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Tsetse flies have socioeconomic significance as the obligate vector of multiple 
Trypanosoma parasites, the causative agents of Human and Animal African 
Trypanosomiases. Like many animals subsisting on a limited diet, microbial symbiosis 
is key to supplementing nutrient deficiencies necessary for metabolic, reproductive, 
and immune functions. Extensive studies on the microbiota in parallel to tsetse biology 
have unraveled the many dependencies partners have for one another. But far less 
is known mechanistically on how products are swapped between partners and how 
these metabolic exchanges are regulated, especially to address changing physiological 
needs. More specifically, how do metabolites contributed by one partner get to the 
right place at the right time and in the right amounts to the other partner? Epigenetics 
is the study of molecules and mechanisms that regulate the inheritance, gene activity 
and expression of traits that are not due to DNA sequence alone. The roles that 
epigenetics provide as a mechanistic link between host phenotype, metabolism and 
microbiota (both in composition and activity) is relatively unknown and represents a 
frontier of exploration. Here, we  take a closer look at blood feeding insects with 
emphasis on the tsetse fly, to specifically propose roles for microRNAs (miRNA) and 
DNA methylation, in maintaining insect-microbiota functional homeostasis. We provide 
empirical details to addressing these hypotheses and advancing these studies. 
Deciphering how microbiota and host activity are harmonized may foster multiple 
applications toward manipulating host health, including identifying novel targets for 
innovative vector control strategies to counter insidious pests such as tsetse.
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TSETSE (DIPTERA: GLOSSINIDAE)

Tsetse flies are Dipterans belonging to the superfamily of exclusive blood feeders, 
Hippoboscoidea. Tsetse are exclusively grouped in the family Glossinidae, within the 
monophyletic genus Glossina, and are divided into four groups: morsitans, fusca, palpalis, 
and austeni (Krafsur, 2009). Tsetse flies are found only in sub-Saharan Africa with the 
different groups occupying distinct ecological terrains and blood meal preferences which 
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effects the medical and agricultural significance of different 
species (Solano et al., 2010). Tsetse flies undergo adenotrophic 
viviparity (Benoit et  al., 2015) meaning that a single larva 
develops in utero each gonotrophic cycle (Figure 1). Maternal 
secretions provide nutrition and seed larva with microbiota 
(Ma and Denlinger, 1974) through modified female accessory 
glands known as milk glands.

TSETSE FLY MICROBIOTA

A key feature in the evolution of eukaryotes has been the 
spatial and temporal partitioning of biochemical processes for 
the purpose of regulation (Chomicki et al., 1808; Martin, 2010; 
Gabaldón and Pittis, 2015). This partitioning reaches even 
greater complexity with the presence of microbiota and the 
necessity to coordinate their physiology with host biology 
particularly if they also rely on vertical transmission for their 
persistence as this additionally entails coordination with host 
reproductive biology. Tsetse flies possess a relatively simple 
core microbiota consisting of three different bacterial species 
(Wigglesworthia glossinidia, Sodalis glossinidius, and Wolbachia 
pipientis) varying in their occurrence and ranging in their 
impact toward host biology from parasitism to mutualism. 
The obligate mutualist, Wigglesworthia, is a focal point of this 
review and will be  further discussed below. A commensal 
Sodalis (Dale and Maudlin, 1999) is not known to impact 
tsetse fitness but has emerged as a bacterium of interest as a 
target for paratransgenesis and introducing a trypanosome 
refractory phenotype (De Vooght et al., 2018). Lastly, W. pipientis 
(supergroup A) may be  harbored by tsetse typically within 
reproductive tissues (O’Neill et  al., 1993; Cheng et  al., 2000; 
Balmand et  al., 2013) which may result in cytoplasmic 
incompatibility between mating of differentially infected 
individuals (Alam et  al., 2011).

