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Abstract: With the rapid development of China’s economy, the environmental problems are becoming
increasingly prominent, especially the PM2.5 (particulate matter with diameter smaller than 2.5 µm)
concentrations that have exerted adverse influences on human health. Considering the fact that PM2.5

concentrations are mainly caused by anthropogenic activities, this paper selected economic growth,
economic structure, urbanization, and the number of civil vehicles as the primary factors and then
explored the nexus between those variables and PM2.5 concentrations by employing a panel data
model for 31 Chinese provinces. The estimated model showed that: (1) the coefficients of the variables
for provinces located in North, Central, and East China were larger than that of other provinces;
(2) GDP per capita made the largest contribution to PM2.5 concentrations, while the number of civil
vehicles made the least contribution; and (3) the higher the development level of a factor, the greater
the contribution it makes to PM2.5 concentrations. It was also found that a bi-directional Granger
causal nexus exists between PM2.5 concentrations and economic progress as well as between PM2.5

concentrations and the urbanization process for all provinces. Policy recommendations were finally
obtained through empirical discussions, which include that provincial governments should adjust
the economic and industrial development patterns, restrict immigration to intensive urban areas,
decrease the successful proportion of vehicle licenses, and promote electric vehicles as a substitute to
petrol vehicles.

Keywords: PM2.5 concentrations; GDP per capita; economic structure; urbanization rate; civil vehicles
amount; panel data model

1. Introduction

With the rapid development of China’s economy, people’s living standards have largely been
improved. Meanwhile, serious environmental problems have been triggered [1,2], especially that of
atmospheric pollution. Climate change, haze, and fog weather have gradually gained the attention of
people [3,4]. PM2.5 (particulate matter with a diameter smaller than 2.5 µm) has been deemed as the
main constituent of haze and fog weather, which can threaten human health because it can be inhaled
into the lungs [5,6]. Considering the detriments of PM2.5 on human beings and the negative influences
on the environment, the central government of China has the goal to decrease PM2.5 concentrations to
35 µg/m3 in 2030, which was defined as the standard during the ‘transition period’ by the World Health
Organization (WHO). To realize this goal, investigations into the influences of anthropogenic factors on
PM2.5 concentrations are particularly significant [7,8]. However, only a few studies have quantitatively
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analyzed the impact mechanism of anthropogenic factors on PM2.5 concentrations including economic
development, urbanization progress, economic structure, and population, which imply that the
dynamic nexus among these factors are not well understood [9]. A better understanding of the complex
nexus between those factors can help to discover the most significant anthropogenic factor on PM2.5

concentrations and the contribution degree of each anthropogenic factor to PM2.5 concentrations, which
are critical for policy formulators to develop effective policies to reduce atmospheric pollution.

Considering that the monitoring of PM2.5 concentrations started around 2013 in China, the scarcity
of long-range historical data for PM2.5 concentrations has brought about a shortage of studies that have
explored the nexus between anthropogenic factors and PM2.5 concentrations. Therefore, the primary
contributions of this paper include:

(1) Integrating the PM2.5 concentrations estimated through remote sensing [10] and data from
several significant anthropogenic factors, then quantitatively analyzing the long-run relationship
between these variables by utilizing a panel data theoretical framework for China’s 31 provinces, which
include Pedroni co-integration examination and panel Granger causal nexus examination.

(2) Quantitatively exploring the complex relationship between these factors, so that policy
implications can be suggested with regard to the various situations of different provinces, which are
valuable references to provincial-level policy formulators.

The reminder of this paper is divided into six sections. The literature review is summarized in
Section 2. The panel data theoretical framework is elaborated in Section 3. Section 4 describes the
selection of independent variables and introduces the data sources. Section 5 presents the empirical
analysis. Section 6 discusses the empirical results and proposes several pertinent policy suggestions.
Our conclusions are presented in Section 7.

