The expanding role of next-generation imaging in prostate cancer management: a cross-sectional survey exploring the clinical practice of uro-oncologists in North-Eastern Italy; on behalf of GUONE (Gruppo Uro-Oncologico del Nord-Est)

Fabio Matrone*, Luca Urso*, Rossano Girometti, Jerry Polesel, Matteo Sepulcri, Francesco Pierantoni, Paolo Artioli, Anna Caliò, Irene Campo, Alessia Cimadamore, Enrico Munari, Luca Ongaro, Valentina Orlando, Camilla Sachs, Alessandro Veccia, Alessandro Antonelli, Roberto Bortolus, Matteo Brunelli, Orazio Caffo, Laura Evangelista, Matteo Salgarello, Umberto Basso, Rocco De Vivo, Mario Gardi, Andrea Guttilla, Marco Andrea Signor, Fabio Zattoni, Filippo Alongi, Giampaolo Montesi* and Gianluca Giannarini*

Abstract

Background: Next-generation imaging (NGI) technologies such as multiparametric magnetic resonance imaging (mpMRI) and total-body NGI (tbNGI) methodologies including choline, fluciclovine or PSMA positron emission tomography/computed tomography (PET/CT), whole-body MRI (wbMRI), and PET/MRI are becoming increasingly available, but their use in different prostate cancer (PCa) settings is under debate. The Gruppo Uro-Oncologico del Nord-Est (GUONE) designed a survey to explore the current clinical practice of NGI utilization in a specific macro-region in North-Eastern Italy.

Methods: A cross-sectional survey was conducted by administering an anonymous online multiple-choice questionnaire to uro-oncologists practicing in North-Eastern Italy, using the Google Forms® platform. The use of NGI was investigated in the following settings: primary staging of PCa; management of biochemical (BCR) and local recurrence (LR); re-staging in metastatic hormone-sensitive PCa (mHSPC), metastatic castration-resistant PCa (mCRPC), non-metastatic CRPC (nmCRPC), and oligometastatic PCa (OMPC).

Results: In all, 100 uro-oncologists accessed and completed the survey. In primary N/M staging, the use of tbNGI increases in accordance with NCCN risk groups. Re-staging with choline and PSMA PET/CT is the prevalent choice in the case of BCR after radical prostatectomy. Moreover, when the PSA value rises, there is a parallel increased use of tbNGI. When an LR is suspected, PSMA PET/CT plus mpMRI is the most selected option. Re-staging with tbNGI (PSMA PET/CT) is preferred in mHSPC, mCRPC, and nmCRPC patients in case of progression of disease. Overall, there is a limited use of wbMRI and PET/MRI in all the settings investigated.

Conclusion: Our survey describes the expanding role of NGI modalities in the management of PCa patients, from primary staging and re-staging to management of advanced PCa and assessment of treatment response. Several controversial issues have emerged, which need to be addressed in prospective studies to develop a standardized and cost-effective NGI utilization.

Keywords: mpMRI, PET/MRI, prostate cancer, PSMA PET/CT, whole-body MRI

Ther Adv Urol

2025, Vol. 17: 1-13

DOI: 10.1177/ 17562872251321971

© The Author(s), 2025. Article reuse guidelines: sagepub.com/journalspermissions

Correspondence to:

Fabio Matrone

Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via F. Gallini 2, Aviano 33081,

fabio.matrone@cro.it

Luca Urso

Department of Translational Medicine, University of Ferrara, Ferrara, Italy

Rossano Girometti

Istituto di Radiologia, Dipartimento di Medicina (DMED), Università di Udine, Udine, Italy

Presidio Ospedaliero S. Maria della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy

Jerry Polesel

Cancer Epidemiology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy

Matteo Sepulcri

Radiation Therapy Unit, Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy

Francesco Pierantoni

Oncology Unit 3, Department of Oncology, Istituto Oncologico Veneto IOV – IRCCS, Padua, Italy

Paolo Artioli

UOC Medicina Nucleare, Istituto Oncologico Veneto IOV-IRCCS, Castelfranco Veneto, Italy

Anna Caliò

Matteo Brunelli

Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata Verona, University of Verona, Verona, Italy

Irene Campo

Radiology Unit, SC Radiologia Gorizia-Monfalcone, Monfalcone, Italy

Urology Volume 17

Alessia Cimadamore

Institute of Pathological Anatomy, Department of Medicine, University of Udine, Udine, Italy

Enrico Munari Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata

Verona, Verona, Italy

Luca Ongaro

Urological Clinic, Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy

Valentina Orlando

Oncology Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), Trieste, Italy

Camilla Sachs

Department of Radiology, Ospedale Ca' Foncello, Treviso, Italy

Alessandro Veccia Alessandro Antonelli

Urology Unit, Azienda Ospedaliera Universitaria Integrata Verona, University of Verona, Verona, Italy

Roberto Bortolus

Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy

Orazio Caffo

Department of Medical Oncology, Santa Chiara Hospital, Trento, Italy

Laura Evangelista

Department of Biomedical Sciences, Humanitas University, Milan, Italy

Matteo Salgarello

Nuclear Medicine Unit, Ospedale Sacro Cuore Don Calabria IRCCS, Negrar di Valpolicella, Italy

Umberto Basso

Oncology Unit 1, Department of Oncology, Istituto Oncologico Veneto IOV – IRCCS, Padua, Italy

Rocco De Vivo

Department of Oncology, Ospedale San Bartolo, Vicenza, Italy

Mario Gardi

Urology Clinic, Azienda Ospedale Universitaria di Padova, Padova, Italy

Background

Nowadays, prostate cancer (PCa) therapy is increasingly related to its clinical sub-settings, especially oligometastatic disease. Thus, it is crucial to accurately define the extent of metastatic burden, to correctly address effective therapeutic strategies, including chemotherapy, new androgen receptor pathway inhibitors (ARPis), radiometabolic approaches (177Lu-Prostate Specific Membrane Antigen [PSMA] and Radium–223) as well as metastasis-directed therapy (MDT). ^{1,2}

The phrase "next-generation imaging" (NGI) is generally employed in the PCa setting to refer to technologies such as multiparametric magnetic resonance imaging (mpMRI) as well as total body diagnostic methodologies (which go under the term total-body NGI, tbNGI) such as positron emission tomography/computed tomography (PET/CT) with PCa dedicated radiotracers (including [18F]/[11C]-choline, [18F]-fluciclovine and [68Ga]/[18F-] PSMA-ligands), whole-body MRI (wbMRI) and hybrid imaging techniques such as PET/MRI.