PARASITIC TRYPANOSOMES

Tsetse flies are the obligate vectors of most African Trypanosomes, 
Trypanosoma species, with an association dating back about 
35 million years (Steverding, 2008). Trypanosome parasites are 
the causative agent of Human African Trypanosomiasis (HAT; 
T. brucei rhodesiense and T. b. gambiensis), a debilitating disease 
caused by the parasitic invasion of the central nervous system 
which is lethal if left untreated. The disease is endemic to 36 
countries in sub-Saharan Africa. Animal African Trypanosomiasis 
(AAT; T. b. brucei, T. vivax, and T. congolense) is a wasting 
disease caused by trypanosome infections of domestic animals, 
contributing to food insecurity within impacted areas. 
Trypanosome infections of tsetse impose a reproductive burden 
on females (Hu et  al., 2008) likely due to competition for 
resources with some of these provided by the microbiota 
(Michalkova et  al., 2014; Rio et  al., 2019).

THE OBLIGATE TSETSE MUTUALIST 
Wigglesworthia glossinidia

Both sexes of tsetse feed exclusively on vertebrate blood and 
consequently have epidemiological significance toward 
trypanosome transmission. The blood, although rich in amino 
acids and iron, is particularly poor in B vitamins (Douglas, 
2017), which are essential for animals. The provisioning of 
multiple B vitamins by the obligate mutualist W. glossinidia 
has enabled the restricted feeding ecology of the tsetse fly. 
The Wigglesworthia symbiont is the most predominant member 
of the tsetse microbiota (Aksoy, 1995; Chen et al., 1999; Aksoy 
et  al., 2014; Tsagmo Ngoune et  al., 2019) and inhabits the 
cytosol of specialized tsetse epithelial cells known as bacteriocytes 
that collectively form a bacteriome attached to the anterior 
midgut (Figure  1). Wigglesworthia cells are large, 

A B C

FIGURE 1 | Localization of tsetse microbiota. The tsetse fly is the sole vector of most African trypanosomes. (A) These protozoan parasites are introduced into the 
tsetse fly by an infected blood meal where developmental differentiation, recombination, and migration to the salivary glands occur. (B) The Wigglesworthia and 
Sodalis symbionts may be found within the bacteriome and gut, respectively. (C) The Wigglesworthia, Sodalis, and Wolbachia symbionts are vertically transmitted. 
The Wigglesworthia and Sodalis bacteria specifically use milk gland infections while Wolbachia infects ovaries for transgenerational persistence.
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filamentous-like (Aksoy, 1995) and lie free in the cytoplasm, 
unabated from a host-generated membrane and likely also 
necessitating unique molecular transfer processes with tsetse.

The tsetse-Wigglesworthia association dates to around the 
incipient stages of species diversification of the Glossinidae 
family (Aksoy et  al., 1995; Chen et  al., 1999; Symula et  al., 
2011). This long interdependence has led to a profound impact 
on the evolutionary genomics of both species. Host adaptation 
has involved drastic Wigglesworthia genome size reduction 
(Akman et  al., 2002; Rio et  al., 2012) tailored to tsetse biology 
coupled with high genetic drift due to smaller population sizes 
arising from bottlenecks during vertical transfer. Despite its 
small size, the Wigglesworthia genome retains the potential to 
synthesize multiple B complex vitamins, namely, thiamine (B1), 
riboflavin (B2), nicotinamide (B3), pantothenic acid (B5), 
pyridoxine (B6), and folate (B9; Akman et  al., 2002; Rio et  al., 
2012) believed to complement metabolic deficiencies in the 
blood feeding ecology of tsetse. To date, Wigglesworthia has 
not been cultured but with the availability of annotated genomes 
(Akman et  al., 2002; Rio et  al., 2012) and the advent of 
innovative culture technologies (Lagier et al., 2018; Cross et al., 
2019) this may ultimately be  achieved opening up a wide 
array of research questions. Additionally, the availability of an 
extracellular population of Wigglesworthia within maternal milk 
gland secretions (Ma and Denlinger, 1974; Attardo et al., 2008; 
Balmand et  al., 2013) may also facilitate culturing.