2. Literature Review

Several methodological frameworks and quantitative analyses have been employed to investigate
the nexus among several socio-economic factors and atmospheric pollution. For example,
the multi-objective method has been utilized to explore the interactions of economy, environment,
and energy [11]. Moreover, the environmental Kuznets curve (EKC) assumption, combined with a
different econometric methodology, was employed to investigate the coordinated relationship between
economic development level, energy consumption, and environmental pollution [12]. Current studies
have verified the existence of an inverse U-shape assumption of EKC between economic development
and carbon dioxide (CO2) discharge [13–19], between economic progress and sulfur oxide (SO2)
discharge [20–22], between economic development and nitrous oxide (NOx) discharge [23,24] as well as
between economic progress and hazardous waste [25–27]. Furthermore, the system dynamics method
has also been utilized to discuss the complicated nexus between the environment and the economic
driving forces of the mining industry [28]. Additionally, the spatial econometric method [29–32] and
panel data model [33] were also applied to analyze the nexus between environmental pollution and
socio-economic factors.

Among the models summarized above, econometric models such as the panel data model
have been extensively employed in analyzing the relationship between environmental pollution
and economic driving forces. However, when compared with the large amount of research on CO2

emissions, SO2 discharge, and NOx emissions, only a few works have studied the nexus between
socio-economic drivers and PM2.5 concentration. The reasons for the scarcity of the literature in
exploring the nexus between socio-economic drivers and PM2.5 concentrations are twofold. First,
unlike conventional atmospheric pollutants such as SO2, NOx, and CO2, PM2.5 only threatens human
health and the environment in developing countries or cities other than developed regions, hence
only developing countries such as China, where haze and fog weather have frequently occurred in
recent years, have paid much more attention to the PM2.5 topic. Second, with the remarkable attention
given to PM2.5 recently, governments have started collecting PM2.5-related data in the last few years,
hence the lack of long-range data of PM2.5 has overwhelmingly restricted the research in the area of
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PM2.5. Considering that PM2.5 concentrations have achieved a relatively high level in most of China’s
provinces, the research on the nexus between anthropogenic factors and PM2.5 concentration is of great
urgency for policy formulation to curb the PM2.5 issue. Several studies have employed satellite data of
PM2.5 based on an econometric methodology to explore the influence of anthropogenic factors on PM2.5

concentrations. Li et al. [33] quantitatively analyzed the critical anthropogenic drivers responsible
for the increase of PM2.5 concentrations in China by utilizing the panel data method from 1999 to
2011 at a city level. Xu and Lin [34] discussed the nexus among several significant driving factors
and PM2.5 concentration at a regional level on the basis of the co-integration model. Hao and Liu [29]
analyzed the social and economic influencing forces of the PM2.5 concentrations of China’s 73 cities in
2013 based on the spatial econometric method. Ding et al. [35] researched the relationship between
economic development and PM2.5 pollution based on the spatial Durbin model by employing satellite
observation data of PM2.5 pollution for 13 cities in the Beijing–Tianjin–Hebei region from 1998 to 2016.

To fill the research gap in the complex relationship between anthropogenic forces and PM2.5

concentration, this paper analyzed the contribution of several significant anthropogenic factors to
PM2.5 concentration and the causal relationship between these variables in 31 of China’s provinces.
The critical contributions of this study are as follows. First, this research, for the first time to the
best of our knowledge, analyzed the contributions of economic progress, urbanization, economic
structure, and civil vehicles to PM2.5 concentration and the causality nexus between those variables
based on panel data methodology from the provincial perspective in China; and second, based on
the results of the empirical analysis, pertinent policy recommendations are provided with regard to
the basic situations of various provinces which will make assist greatly in restricting the increase of
PM2.5 concentrations. The results of the quantitative analysis in this paper can provide evidence for
examining the long equilibrium nexus among anthropogenic forces and PM2.5 concentrations for 31
provinces in China, and the critical policy implications can provide significant references for future
environmental conservation and the sustainable development of China.