In the last few years, the diffusion of NGI technologies has brought a revolution in the diagnostic and therapeutic management of PCa and has provided clinicians with several diagnostic options.

Due to the lack of guidelines or clear recommendations derived from clinical data comparing NGI technologies with conventional imaging modalities (CIM), to date, their use in the different PCa settings remains widely debated.³

Therefore, there is currently a significant level of heterogeneity in their use. Furthermore, the under- or over-utilization of such techniques may jeopardize oncological outcomes and impact waiting lists as well as healthcare costs.

The present survey was conducted by the Gruppo Uro-Oncologico del Nord-Est (GUONE) to collect the opinion of uro-oncologists and to describe the current clinical practice in a specific macroregion in North-Eastern Italy.

Methods

On May 1st, 2023, a cross-sectional survey was conducted using the cloud-based platform Google Forms® by administering an anonymous online questionnaire consisting of thirty multiple-choice

questions to uro-oncologists (radiation oncologists, medical oncologists, and urologists) practicing in North-Eastern Italy and members of the genito-urinary tumor board at their respective Institution.

Topics of interest included radiologic investigations conducted in the primary staging of PCa, management of biochemical (BCR) and local recurrence (LR), re-staging in metastatic hormone-sensitive PCa (mHSPC), metastatic castration-resistant PCa (mCRPC), non-metastatic CRPC (nmCRPC), and oligometastatic PCa (OMPC).

All participants were invited to complete anonymously the electronic form within 60 days of the invitation. A reminder was sent after 30 days.

This survey did not require the approval of a referring Ethical Committee as there was no direct patient involvement.

The survey was anonymous and participation was voluntary. No one, including the researcher, could connect a respondent to his/her answer. Participants could choose not to participate in the survey, stop responding at any time, or skip questions. Therefore, in accordance with the European Union General Data Protection Regulation (GDPR) 2016/679, no informed consent or Ethical Committee approval was required.

Answers were reported as absolute numbers and percentages with a 95% confidence interval (CI) according to the Clopper–Pearson method. Differences across in answer distribution according to strata were evaluated through Fisher's exact test.

Results

Overall, 100 uro-oncologists accessed the survey and completed all sections with a 100% response rate for each item (Table 1). A total of 41%, 32%, and 27% of responders were urologists, medical oncologists, and radiation oncologists, respectively. Sixty percent of responders have been specialists for more than 10 years (Table 1).

The majority of participants reported to practice in the Veneto region (49%) and community hospitals (49%) (Table 1). Sixty-six percent of participants declared to devote more than half of their working time to uro-oncology. NGI

Table 1. Sociodemographic characteristics of survey participants.

Characteristics	n	%
Region		
Veneto	49	49.0
Friuli Venezia Giulia	26	26.0
Other	25	25.0
Specialty		
Urology	41	41.0
Radiation oncology	32	32.0
Medical oncology	27	27.0
Years of employment		
≤ 5	29	29.0
6–10	17	17.0
11–15	10	10.0
≥15	50	50.0
Trainee	5	5.0
Facility type		
Community hospital	49	49.0
University hospital	26	26.0
Research cancer center	14	14.0
Private center	11	11.0
Time devoted to uro-oncology		
80%-100%	27	27.0
50%-80%	39	39.0
30%-50%	24	24.0
<30%	10	10.0
NGI technologies available at y	our facility	
mp-MRI	88	88.0
¹⁸ F/ ¹¹ C-choline PET/CT	64	64.0
Whole body—MRI	31	31.0
⁶⁸ Ga/ ¹⁸ F-PSMA PET/CT	28	28.0
PET/MRI	16	16.0
¹⁸ F-Fluciclovine PET/CT	2	2.0

(Continued)

Table 1. (Continued)

Characteristics	n	%						
Number of NGI technologies available at your facility								
0	8	8.0						
1	22	22.0						
2	29	29.0						
3	22	22.0						
4	11	11.0						
5	8	8.0						
6	0	0						

mp-MRI, multiparametric magnetic resonance imaging; NGI, next-generation imaging; PET/CT, positron emission tomography/computed tomography; PET/MRI, positron emission tomography/magnetic resonance imaging.

technologies are available at the Institutions of the survey participants in a range from 16% (PET/MRI) to 88% (mpMRI) (Table 1).

Figure 1 depicts the distribution of NGI technologies by the Local Health Unit in the macroregion addressed by the survey.

Twenty-two percent, 29%, 22%, 11%, and 8% of participants have one up to five NGI technologies available at their Institutions, respectively; only 8% do not have any NGI method (Table 1).

The results of the survey are grouped by topic and they are summarized in the following sections.

Topic 1: Primary staging of PCa

The use of mpMRI for local staging (T-staging) is reported by half of the survey participants with no difference between risk groups: 52%, 57%, and 47% in the favorable-intermediate (FIR), unfavorable-intermediate (UIR), and high/very-high risk (HR/VHR) group, respectively (Supplemental Material Questionnaire, Q 2.1—2.3).