As obligate mutualists, tsetse rely on Wigglesworthia for the 
optimal performance of several physiological processes involved 
in nutrition, digestion, immunological maturation and 
reproduction (and likely the connection between these; Wang 
et  al., 2009; Snyder et  al., 2010; Weiss et  al., 2011, 2013; 
Michalkova et  al., 2014; Snyder and Rio, 2015). In support of 
its specialization, the bacteriome is enriched in fly gene transcripts 
that belong to the transmembrane category (Bing et  al., 2017; 
Medina Munoz et  al., 2017, 2021), which includes amino acid 
transporters and multivitamin transporters, likely facilitating 
nutrient exchange between tsetse and Wigglesworthia. In turn, 
Wigglesworthia transcripts are enriched for the metabolism of 
cofactors and vitamins, supporting a complementary nutrient 
synthesis role for uptake by host transporters. Structural and 
functional examination of transporters, and how these may 
be  regulated by epigenetics will help elucidate mechanisms 
used for interspecies metabolic regulation, likely involving some 
type of feedback network based on metabolites crucial for 
homeostasis, although this remains speculative.

EPIGENETICS AS COORDINATORS OF 
SYMBIOSIS

Epigenetics controls gene expression and concomitant phenotype 
independent of gene sequence (Choudhuri, 2011), thereby 
enabling a relatively rapid adaptation independent of inheritance. 
Epigenetic mechanisms within insects include small RNA 
production (Asgari, 2013, 2015; Lucas and Raikhel, 2013; Zhang 
et  al., 2014a; Lucas et  al., 2015), histone post-translational 
modifications (Dickman et  al., 2013; Glastad et  al., 2015), 

chromatin remodeling (Rider et  al., 2010; Riparbelli et  al., 
2012), and DNA methylation (Field et  al., 2004). Epigenetics 
may be  heritable but may also be  erased and reestablished to 
address specific environmental cues (Waddington, 2012; Tammen 
et  al., 2013; Bind et  al., 2014; Deans and Maggert, 2015; 
Chatterjee et  al., 2018; McCaw et  al., 2020; Villagra and Frías-
Lasserre, 2020). Our focus in this mini review will be specifically 
on the roles that microRNAs (miRNAs) and DNA methylation 
may have toward mediating the coordination of microbe-
host interactions.

microRNAs, PARAMOUNT SMALL 
REGULATORY ELEMENTS

miRNAs are small (~22 nt) noncoding RNAs with a primary 
function in sequence-specific post-transcriptional gene regulation 
(Ibáñez-Ventoso et al., 2008; Fabian et al., 2010). Gene regulation 
(generally inhibitory) via miRNAs is highly conserved across 
eukaryotes (Bartel, 2018) with sequence conservation of seed 
regions (i.e., nucleotides present at positions 2–8 from the 5′ 
end) facilitating identification across often phylogenetically 
distant animals (Ligoxygakis et  al., 2002; Marco et  al., 2010). 
For example, more than 50% of the characterized Caenorhabditis 
elegans miRNAs are encoded in both human and Drosophila 
genomes (Ibáñez-Ventoso et  al., 2008; Asgari, 2011). High 
conservation of miRNAs among Dipterans has also been observed 
in studies comparing mosquitoes to Drosophila (Lai et al., 2003; 
Li et  al., 2009). Despite this conservation, miRNAs sharing 
high nucleotide identity may exhibit target variation in different 
species by undergoing “seed-shifting,” where slight changes in 
the 5′ end of a miRNA alters the seed region (Wheeler et  al., 
2009; Marco et  al., 2010; Berezikov, 2011), consequentially 
generating a variety of new mRNA targets. Seed-shifting partnered 
with duplication is the primary evolutionary force for creating 
new miRNAs (Bartel, 2009; Berezikov, 2011). While miRNAs 
are known to be a significant source of regulators of endogenous 
genes (Carthew and Sontheimer, 2009), their potential role in 
modulating microbial homeostasis and in preventing dysbiosis 
has been comparatively understudied.