3. Panel Data Methodology

This paper aimed to quantify the impacts of economic progress, urbanization, economic structure,
and civil vehicles on PM2.5 concentrations for 31 Chinese provinces by employing the panel data
methodology, which was first introduced into econometrics by Balestra [36]. In this research,
the long-run relationship between these variables is elaborated below:

ln PM2.5it = α+ β1 ln GDPPCit + β2 ln urit + β3 ln esit + β4 ln veit + εit (1)

where PM2.5it represents the PM2.5 concentrations; GDPPCit indicates the GDP per capita employed to
represent economic development; urit demonstrates the urbanization rate calculated by the proportion
of urban population to total population; esit illustrates the economic structure indicated by the ratio
of secondary industry added value to GDP; veit implies the number of civil vehicles; εit denotes the
error component; i = 1, 2, . . . , 31 are the researched provinces; t = 1, 2, . . . , T represents the time period;
β1, β2, β3 and β4 are the elasticity coefficients of anthropogenic factors, respectively; and α is the constant
term. All variables are in a natural logarithm form.

The panel data model can usually provide a large number of data points, thus the freedom degree
of the data can be increased and the collinearity degree between the explanatory variables can be
reduced. Meanwhile, the estimation effectiveness of the econometric model can be improved. However,
the form and effectiveness of the panel data model need to be verified by several examinations.
The elaborated panel data analysis procedures are as below:

Step 1: Panel data unit root examination
A precondition of the panel data analysis is to examine the stability of all data series. As commonly

acknowledged, panel unit root examinations are more valid than unit root examinations on the basis of
a univariate data sequence or cross sectional data sequences. This paper selected Levin, Lin and Chu
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(LL&C examination) [37] and Im, Pesaran, and Shin (IPS examination) [38] to examine the stability of
all data series. Taking the AR (1) (auto-regression) procedure of the panel data into consideration:

yit = ρiyit−1 + Xitδi + εit (2)

where ρi implies the auto-regression coefficients; Xit indicates the independent variables; and εit
demonstrates the error component. If

∣∣∣ρi
∣∣∣ < 1, then yit is deemed to be weakly stable. If

∣∣∣ρi
∣∣∣ = 1, then

yit embodies a unit root [39].
Both the LL&C and IPS examination methods utilize the augmented Dickey–Fuller (ADF)

specification as below:

∆yit = αiyit−1 +

pi∑
j=1

βi j∆yit− j + X′itδ+ εit (3)

where ∆ represents the first difference; pi demonstrates the lags number in regressions procedures; and
αi = ρi − 1 and ∆yit− j illustrate the lag components ( j = 1, 2, . . . , pi).

Step 2: Panel co-integration examinations
Panel co-integration examinations are extensively acknowledged for their large capacity

compared with the common time sequence co-integration [40,41]. The Pedroni panel co-integration
examination [42] was utilized in this paper to examine whether there was a co-integration nexus between
the selected variables. Unlike other conventional panel data methods, the Pedroni panel co-integration
examination model admits trend coefficients and heterogeneous intercepts for cross-sections [42]. Such
panel co-integration adheres to the form below:

yit = αi + δit + β1ix1i,t + β2ix2i,t + . . .+ βMixMi,t + ei,t (4)

where M indicates the amount of explanatory variables; β1i, . . . , βMi represent the slope coefficients;
and δi and αi are the trend and individual effects, respectively. The null assumption of the Pedroni
co-integration is that there is no co-integration, under which the residual ei,t in Equation (4) is integrated
at one order. The null assumption should be rejected based on some statistics. Pedroni defines
two kinds of examination statistics based on the residuals. One is related to the within dimension
method that embodies the panel ρ-statistic, panel v-statistic, panel ADF-statistic, and panel PP-statistic.
The other is the between dimension method, which contains the group PP-statistic, group ρ-statistic,
and group ADF statistic.

Step 3: Examination of the model form
There are three critical forms, which are regression models, random effects as well as fixed effects

models. The Hausman and the likelihood ratio (LR) test approach were utilized to examine the form of
the established panel data model [43].