In the staging of regional and distant disease (N/M staging), the use of tbNGI technologies increases considerably in accordance with risk groups: 14% in the FIR, 42% in UIR, and 85% in the HR/VHR group (p<0.01; Q 2.1–2.3, Table 2). Only in the HR/VHR group, the use of tbNGI

Andrea Guttilla

Urology Clinic, Camposampiero Hospital, Camposampiero, Italy

Marco Andrea Signor

Radiation Therapy Unit, S. Maria della Misericordia University Hospital, Udine, Italy

Fabio Zattoni

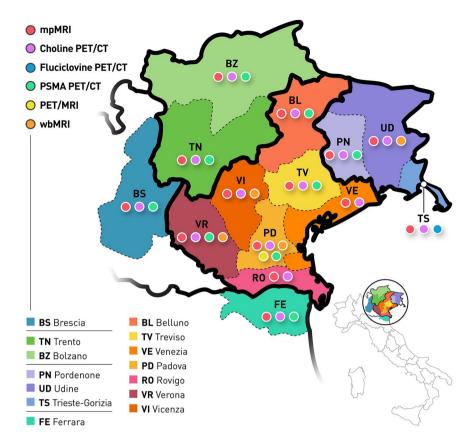
Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy

Filippo Alongi

Advanced Radiation
Oncology Department,
Ospedale Sacro Cuore Don
Calabria IRCCS, Negrar di
Valpolicella, Italy
University of Brescia

University of Brescia, Brescia, Italy

Giampaolo Montesi


Radiation Oncology Unit, Santa Maria della Misericordia Hospital, Rovigo, Italy

Gianluca Giannarini Urology Unit, S. Maria della Misericordia University Hospital, Udine, Italy

*First co-authors.

#First co-authors

Urology

Figure 1. Distribution of NGI technologies by Local Health Unit in North-Eastern Italy. NGI, next-generation imaging.

is prevalent as compared to CIM (85% vs 14%, Table 2). In the FIR group, 29% of survey participants ordered no staging investigation for regional and distant disease, whereas in the UIR and HR/VHR groups, only 3% and 1%, respectively, did not order any investigation (Table 2).

Among the tbNGI modalities, choline PET/CT (57%, 53%, and 52% in FIR, UIR, and HR/VHR groups, respectively) and PSMA PET (29%, 39%, and 40% in FIR, UIR, and HR/VHR group, respectively) are the prevalent choices between participants for N/M staging. The use of wbMRI or PET/MRI was inferior to 5% in all risk groups. No use of fluciclovine PET/CT was reported (Supplemental Material Questionnaire, Q 2.1–2.3).

Medical specialty and the number of years of professional practice of the responders did not significantly affect the choice between the two staging methods (CIM vs NGI) for each risk category.

More frequent reasons for ordering a tbNGI investigation at primary N/M staging are as follows: inconclusive CIM, HR/VHR group, and elevated PSA value at diagnosis (Q 2.4, Table 3).

Topic 2: Management of BCR and LR

For 80% of responders re-staging is not appropriate after primary therapy (surgery or radiotherapy) in the presence of biochemically controlled disease (Supplemental Material Questionnaire, Q 3.1). In the case of BCR following primary therapy and/or suspected LR, 47% of survey participants ordered a tbNGI investigation associated with local mpMRI, whereas 40% ordered a tbNGI only and 10% a mpMRI (Supplemental Material Questionnaire, Q 3.2). In this setting, PSMA PET/CT (80%) and choline PET (41%) were the most largely ordered tbNGI investigations by the survey responders. Only 3% of responders requested a PET/MRI; none requested a wbMRI or fluciclovine PET/CT (Supplemental Material Questionnaire, Q 3.2).

Table 2. Imaging technique utilization for staging purposes according to the patient's NCCN risk group.

Q 2.1-2.3	Risk category (according to NCCN)							
Which of the following imaging methods do you order for staging purposes?	2.1 Favorable— intermediate		2.2 Unfa interme	vorable— diate	2.3 High or very high			
	n	%	n n	%	n	%		
No N/M staging	29	29.0	3	3.0	1	1.0		
CIM	57	57.0	55	55.0	14	14.0		
tbNGI	14	14.0	42	42.0	85	85.0		
	Fisher's	exact test: p <	0.01					

In these scenarios, radiation oncologists, more frequently than medical oncologists and urologists, request tbNGI combined with mpMRI (p=0.03).

In the case of NGI suspicious for LR, 62% of survey responders require a biopsy confirmation in selected cases only, 35% do not require any biopsy, and 3% ordered a biopsy confirmation in all cases, respectively (Supplemental Material Questionnaire, Q 3.3).

Re-staging with tbNGI is the prevalent choice in patients candidate to salvage radiotherapy for BCR after radical prostatectomy, for any PSA range considered (0.2–0.5, 0.5–1, 1–2, \geq 2 ng/ml). Moreover, as the PSA value rises, there is a concomitant increased use of re-staging tbNGI investigations (Q 3.4–3.7, Table 4; p<0.01).

When PSA ranges between 0.2 and 0.5 ng/ml, 34% of survey participants do not re-stage patients (Table 4).

Among the tbNGI modalities, choline PET/CT and PSMA PET/CT are the most selected choices for each PSA range considered. In particular, PSMA PET/CT is the prevalent option for PSA range 0.2–0.5 ng/ml (87%), 0.5–1 ng/ml (84%), and 1–2 ng/ml (66%). Only for the PSA range ≥2 ng/ml, the greatest percentage of participants opted for choline PET/CT (67%) (Supplemental Material Questionnaire, Q3.4–3.7). For each PSA range, the use of wbMRI or PET/MRI was <5%. None of the responders employed fluciclovine PET/CT (Supplemental Material Questionnaire, Q 3.4–3.7). In the case of BCR following radical prostatectomy in patients

candidate to salvage RT, the most relevant factors associated with the request of tbNGI before RT are evidence of pN+ disease at histological examination (78%) and PSA doubling time (PSA DT) <6 months (64%) (Q 3.8, Table 3).

Topic 3. Re-staging in mHSPC

In the mHSPC setting, more than half of the interviewees (54%) would demand a tbNGI restaging in case of biochemical progression only when systemic therapy is ongoing, as well as in patients with both biochemical and clinical progression (56%) (Q 4.1, Q 4.3, Table 5). In both scenarios, smaller percentages of participants chose CIM or the modality used previously.