miRNAs are typically encoded within intergenic regions, in 
non-coding transcripts, or in rare cases within the coding 
region of genes (Slack, 2006; Asgari, 2011, 2013). To date, 
most miRNAs are produced through the canonical pathway, 
though a rare subset (known as non-canonical microRNAs) 
do not follow this pathway (Bartel, 2004; Abdelfattah et  al., 
2014). Canonical miRNA generation begins with transcription 
by RNA polymerase II of long RNA sequences known as 
polyadenylated primary transcripts (pri-miRNAs) in the nucleus 
(Asgari, 2011, 2013). The Drosha-Pasha/DGCR8 complex, also 
known as the Microprocessor complex, processes and cleaves 
the stem-loops of the pri-miRNA to form the hairpin precursor 
miRNA (pre-miRNA; Han et  al., 2009; Asgari, 2011, 2013). 
The ~70 nt pre-miRNA is then transported into the cytoplasm 
by Exportin 5 and its terminal loop cleaved by Dicer and the 
loquacious protein (mammalian TRBP) forming a ~22 nt 
miRNA:miRNA* duplex (Asgari, 2011, 2013; Nguyen et  al., 
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2015). Similar to Drosophila melanogaster (Tomari and Zamore, 
2005), tsetse flies also encode two distinct Dicer proteins 
(Dicer-1 and Dicer-2) with Dicer-1 required for miRNA 
production (Lee et  al., 2004). Argonaute (Ago) proteins then 
associate with the miRNA duplex using one of the strands as 
a guide strand forming a RNA-induced silencing complex 
(RISC; Kawamata and Tomari, 2010; Nguyen et  al., 2015). The 
remaining strand, miRNA*, is known as the passenger miRNA 
and may play a regulatory role but is typically degraded (Asgari, 
2011, 2013). Dicer cleavage also seems to selectively favor an 
arm of the precursor stem loop, though this preference can 
vary in different tissues in a context dependent manner (Griffiths-
Jones et  al., 2011; Chen et  al., 2018; Kim et  al., 2020). This 
variation leads to 3′ or 5′ (typical represented as miRNA -3p 
or -5p) isomiRs being present for miRNAs (Kim et  al., 2020). 
This arm shifting is also responsible for generating a large 
portion of the diversity within miRNA families (Okamura et al., 
2008; de Wit et  al., 2009; Berezikov, 2011; Griffiths-Jones 
et  al., 2011).

It is likely that miRNAs have a diversity of functions within 
the tsetse fly, as within the related Drosophila species a range 
of roles in development, endocrinology, viral immunity, and 
behavior have been described (Carthew et  al., 2017). This is 
further supported by the conservation of many miRNAs 
homologs in the more distantly related mosquitos, although 
miRNA conservation does not necessarily suggest functional 
retention since some miRNAs are also predicted to have 
numerous targets (Lai et  al., 2003; Friedman et  al., 2009; Li 
et  al., 2009). Of relevance, in Anopheles gambiae mosquitoes, 
an elevated abundance of miR-305 is known to increase 
susceptibility toward Plasmodium infections (Dennison et  al., 
2015), likely mediated by disrupting mRNAs involved in 
metabolic (Lampe and Levashina, 2018) and immunological 
processes (Dennison et al., 2015). Similarly, shed trypanosome 
VSG surface coat antigen when internalized by tsetse cardia 
cells, decreases miR-275 expression within the midgut (Aksoy 
et al., 2016; Vigneron et al., 2018). Consequently, the reduction 
of miR-275 results in compromising the synthesis of the 
peritrophic matrix (PM) by inhibiting peritrophin expression, 
the Wnt-signaling pathway and Iroquois/IRX family of 
transcription factors in the cardia thereby disrupting digestion 
and strengthening vector competence (Aksoy et  al., 2016). 
As a proof of principle, paratransgenic S. glossinidius engineered 
to express tandem antagomir-275 repeats (3xant-miR275) 
phenocopies the compromised peritrophic matrix and offers 
an exciting (and economical) technological advancement toward 
studying the regulatory roles of other miRNAs. Lastly, tsetse 
with symptomatic Salivary Gland Hypertrophy Virus (SGHV) 
infections exhibit different tsetse miRNA and SGHV miRNA 
expression profiles upon comparison to asymptomatic flies. 
With symptomatic flies, the most highly expressed miRNAs 
are predicted to target immune-related mRNAs, including 
those encoded by fibrillin-1 (FBN1) and Ras-related protein-27 
(Rab27), and others involved in reproduction such as 
apolipoprotein lipid transfer particle (Apoltp) and vitellogenin 
receptor (Vtgr; Meki et  al., 2018). These genes are all 
downregulated within symptomatic flies contributing to viral 

immune evasion and associated ovarian aberrations and loss 
of reproductive fitness (Abd-Alla et  al., 2010).