Additionally, the panel data approach contains fixed intercepts and the coefficients form (Equation
(5)), varied intercepts and fixed coefficients form (Equation (6)), and the varied intercepts and coefficients
form (Equation (7)) [44].

yit = α+ βxit + µit (5)

yit = αi + βxit + µit (6)

yit = αi + βixit + µit (7)

where α indicates the intercept; β implies the coefficient; and µit illustrates the error term.
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To choose an appropriate panel data model from Equations (5)–(7), an F-test was applied to
determine whether the following null assumptions should be accepted via calculating the residual
sum of squares (RSS) of Equations (5)–(7).

H1 : β1 = β2 = · · · = βN

F1 =
(S2−S1)/[(N−1)k]
S1/[NT−N(k+1)] ∼ F((N − 1)k, N(T − k− 1))

(8)

H2 : α1 = α2 = · · · = αN, β1 = β2 = · · · = βN

F2 =
(S3−S1)/[(N−1)(k+1)]

S1/[NT−N(k+1)] ∼ F((N − 1)(k + 1), N(T − k− 1))
(9)

where F1 is calculated for testing the H1 assumption, which supposes that the coefficients are fixed and
the intercepts are varied; F2 is computed to verify the H2 assumption, which sets that the coefficients
and intercepts are fixed; and S1, S2, and S3 represent the RSS of Equations (5)–(7), respectively. N, T,
and k demonstrate the number of researched provinces, time periods, and independent variables.

If the F2 value is smaller than the significant value, the H2 assumption can be accepted, then
the panel data model is the type of Equation (5). If not, the F1 value needs to be calculated. If the F1

statistic is greater than the threshold value, the H1 assumption will be rejected, then the panel data
model is in the form of Equation (7), or else, it is in the form of Equation (6).

Step 4: Granger causal nexus examination
The Granger causal nexus examination method [45] was utilized to examine the causality between

PM2.5 concentrations, GDP per capita, economic structure, urbanization rate, and the number of civil
vehicles. This approach was put forward by Engle and Granger [46], who verified that if two data
series are co-integrated, a Granger causal nexus will exist between them. They also considered that if
the forecasted values of Y were more accurate through utilizing the data of X and Y than that of only
utilizing Y, it can be assumed that X Granger causes Y. The examination procedure of this approach can
be written as:

yt = α+
m∑

i=1

αiyt−i +
m∑

i=1

βixt−i + et (10)

xt = α+
n∑

j=1

α jyt− j +
n∑

j=1

β jxt− j + et (11)

Equation (12) illustrates the null assumption of the Granger causal nexus examination approach,
which means that ‘X does not Granger cause Y’, and Equation (13) is applied to examine if the Y
Granger causes X.

H0 : βi = 0, i = 1, 2, . . . , m (12)

H0 : β j = 0, j = 1, 2, . . . , n (13)

4. Determining Independent Variables and Data Sources

This paper took four provincial level megacities (Beijing, Shanghai, Tianjin, and Chongqing),
five autonomous regions, and 22 provinces as the research objects (termed as the 31 provinces for
convenience). The PM2.5 concentration data utilized in this paper were estimated by integrating the data
collected from the aerosol optical depth (AOD) for the moderate resolution imaging spectroradiometer
(MODIS) of the National Aeronautics and Space Administration and the multi-angle imaging
spectroradiometer (MISR) products imitated by the GEOS-Chem chemical conversion method [10,47].
It was verified that the satellite-based data were coherent with the ground-based data for China [10].
Therefore, we selected the PM2.5 concentration dataset [48] of the 31 Chinese provinces from 2000 to
2016 to analyze the relationship between anthropogenic forces and PM2.5 concentration.