In patients with only biochemical or with both clinical and biochemical progression, PSMA PET/CT was the most largely used investigation, whereas the use of wbMRI or PET/MRI was ≤3%; fluciclovine PET/CT was not employed in this setting (Supplemental Material Questionnaire, Q 4.1, Q 4.3).

The presence of clinical progression in addition to biochemical progression does not significantly impact the re-staging modality (p = 0.42; Q 4.1, Q 4.3, Table 5). When asked about the criteria used to prompt for tbNGI assessment in case of biochemical progression, 56% identified PSA DT < 6 months as the most prominent one (Q 4.2, Table 3).

Topic 4. Re-staging in mCRPC

Similarly, to mHSPC, in the mCRPC setting, most participants (50%) choose a tbNGI investigation

Urology

Table 3. Attitude to the use of tbNGI for staging and re-staging in different patterns of disease.

Criterion	Number of criteria								% (95% CI)
	1	2	3	4	5	6	All	_	
2.4 At primary N/M staging, on wha	t ground	ds would y	ou consid	ler furthe	r investig	ation with	tbNGI?		
Inconclusive CIM	16	15	19	14	_	_	9	73	73.0 (63.0–81.2
High/very high-risk category	8	13	21	15	_	_	9	66	66.0 (55.8–75.0
High PSA value	3	9	18	15	_	_	9	54	54.0 (43.8–63.9
ISUP score 4–5	0	3	11	13	_	_	9	36	36.0 (26.8–46.3
Atypia histology	0	2	9	3	_	_	9	23	23.0 (15.4–32.7
None	0	0	0	0	_	_	0	2	2.0 (0.3–7.7)
Total	27	21	26	15	_	_	9		
3.8 Use of tbNGI in patients with BC or more additional parameters?	CR and c	andidate t	o salvage	RT after	radical pr	rostatecto	omy: is ba	sed on PSA	A value only, or on
PSA value only	3	1	2	3	2	2	2	15	15.0 (8.9–23.9)
PSAdt	3	4	11	19	17	8	2	64	64.0 (53.7–73.2
PSA velocity	1	0	5	12	9	6	2	35	35.0 (25.9–45.3
Post-surgery PSA	0	3	12	23	14	8	2	62	62.0 (51.7–71.4
Gleason Score/ISUP Grade Group	0	4	8	25	12	8	2	59	59.0 (48.7–68.6
R1	0	1	8	28	15	7	2	61	61.0 (50.7–70.4
N+	0	5	13	34	16	8	2	78	78.0 (68.4–85.4
Other	1	0	1	0	0	1	0	3	3.0 (0.8-9.2)
Total	8	9	20	36	17	8	2		
4.2 In a patient with mHSPC and bions would you consider tbNGI as the fir				sease du	ring syste	emic treat	ment, in v	which of the	e following cases
Never								5	5.0 (1.9–11.8)
Restaging at nadir PSA≥+25%	1	2	1	5	2	0	1	12	12.0 (6.6–20.4)
Previous treatment on primary tumor	1	2	3	8	2	0	1	17	17.0 (10.5–26.1
PSAdt < 6 months	11	14	15	12	3	0	1	56	56.0 (45.7–65.8
Low-burden disease	4	9	5	1	2	0	1	22	22.0 (14.6–31.6
BPFS < 6 months	1	11	14	7	3	0	1	37	37.0 (27.7–47.3
tbNGI in initial staging	12	14	12	7	2	0	1	48	48.0 (38.0–58.2
Type ongoing therapy	0	7	4	8	1	0	1	21	21.0 (13.8–30.5

(Continued)

Table 3. (Continued)

Criterion	Numb	er of crit	Total	% (95% CI)					
	1	2	3	4	5	6	All	_	
Other	1	1	0	0	0	0	1	3	3.0 (0.8–9.2)
Total	36	30	18	12	3	0	1		
5.2 In a patient with mCRPC with would you consider re-staging w		emical pro	ogression	of diseas	e during	systemic	therapy, ir	n which of t	he following cases
PSA increase ≥ 2 ng/ml	4	6	2	6	5	1	1	25	25.0 (17.1–34.8)
PSA ≥ Nadir+25%	2	4	2	5	4	1	1	19	19.0 (12.1–28.3)
PSAdt < 6 months	4	14	11	8	3	1	1	42	42.0 (32.3–52.3)
BPFS < 6 months	1	14	9	12	5	1	1	43	43.0 (3.3–53.3)
Low-burden disease	3	8	3	1	2	0	1	18	18.0 (11.3–27.2)
Mutational status	0	2	9	7	2	1	1	22	22.0 (14.6–31.6)
tbNGI at previous staging	17	16	12	9	4	1	1	60	60.0 (49.7–69.5)
Other	1	2	0	0	0	0	0	3	3.0 (0.8-9.2)
Total	32	33	16	12	5	1	1		

BPFS, biochemical progression-free survival; CIM, conventional imaging modalities; ISUP, International Society of Urological Pathology; mCRPC, metastatic castration-resistant prostate cancer; mHSPC, metastatic hormone-sensitive; PSA, prostate-specific antigen; PSAdt, prostate-specific antigen doubling time; RT, radiotherapy; tbNGI, total-body next-generation imaging.

Table 4. Re-staging investigations in patients candidate to salvage radiotherapy for BCR after radical prostatectomy according to PSA level.

Q 3.4-3.7	PSA lev	PSA level								
	3.4 0.2-0.5	3.4 0.2–0.5 ng/ml		3.5 0.5–1 ng/ml		3.6 1–2 ng/ml		ml		
	n	%	n n	%	n n	%	n n	%		
No	34	34.0	6	6.0	2	2.0	0	0.0		
Yes, with CIM	3	3.0	4	4.0	5	5.0	7	7.0		
Yes, with mp-MRI	3	3.0	4	4.0	0	0.0	1	1.0		
Yes, with tbNGI	60	60.0	86	86.0	93	93.0	92	92.0		
	Fisher's	s exact test: p	< 0.01							

CIM, conventional imaging modalities; mpMRI, multiparametric magnetic resonance imaging; PSA, prostate-specific antigen; tbNGI, total-body next-generation imaging.

in case of biochemical progression during treatment. tbNGI remains the preferred choice even when biochemical progression is associated with clinical progression (45%) (Q 5.1, Q 5.3, Table 5).