In previous insect research low or absent miRNA homology 
suggests novel biological or physiological functions of that 
miRNA (Marco et  al., 2010). Using a custom pipeline of 
bioinformatic tools on publicly available tsetse Expressed 
Sequence Tags (ESTs), 10 miRNAs were found to be  unique 
to tsetse flies with gmr-miR 619-5p and gmr-miR-2490-3p 
predicted to target genes impacted by trypanosome infection, 
including those encoding the thioester-containing protein (Tep-1) 
and heat shock protein 60A (Hsp60a; Yang et al., 2020), although 
experimental validation of molecular regulation remains to 
be  shown.

miRNAs may also directly impact microbiota composition 
and activity (Ibáñez-Ventoso et al., 2008; Friedman et al., 2009). 
Besides pathogenic associations, miRNAs are also involved in 
the regulation of essential members of the microbiota. For 
example, with the symbiosis between aphids and their symbiont 
Buchnera (a similar ancient obligate nutritional mutualism to 
the tsetse-Wigglesworthia association; Douglas, 1998; Feng et al., 
2019), 14 aphid-generated miRNAs are evolutionarily conserved 
among phylogenetically distant aphid species with significantly 
different expression of these within bacteriomes relative to 
symbiont-free tissue (Feng et  al., 2018) strongly supporting 
roles in mediating symbiosis. Moreover, 84 mRNA targets with 
a predominant function in the principal functional role of the 
symbiosis, amino acid transport and metabolism (Feng et  al., 
2018), were identified as putative targets of these miRNAs. At 
least 10 of the 14 miRNAs have been identified to be  of 
importance toward other host–microbe interaction studies 
(Skalsky et  al., 2010; Jayachandran et  al., 2013; Mehrabadi 
et  al., 2013; Mayoral et  al., 2014a; Zhang et  al., 2014b; Jin 
et  al., 2017; Qiang et  al., 2017; Liu et  al., 2019) suggesting a 
universal (and likely convergent) role in the regulation of 
symbioses. Compellingly, research in tsetse has indicated genes 
associated with both amino acid transport and metabolism 
(Wigglesworthia is auxotrophic for the majority of amino acids) 
have differential expression in aposymbiotic compared to wild-
type flies, which may indicate a similar regulatory role toward 
these genes could be played by tsetse miRNAs (Medina Munoz 
et  al., 2017).

A plethora of questions remain about whether animals can 
use miRNAs to impact gene expression in microbes. Previous 
research on miRNAs in insect microbial relations has focused 
on identifying miRNAs produced by the host and assumed 
to target host mRNAs involved in the symbiosis (Carthew 
et  al., 2017; Feng et  al., 2018, 2019). Encouraging research 
that suggests targeting of microbial (particularly bacteria) RNA 
may in fact be  plausible comes from studies demonstrating 
miRNAs regulating mitochondrial mRNAs (Li et  al., 2012; 
Duarte et al., 2014; Macgregor-Das and Das, 2018). Mitochondria, 
as remnants of an ancient Alphaproteobacterium endosymbiont 
rendered modern-day organelle, still retain a double membrane 
(Macgregor-Das and Das, 2018) similar to Wigglesworthia 
(Aksoy, 1995). If tsetse miRNAs interact with Wigglesworthia 
to coordinate gene expression, they are likely not alone. It is 
possible that other mutualists with significantly reduced genomes 
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such as Wigglesworthia may also rely on these small RNAs as 
opposed to proteins for gene regulation, representing a novel 
avenue for experimental exploration to further our understanding 
of intracellular signaling (Hansen and Degnan, 2014). Lastly, 
a further compelling and reciprocal research focus is whether 
small RNAs encoded by bacterial mutualists may manipulate 
host genes, which is not unknown of within 
Gammaproteobacteria. For example, intracellular Salmonella 
produce a miRNA-like Sal-1 processed by human AGO2 proteins 
which enhances intracellular Salmonella survival (Gu et  al., 
2017). Further the production of a Wolbachia small noncoding 
RNA, WsnRNA-46A, enhances the transcription of Aedes aegypti 
Dynein heavy chain (Dhc) which facilitates Wolbachia association 
with microtubules enabling its transfer during mosquito oocyte 
or embryonic development (Mayoral et  al., 2014b). Whether 
small noncoding RNAs produced by Wigglesworthia may impact 
tsetse metabolism or immunity remains to be  seen.