The space distribution of the PM2.5 concentrations for 31 provinces in 2016 are illustrated in
Figure 1. It can be seen that most provinces were much higher than 35 µg/m3, which is the goal set
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by the central government to achieve by 2030. The PM2.5 concentrations in the provinces located in
central China, East China, North China and Xinjiang were higher than 50 µg/m3, which will pose
great negative influences on human health and the environment. Considering the situation of PM2.5

concentrations in China, an analysis of the influences of anthropogenic forces on PM2.5 concentrations
is of great urgency for policy formulation and sustainable development.
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The significant anthropogenic forces selected in this paper are economic progress, urbanization
rate, economic structure, and the number of civil vehicles. For economic progress, in light of the
previous literature, it can be easily seen that the pollutant emissions are highly related with average
income, which was utilized to represent economic progress [19,20,22]. Since several developed
countries have experienced the emergence of haze and fog weather during the industrialization process,
it is possible that the frequent occurrence of such weather is an essential process for China through the
progress of the economy. Therefore, the development level of the economy can have great influences
on PM2.5 concentrations. We selected GDP per capita to represent the economic progress, and the
contribution of GDP per capita in the 31 provinces to PM2.5 concentrations was quantified.

For urbanization, previous studies have verified that the eco-environment was greatly influenced
by the progress of urbanization and that atmospheric pollutants increased with speeding-up the
process of urbanization [49–52]. Therefore, the urbanization process was also treated as a critical
anthropogenic force of PM2.5.

For economic structure, since energy consumption intensive industries and pollutant discharging
concentrated industries in secondary industry greatly contribute to various pollution emissions that
threaten the environmental and atmospheric quality, the secondary industry in GDP was selected to
demonstrate the economic structure and was taken as an explanatory variable.

For the number of civil vehicles, current investigations have identified that vehicle exhaust gas
containing NOx, black carbon, and various pollutants are crucial sources of PM2.5 [53]. Therefore,
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the number of vehicles also exerts effects on PM2.5 concentration. In terms of the related available data,
the number of civil vehicles was chosen as an explanatory variable.

The data of the above selected variables from 2000 to 2016 with regard to the 31 provinces were
collected from the China Statistical Yearbook [54]. Due to the limited space, the descriptive statistics of
these variables from 2014 to 2016 are listed in Table 1. The GDP per capita was converted into a constant
price by taking 2000 as the fundamental period. All of the variables are in a natural logarithm form.

Table 1. Descriptive statistics of parts of variables.

Variables Units
2014 2015 2016

Mean S.D. M.V. Mean S.D. M.V. Mean S.D. M.V.

PM2.5 µg/m3 57.04 17.34 56.33 48.88 15.31 51.25 45.51 14.35 45.17
GDPPC yuan/ren 50,742 21,721 40,648 54,727 23,355 44,225 58,783 25,034 47,586

ur % 55.76 13.27 53.79 56.64 12.68 55.12 57.63 12.28 55.34
es % 45.68 7.74 47.73 43.04 7.62 45.70 41.41 7.55 44.52
ve 104 470.91 351.30 384.88 525.30 387.29 435.37 599.18 443.42 491.23

Note: S.D. means standard deviation and M.V. is the median value.

Table 2 illustrates the correlations between the PM2.5 concentration and the selected anthropogenic
factors for the dataset of the panel data model. It indicates that the selected anthropogenic factors had a
high correlation degree with PM2.5 concentration, which demonstrate that the economic development
level, economic structure, urbanization, and number of civil vehicles play a significant role in the
increase in PM2.5 concentration.

Table 2. Correlations for the panel dataset.

Variables PM2.5 GDPPC ur es ve

PM2.5 1 0.985 * 0.897 * 0.853 * 0.792 *
GDPPC 1 0.886 * 0.802 * 0.603 *

ur 1 0.714 * 0.712 *
es 1 0.654 *
ve 1

Note: All variables are in a natural logarithm form. * demonstrates a 5% significance level.

5. Empirical Analysis

This paper studied the relationship between PM2.5 concentration, economic progress, urbanization
rate, economic structure, and the number of civil vehicles in 31 Chinese provinces by utilizing panel
data methodology. The empirical analysis was processed as below.

