functionalization/subfunctionalization paradigm [16, 114],
nor are they likely to be fully understood without a detailed
knowledge of the cellular systems in which they are active.
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