DNA METHYLATION AS A REGULATORY 
CONDUIT BETWEEN MICROBIOTA AND 
HOST PHYSIOLOGY

DNA methylation is the addition of methyl (CH3) groups to 
cytosine residues (5mC) typically within 5′-cytosine-phosphate-
guanine-3′ (CpG) dinucleotides (Lyko, 2018). Across insect 
taxa, genome methylation exhibits a patchy distribution and 
differs relative to those of vertebrates in regards to general 
localization (Head, 2014). For example, DNA methylation is 
prevalent in the promoter regions (creating CpG islands) of 
vertebrate genomes, with modifications altering the interactions 
of transcription factors and histones via steric effects (Moore 
et  al., 2013). Within insect genomes, DNA methylation is 
pervasive within gene bodies (Cingolani et al., 2013; Takayama 
et  al., 2014; Jeong et  al., 2018; Huang et  al., 2019), where it 
is involved in alternative gene splicing and the creation of 
isoforms (Lyko et  al., 2010; Bonasio et  al., 2012; Terrapon 
et  al., 2014). Although CpG methylation is also present within 
insect genomes, methylation is more prevalent in the CpA 
and CpT dinucleotide contexts (Takayama et  al., 2014). For 
example, splice junctions are enriched for non-CpG methylation 
(Cingolani et  al., 2013) in bees and different splice variants 
of the same gene are associated with diverse methylation patterns 
(Lyko et  al., 2010).

DNA methylation is among the most amenable epigenetic 
modifications to identify given its relative ease in identification. 
For example, commercially available antibodies detect the 
presence of methylated nucleotides within genomic DNA (Kunert 
et  al., 2003) and may be  used to enrich for methylated DNA 
prior to high-throughput sequencing (Glastad et  al., 2014). 
Moreover, bisulfite sequencing and subsequent mapping (Ku 
et  al., 2011), enables the characterization of nucleotide 
methylation across a reference genome of interest, permitting 
the discovery of preferential motifs (Takayama et  al., 2014; 
Panikar et  al., 2015). The generation of reference DNA 
methylomes for a variety of insects through developmental 

stages with validated ties to phenotypes will greatly facilitate 
our understanding of epigenetic modifications toward insect 
biology and fuel future research endeavors.

THE ROLE OF FOLATE TOWARD DNA 
METHYLATION

Although vitamins are essential to physiology, animals lack 
the ability to synthesize these de novo and must either obtain 
these critical nutrients through diet and/or microbiota 
provisioning (Brecher and Wigglesworth, 1944; Douglas, 2017). 
Folate (B9) is particularly deficient within blood (Brecher and 
Wigglesworth, 1944; Edwards et  al., 1957; Pietrzik et  al., 2010; 
Nikoh et  al., 2014; Douglas, 2017; Duron et  al., 2018), with 
symbiotic bacteria often provisioning this essential cofactor to 
strictly hematophagous animals (Duron and Gottlieb, 2020). 
A significant role for Wigglesworthia within their hosts is the 
production and provisioning of folate, which is critical for 
tsetse reproduction and larval development while also serving 
to enhance vector competence (Snyder and Rio, 2015; Rio 
et  al., 2019).

Folate is necessary for DNA methylation because it is 
transformed into 5-methyltetrahydrofolate (5-methylTHF), 
needed for the formation of methionine from homocysteine 
(Crider et  al., 2012). Once methionine has been synthesized, 
it is joined to ATP and converted into the universal methylation 
donor S-adenosyl methionine (SAM). SAM donates the methyl 
group during DNA methylation via the action of DNA 
methyltransferases (Crider et  al., 2012; Shorter et  al., 2015). 
Folate provisioning by Wigglesworthia may provide a means 
for connecting Wigglesworthia metabolism to tsetse genetic 
regulation via DNA methylation. In support of this connection, 
SAM abundance is significantly decreased in tsetse fly bacteriomes 
which have been cleared of their Wigglesworthia symbionts 
(Bing et  al., 2017).