Both in patients with only biochemical and patients with clinical and biochemical progression, PSMA PET/CT was the most largely used investigation (Supplemental Material Questionnaire, Q 4.1, Q 4.3), whereas the use of

Urology

Table 5. Attitude to	investigation	utilization for	re-staging nu	rnoses according	to clinical setting
Table J. Attitude to	HIVESHUARION	utitization ioi	i c-stauliiu bu	I DUSES according	to cumical setulia.

Queries	Type of progression						
	Biochemic	al only	Biochemic	Biochemical and clinical			
	n	%	n n	%			
4.1 e 4.3 In cases of disease progression during systeorder for an mCSPC patient?	emic treatme	nt, which of the follow	wing re-staging inv	vestigations would you			
CIM	23	23.0	28	28.0			
The same exam was used at the mCSPC diagnosis	23	23.0	16	16.0			
tbNGI	54	54.0	56	56.0			
Fisher's exact test: $p = 0.42$							
5.1 e 5.3 In cases of disease progression during syston order for an mCRPC patient?	emic treatme	nt, which of the follow	wing re-staging inv	vestigations would you			
CIM	27	27.0	33	33.0			
The same exam used for mCRPC diagnosis	23	23.0	22	22.0			
tbNGI	50	50.0	45	45.0			
	Fisher's ex	kact test: $p = 0.66$					
6.3 e 6.4. In cases of disease progression during syst order for an nmCRPC patient?	emic treatme	ent, which of the follo	wing re-staging in	vestigations would you			
CIM	20	20.0	33	33.0			
The same exam was used for nmCRPC diagnosis	20	20.0	22	22.0			
tbNGI	60	60.0	45	45.0			
	Fisher's ex	kact test: <i>p</i> = 0.07					

CIM, conventional imaging modalities; mCRPC, metastatic castration-resistant prostate cancer; mHSPC, metastatic hormone-sensitive; nmCRPC, non-metastatic castration-resistant prostate cancer; tbNGI, total-body next-generation imaging.

> wbMRI or PET/MRI was ≤2%; fluciclovine PET/CT was not employed (Supplemental Material Questionnaire, Q 5.1, Q 5.3).

> As in the mHSPC setting, the presence of a simultaneous clinical and biochemical progression does not significantly modify the attitude of the participants (p = 0.66; Q 5.1, Q 5.3, Table 5). Having previously performed a tbNGI investigation represents the main reason (60%) for requesting a new tbNGI in case of biochemical progression during treatment for mCRPC (Q 5.2, Table 3).

Topic 5. Re-staging in nmCRPC

In the case of diagnosis of nmCRPC obtained with CIM, 14% of the participants declare that

they request a further investigation with tbNGI in all cases, 76% require a further investigation with tbNGI only in selected cases, while only 10% never require a further investigation with tbNGI (Supplemental Material Questionnaire, Q 6.1). The main reasons for requesting further investigation with tbNGI include the presence of a doubtful finding with CIM (54%) and a PSA-DT < 6 months (41%) (Supplemental Material Questionnaire, Q6.1).

PSMA PET/CT is the most requested diagnostic method in case of additional investigation with tbNGI of a CIM-based nmCRPC diagnosis (60%), whereas 30% of participants opt for a Choline PET/CT (Supplemental Material Questionnaire, Q6.2). The use of wbMRI or PET/MRI was ≤2%; fluciclovine PET/CT

was not employed (Supplemental Material Questionnaire, Q6.2).

In the nmCRPC setting, 60% of interviewees would request tbNGI re-staging in case of biochemical progression when systemic therapy is ongoing. Also for clinical and biochemical progression, the majority's choice falls on NGI (45%) although a tendency to significance was registered to indicate a greater propensity toward CIM in these conditions (p = 0.07; Q 6.3, Q 6.4, Table 5).

Both in patients with biochemical only or with clinical and biochemical progression, PSMA PET/CT was the most largely requested examination (Supplemental Material Questionnaire, Q 6.3, Q 6.4). In both patient groups, the use of wbMRI or PET/MRI was ≤2%; none of the responders requested a fluciclovine PET/CT (Supplemental Material Questionnaire, Q 6.3, O 6.4).

Topic 6. Re-staging in OMPC

In patients candidate for MDT for OMPC diagnosed with CIM, only 8% of participants declare that they never considered further investigation with tbNGI, 45% require further investigation with tbNGI in selected cases only, while 47% require an additional tbNGI investigation in all cases (Supplemental Material Questionnaire, Q1.1). Among those who require tbNGI only in selected cases, the presence of a PSA-DT < 6 months (33%) and a doubtful finding on the CIM (28%) represent the main reasons (Supplemental Material Questionnaire, Q 7.1).

With the last question, the participants were inquired on whether an imaging assessment is appropriate following MDT for OMPC, once biochemical control is achieved. Sixty-seven percent of participants declare that they do not perform any imaging tests in these scenarios, while 15% declare that they request the same test used before MDT (Supplemental Material Questionnaire, Q 7.2).

Discussion

This survey involved a large, multidisciplinary panel of professionals from North-Eastern Italy, mostly devoted to uro-oncology care, offering a reliable picture of current clinical practices in PCa.

Several key findings emerged. First, NGI techniques are increasingly accessible in daily clinical practice across North-Eastern Italy. PSMA PET/CT is still less accessible than choline PET/CT, and only a few participants can rely on PET/MRI or wbMRI. Therefore, it is our opinion that the results of this survey are representative of the availability and use of advanced diagnostic imaging technologies in many developed countries worldwide.

Second, our survey confirms that, when available, NGI techniques are routinely employed for the primary staging of PCa. Specifically, the use of mpMRI for T-staging stands at around 50%. Although the TNM classification still relies on digital rectal examination for cT-staging,⁴ mpMRI is now considered the gold standard both for detection and T-staging accuracy,^{5,6} leading to better risk stratification, which correlates with improved oncological outcomes,⁷ particularly for higher-grade tumors (ISUP ≥ 2).⁸

Regarding N/M staging, the survey confirms that the use of tbNGI increases in patients with higher NCCN risk groups. 3,7,9 PET/CT with PCa dedicated radiotracers provides high diagnostic accuracy for detecting occult metastases at CIM, guiding treatment decisions, and avoiding unnecessary local therapies. 10,11 This approach is supported by literature showing that PSMA PET/CT can reduce the costs associated with inaccurate staging. 12 Moreover, promising evidence suggests that PSMA PET/CT or PET/MRI could become a one-stop imaging modality for PCa detection and primary staging, particularly in patients with negative mpMRI scans. 13-15

Third, in suspected LR, most participants indicated that they would perform tbNGI alone, or in association with mpMRI. 7,16,17 Unsurprisingly, radiation oncologists were significantly more prone to select the association of both imaging methods, as the fusion of functional and anatomic images is useful for radiation therapy planning. 18 Interestingly, only 3% of respondents required biopsy confirmation for LR in any case. Although histological confirmation is recommended before local salvage treatment, 9 studies have demonstrated the reliability of PSMA PET/CT, especially when combined with mpMRI. 19–21

For patients with BCR after radical prostatectomy, the use of tbNGI increased with higher PSA values. While PSMA PET/CT is capable of

detecting recurrence even at low PSA levels, ^{19,22,23} some participants preferred to delay imaging until PSA exceeds 0.5 ng/ml. This preference likely reflects the limited availability of PSMA PET/CT and the lower sensitivity of choline PET/CT at these PSA levels. However, when PSA exceeds 2 ng/ml, choline PET/CT is commonly used, likely due to its broader availability. Despite its lower sensitivity, choline PET/CT remains a useful tool in BCR patients with PSA values above 2 ng/ml, particularly when PSMA PET/CT is less accessible.²⁴

In patients with advanced disease, including mHSPC and mCRPC, tbNGI is favored for restaging in case of disease progression. However, the added value of tbNGI in comparison to CIM remains unclear in metastatic PCa patients, 25 with updated guidelines suggesting that tbNGI should not be used routinely for treatment monitoring due to the lack of solid evidence. 9,26,27 Nevertheless, in patients with clinical progression, tbNGI could be useful for a better understanding of the patient's metastatic lesions, to guide eventual MDT.

In nmCRPC, tbNGI is preferred for re-staging of these patients, as PSMA PET/CT can identify metastases missed by CIM.28 However, the deriving stage migration is likely due to a more accurate diagnostic technology rather than to a true disease progression, configuring a "Will Rogers Phenomenon." Consequently, the real impact of the PSMA-derived upstaging on patients' outcomes is still undetermined.²⁹ In addition, PSMA expression can be reduced or absent in low differentiated lesions, limiting the utility of PSMA PET/CT in CRPC.³⁰⁻³² As such, combining PSMA PET/CT with other imaging modalities, such as choline PET/CT or [18F]-FDG PET/CT, should be considered for patients with discrepancies between imaging and clinical data.29

In patients with OMPC, the majority of respondents considered tbNGI prior to MDT. PSMA PET/CT is the most accurate tool for the early detection of lymph nodes and distant metastases and could potentially enable accurate MDT in OMPC patients.^{33,34} However, it remains unclear whether early detection of metastases through tbNGI improves survival outcomes or simply results in "lead-time bias."^{35,36} Despite these uncertainties, most interviewees do not refrain from tbNGI before MDT, and 14% even request tbNGI after MDT to evaluate treatment response.

While the survey highlights the good availability of NGI technologies in North-Eastern Italy, access is often hindered by long waiting lists. Notably, 14% of respondents indicated they would stage FIR PCa with tbNGI, in contrast to current guidelines, and 33% performed re-staging in OMPC patients after MDT, irrespective of PSA values. These findings suggest the need for better patient selection and more appropriate prescription practices to optimize access to NGI.

The survey's strengths include a large, experienced cohort of uro-oncologists and high response rates to a large number of items. However, its geographic focus limits the generalizability of the findings. Despite this, the results offer valuable insights into the use of NGI in different PCa settings.

In conclusion, this survey underscores the expanding role of NGI in the management of PCa in North-Eastern Italy. Further studies are needed to address the controversies identified in this survey and to develop an evidence-based, standardized, and cost-effective use of NGI.

Declarations

Ethics approval and consent to participate

Not applicable. This survey did not require the approval of a referring Ethical Committee as there was no direct patient involvement. The survey was anonymous and participation was voluntary. No one, including the researcher, could connect a respondent to his/her answer. Participants could choose not to participate in the survey, stop responding at any time, or skip questions. Therefore, in accordance with the European Union General Data Protection Regulation (GDPR) 2016/679, no informed consent or Ethical Committee approval was required.

Consent for publication

Not applicable.

Author contributions

Fabio Matrone: Conceptualization; Formal analysis; Investigation; Methodology; Project administration; Writing – original draft; Writing – review & editing.

Luca Urso: Conceptualization; Investigation; Methodology; Writing – original draft.

Rossano Girometti: Formal analysis; Writing – review & editing.

Jerry Polesel: Formal analysis.

Matteo Sepulcri: Formal analysis; Investigation; Writing – review & editing.

Francesco Pierantoni: Formal analysis; Investigation; Writing – review & editing.

Paolo Artioli: Formal analysis; Investigation; Writing – review & editing.

Anna Caliò: Formal analysis; Investigation; Writing – review & editing.