Due to the lack of DNMT-1 and -3  in the genome, tsetse 
has been predicted to lack DNA methylation (Bewick et  al., 
2017). However, due to its close evolutionary relation to 
D. melanogaster and the characterization of DNA methylation 
in the fruit fly genome (Takayama et  al., 2014; Panikar et  al., 
2015; despite also lacking these DNMTs), we  hypothesize the 
presence of methylation in the tsetse genomic DNA, particularly 
within Wigglesworthia harboring bacteriomes which may impact 
symbiosis activities. Symbiosis altering DNA methylation is 
not unprecedented in eukaryotes as previously reported in a 
wide array of organisms including plants (Vannier et al., 2015), 
anemones (Li et  al., 2018), and mice (Warner et  al., 1989; Yu 
et al., 2015), with concomitant changes in symbiosis phenotypes.

DISCUSSION

Metabolite provisioning is a fundamental role of host-associated 
microbiota, particularly of animals with limited diets such as 
the strictly blood feeding tsetse fly. The tsetse fly provides a 
valuable, and medically significant, model system to dissect 
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regulatory mechanisms that coordinate host-microbiota activities, 
including nutrient exchange, immunological maturation and 
vector competence. Much has been gathered on the composition, 
functional contribution and evolutionary history of the tsetse 
microbiota, yet little is known regarding mechanisms coordinating 
microbial activity with host biology. Here we  emphasize the 
investigation of epigenetics, specifically the role of miRNAs and 
DNA methylation, toward regulating interspecies activities as 
these may deliver rapid cues for the restoration and maintenance 
of homeostasis through tsetse development and following 
perturbations. We  provide support for further investigations of 
these regulatory mechanisms and experimental guidance 
(Figure 2) for the simultaneous characterization of these epigenetic 
processes and assessing their impact toward the host-microbiota 
association. Besides providing the basis for a deeper understanding 
of ecological and organismal biology features and their evolution, 
the study of symbioses and its regulation, particularly in 

blood-feeding vectors is of significant consequence for 
epidemiological studies and the design of control strategies aimed 
at halting transmission of vector-borne diseases.
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APPENDIX

Current research gaps

 1. Wigglesworthia’s tight integration in tsetse physiology requires mechanisms for the regulatory control of population size and 
function. Intriguingly, Wigglesworthia lies free in the cytoplasm of bacteriocytes which may facilitate tsetse miRNAs to 
interact with these symbionts. Are tsetse miRNAs localized to the bacteriome acting on Wigglesworthia transcripts to control 
expression? Due to differences in nutrient demands during pregnancy and through aging, how may tsetse miRNA expression 
be  impacted particularly toward the metabolic integration of Wigglesworthia symbionts?

 2. Salmonella produce small RNAs which alter the host phenotype and lead to increased virulence. The DNA sequence which 
produces these small RNAs may also be found in many other Gamma-proteobacteria, making it plausible that these microRNA-
like small RNAs have homologous roles in other bacteria. Do Wigglesworthia produce miRNA-like small RNAs to create 
favorable environments in the fly? Small bacterial RNAs represent an additional avenue for exploration toward advancing 
our understanding of interkingdom communication.

 3. What types of epigenetic mechanisms may regulate the influx/efflux of substrates at symbiont and host transporters which 
lie at the interface of the association?

 4. Pathogenic bacterial infections are associated with changes in the DNA methylation of several insects including members 
of Diptera (Ye et  al., 2013; LePage et  al., 2014), Lepidoptera (Baradaran et  al., 2019), and Hemiptera (Negri et  al., 2009). 
May beneficial symbionts also impact host DNA methylation? Establishing a cause-effect relationship and biochemical steps 
involved in these outcomes will be  essential toward our understanding of the regulatory role exerted by bacteria on 
insect physiology.

 5. What other epigenetic mechanisms may be  affected by the metabolites of microbiota? For example, a role in epigenetics 
through biotin (B7) provisioning by symbionts may also occur given that histone biotinylation plays a role in transcriptional 
repression of genes and DNA repair.
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