Irene Campo: Formal analysis; Investigation; Writing – review & editing.

Alessia Cimadamore: Formal analysis; Investigation; Writing – review & editing.

Enrico Munari: Formal analysis; Investigation; Writing – review & editing.

Luca Ongaro: Formal analysis; Investigation; Writing – review & editing.

Valentina Orlando: Formal analysis; Investigation; Writing – review & editing.

Camilla Sachs: Formal analysis; Investigation; Writing – review & editing.

Alessandro Veccia: Formal analysis; Investigation; Writing – review & editing.

Alessandro Antonelli: Formal analysis; Investigation; Writing – review & editing.

Roberto Bortolus: Formal analysis; Investigation; Writing – review & editing.

Matteo Brunelli: Formal analysis; Investigation; Writing – review & editing.

Orazio Caffo: Formal analysis; Investigation; Writing – review & editing.

Laura Evangelista: Formal analysis; Investigation; Writing – review & editing.

Matteo Salgarello: Formal analysis; Investigation; Writing – review & editing.

Umberto Basso: Formal analysis; Investigation; Writing – review & editing.

Rocco De Vivo: Formal analysis; Investigation; Writing – review & editing.

Mario Gardi: Formal analysis; Investigation; Writing – review & editing.

Andrea Guttilla: Formal analysis; Investigation; Writing – review & editing.

Marco Andrea Signor: Formal analysis; Investigation; Writing – review & editing.

Fabio Zattoni: Formal analysis; Investigation; Writing – review & editing.

Filippo Alongi: Formal analysis; Investigation; Writing – review & editing.

Giampaolo Montesi: Conceptualization; Investigation; Methodology; Writing – original draft.

Gianluca Giannarini: Conceptualization; Investigation; Methodology; Project administration; Writing – original draft; Writing – review & editing.

Acknowledgements

The authors would like to thank Daniela Michilin for her assistance in the final preparation of the manuscript and Lara Matrone for image optimization.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Italian Ministry of Health (Ricerca Corrente).

Competing interests

The authors declare that there is no conflict of interest.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

ORCID iDs

Fabio Matrone https://orcid.org/0000-0002-2292-0444

Anna Caliò https://orcid.org/0000-0001 -7352-6327

Luca Ongaro https://orcid.org/0000-0001

Camilla Sachs https://orcid.org/0000-0001-8855-4662

Andrea Guttilla https://orcid.org/0000-0002-6609-7402

Gianluca Giannarini https://orcid.org/0000-0002-6995-246X

Supplemental material

Supplemental material for this article is available online.

References

- Gillessen S, Bossi A, Davis ID, et al.
 Management of patients with advanced prostate cancer. Part I: intermediate-/high-risk and locally advanced disease, biochemical relapse, and side effects of hormonal treatment: report of the advanced prostate cancer consensus conference 2022. Eur Urol 2023; 83(3): 267–293.
- Gillessen S, Bossi A, Davis ID, et al.
 Management of patients with advanced prostate
 cancer-metastatic and/or castration-resistant
 prostate cancer: report of the advanced prostate
 cancer consensus conference (APCCC) 2022.
 Eur 7 Cancer 2023; 185: 178–215.
- Oprea-Lager DE, MacLennan S, Bjartell A, et al. European association of nuclear medicine Focus 5: consensus on molecular imaging and theranostics in prostate cancer. Eur Urol 2024; 85(1): 49–60.
- Paner GP, Stadler WM, Hansel DE, et al. Updates in the eighth edition of the tumor-nodemetastasis staging classification for urologic cancers. Eur Urol 2018; 73(4): 560–569.
- Abrams-Pompe RS, Fanti S, Schoots IG, et al. The role of magnetic resonance imaging and positron emission tomography/computed tomography in the primary staging of newly diagnosed prostate cancer: a systematic review of the literature. *Eur Urol Oncol* 2021; 4(3): 370–395.
- Mottet N, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer–2020 Update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 2021; 79(2): 243–262.
- 7. Cornford P, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate cancer–2024 update. Part I: screening, diagnosis, and local treatment with curative intent. *Eur Urol* 2024; 86(2): 148–163.
- 8. Oerther B, Engel H, Bamberg F, et al. Cancer detection rates of the PI-RADSv2.1 assessment categories: systematic review and meta-analysis on lesion level and patient level. *Prostate Cancer Prostatic Dis* 2022; 25(2): 256–263.
- Fendler WP, Eiber M, Beheshti M, et al. PSMA PET/CT: joint EANM procedure guideline/ SNMMI procedure standard for prostate cancer imaging 2.0. Eur J Nucl Med Mol Imaging 2023; 50(5): 1466–1486.
- Poulsen MH, Bouchelouche K, Høilund-Carlsen PF, et al. [18F]fluoromethylcholine (FCH) positron emission tomography/computed tomography (PET/CT) for lymph node staging

- of prostate cancer: a prospective study of 210 patients. *B\(\frac{7}{4}\)U Int* 2012; 110(11): 1666–1171.
- 11. Hofman MS, Lawrentschuk N, Francis RJ, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. *Lancet* 2020; 395(10231): 1208–1216.
- 12. Holzgreve A, Unterrainer M, Calais J, et al. Is PSMA PET/CT cost-effective for the primary staging in prostate cancer? First results for European countries and the USA based on the proPSMA trial. *Eur J Nucl Med Mol Imaging* 2023; 50(12): 3750–3754.
- 13. Caracciolo M, Castello A, Urso L, et al. The role of [68Ga]PSMA PET/CT for clinical suspicion of prostate cancer in patients with or without previous negative biopsy: a systematic review. *Cancers (Basel)* 2022; 14(20): 5036.
- Cereser L, Evangelista L, Giannarini G, et al. Prostate MRI and PSMA-PET in the primary diagnosis of prostate cancer. *Diagnostics (Basel)* 2023; 13(16): 2697.
- 15. Evangelista L, Zattoni F, Cassarino G, et al. PET/MRI in prostate cancer: a systematic review and meta-analysis. *Eur J Nucl Med Mol Imaging* 2021; 48(3): 859–873.
- 16. Metser U, Chua S, Ho B, et al. The contribution of multiparametric pelvic and whole-body MRI to interpretation of ¹⁸F-Fluoromethylcholine or ⁶⁸Ga-HBED-CC PSMA-11 PET/CT in patients with biochemical failure after radical prostatectomy. *J Nucl Med* 2019; 60(9): 1253–1258.
- 17. Francolini G, Timon G, Matrone F, et al. Postoperative radiotherapy after upfront radical prostatectomy: debated issues at a turning point-a survey exploring management trends on behalf of AIRO (Italian Association of Radiotherapy and Clinical Oncology). *Clin Transl Oncol* 2021; 23(12): 2568–2578.
- 18. Matrone F, Revelant A, Fanetti G, et al. Partial prostate re-irradiation for the treatment of isolated local recurrence of prostate cancer in patients previously treated with primary external beam radiotherapy: short-term results of a monocentric study. *Neoplasma* 2021; 68(1): 216–226.
- 19. Perera M, Papa N, Christidis D, et al. Sensitivity, specificity, and predictors of positive ⁶⁸Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. *Eur Urol* 2016; 70(6): 926–937.

- 20. Rasing M, van Son M, Moerland M, et al. Value of targeted biopsies and combined PSMA PET/ CT and mpMRI imaging in locally recurrent prostate cancer after primary radiotherapy. Cancers (Basel) 2022; 14(3): 781.
- 21. Joshi A, Roberts MJ, Perera M, et al. The clinical efficacy of PSMA PET/MRI in biochemically recurrent prostate cancer compared with standard of care imaging modalities and confirmatory histopathology: results of a single-centre, prospective clinical trial. *Clin Exp Metastasis* 2020; 37(4): 551–560.
- 22. Pereira Mestre R, Treglia G, Ferrari M, et al. Correlation between PSA kinetics and PSMA-PET in prostate cancer restaging: a meta-analysis. *Eur J Clin Invest* 2019; 49(3): e13063.
- 23. Lucchini R, Francolini G, Matrone F, et al. Attitudes, practices and perspectives on imaging strategies in prostate cancer: a national cross-sectional survey involving expert radiation oncologists on behalf of AIRO (Italian association of radiotherapy and clinical oncology) GU group. *Med Oncol* 2021; 39(1): 3.
- 24. Morigi JJ, Stricker PD, van Leeuwen PJ, et al. Prospective comparison of ¹⁸F-Fluoromethylcholine versus ⁶⁸Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. *J Nucl Med* 2015; 56(8): 1185–1190.
- 25. Alongi P, Laudicella R, Lanzafame H, et al. PSMA and choline PET for the assessment of response to therapy and survival outcomes in prostate cancer patients: a systematic review from the literature. *Cancers (Basel)* 2022; 14(7): 1770.
- 26. Grubmüller B, Rasul S, Baltzer P, et al. Response assessment using [Ga]Ga-PSMA ligand PET in patients undergoing systemic therapy for metastatic castration-resistant prostate cancer. *Prostate* 2020; 80(1): 74–82.
- Urso L, Lancia F, Ortolan N, et al. ¹⁸F-Choline PET/CT or PET/MR and the evaluation of response to systemic therapy in prostate cancer: are we ready? *Clin Transl Imaging* 2022; 10(6): 687–695.
- 28. Fendler WP, Weber M, Iravani A, et al. Prostatespecific membrane antigen ligand positron

- emission tomography in men with nonmetastatic castration-resistant prostate cancer. *Clin Cancer Res* 2019; 25(24): 7448–7454.
- Urso L, Filippi L, Castello A, et al. PSMA PET/ CT in castration-resistant prostate cancer: myth or reality? J Clin Med 2023; 12(22): 7130.
- 30. Bauckneht M, Marini C, Cossu V, et al. Gene's expression underpinning the divergent predictive value of [18F]F-fluorodeoxyglucose and prostate-specific membrane antigen positron emission tomography in primary prostate cancer: a bioinformatic and experimental study. *J Transl Med* 2023; 21(1): 3.
- 31. Filippi L, Urso L, Bianconi F, et al. Radiomics and theranostics with molecular and metabolic probes in prostate cancer: toward a personalized approach. *Expert Rev Mol Diagn* 2023; 23(3): 243–255.
- 32. Güzel Y, Kömek H, Can C, et al. Role of volumetric parameters obtained from ⁶⁸ Ga-PSMA PET/CT and ¹⁸F-FDG PET/CT in predicting overall survival in patients with mCRPC receiving taxane therapy. *Ann Nucl Med* 2023; 37(9): 517–527.
- 33. Mazzola R, Francolini G, Triggiani L, et al. Metastasis-directed therapy (SBRT) guided by PET-CT ¹⁸F-CHOLINE versus PET-CT ⁶⁸Ga-PSMA in castration-sensitive oligorecurrent prostate cancer: a comparative analysis of effectiveness. Clin Genitourin Cancer 2021; 19(3): 230–236.
- 34. Lanfranchi F, Belgioia L, Marcenaro M, et al. Oligometastatic prostate cancer treated with metastasis-directed therapy guided by positron emission tomography: does the tracer matter? *Cancers (Basel)* 2023; 15(1): 323.
- 35. Triggiani L, Mazzola R, Tomasini D, et al. Upfront metastasis-directed therapy in oligorecurrent prostate cancer does not decrease the time from initiation of androgen deprivation therapy to castration resistance. *Med Oncol* 2021; 38(6): 72.
- 36. Miura N, Pradere B, Mori K, et al. Metastasis-directed therapy and prostate-targeted therapy in oligometastatic prostate cancer: a systematic review. *Minerva Urol Nefrol* 2020; 72(5): 531–542.

Visit Sage journals online journals.sagepub.com/home/tau

Sage journals