Step 1: Examining the cross-sectional dependence
Since the panel data unit root examination approaches are divided into two categories: one that

contains the LL&C examination [37] and IPS examination approaches [38], and the other embodies the
approaches put forward by Bai and Ng [55], Moon and Perron [56], and Pesaran [57]. To determine the
proper approaches, the cross-sectional dependence needed to be examined. The Pesaran examination
method [58], proposed by Pesaran, was employed in this paper, and the results are listed in Table 3.
As the p-value in Table 3 indicates, the null assumption was accepted at the 10% significance level.
Hence, the approaches utilized to examine the unit root should not consider cross-sectional dependence.

Table 3. Cross-sectional dependence examination results.

Cross-Sectional Dependence Examination Pesaran’s Test p-Value

Pesaran examination 2.1257 0.1016

Step 2: Examining the panel unit root
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The approaches utilized to conduct panel unit root examinations do not need to take cross-sectional
dependence into account, hence the LL&C test approach and IPS test approach were selected.
As demonstrated in Table 4, in accordance with the probability statistics in the brackets of LL&C and
IPS test results with regard to different variables, all variables were unstable in natural logarithm form.
Then after first differencing, all variables were stationary as the probability statistics were smaller
than the threshold values. Therefore, the PM2.5 concentrations and four explanatory variables were
stationary after first differenced.

Table 4. Panel unit root examination results.

Form Variables L.L&C IPS Conclusions

Level

lnPM2.5
0.7638 0.5025 Non-stationary

(0.7125) (0.4623)

lnGDPPC
0.3657 1.5634 Non-stationary

(0.6435) (0.8547)

Lnur
−0.5636 −0.8726 Non-stationary
(0.1321) (0.2821)

Lnes
1.7823 2.2531 Non-stationary

(0.7238) (0.8942)

Lnve
2.7835 1.7629 Non-stationary

(0.7968) (0.8864)

First Differenced

∆lnPM2.5
−3.9043 −3.2764 Stationary

(0.0186) b (0.0321) b

∆lnGDPPC
−3.4967 −3.9839 Stationary

(0.0003) a (0.0121) b

∆lnur
−3.9721 −3.4533 Stationary

(0.0008) a (0.0011) a

∆lnes
−4.0125 −3.2045 Stationary

(0.0001) a (0.0034) a

∆lnve
−3.2636 −3.0695 Stationary

(0.0025) a (0.0129) b

Notes: The values in brackets demonstrate the probability statistics. If the probability statistics are smaller than the
threshold value, the data series are stable. a implies the 1% confidence level, and b indicates the 5% confidence level
(which are the same for Table 5, Table 6 and Table 8).

Table 5. Panel co-integration examination results.

Test Method Test Statistics Value Probability

Pedroni

Panel v-Statistic −2.7521 0.0217 b

Panel ρ-Statistic −2.2341 0.0308 b

Panel PP-Statistic −6.7238 0.0005 a

Panel ADF-Statistic −2.0316 0.0201 b

Group ρ-Statistic −2.3074 0.0103 b

Group PP-Statistic −7.4567 0.0000 a

Group ADF-Statistic −2.3519 0.0231 b

Westerlund Panel LM test statistic 0.65 0.8971



Int. J. Environ. Res. Public Health 2019, 16, 2926 9 of 18

Table 6. Panel data model effect identification results.

LR Examination Results Statistic Prob.

Cross-section F 32.693647 0.0000 a

Hausman Examination Results

Chi-Square Statistic Prob.

Cross-Section Random 38.453127 0.0000 a

Variables Fixed Random Var(Diff.) Prob.
GDP per capita 0.515858 2.134375 0.134375 0.0000 a

Urbanization rate 0.347378 1.372033 0.270118 0.0487 b

Economic structure 0.448862 0.954043 0.049523 0.0232 b

The number of civil vehicles 0.449145 0.951714 0.086230 0.0322 b

Step 3: Examining the panel co-integration
After confirming that all data series were stable after first differencing, we examined whether

all data series were co-integrated before establishing the panel data model. Pedroni’s co-integration
examination methodology was selected and the examining statistics are displayed in Table 5.
In accordance with the probability values of various statistics, they were all smaller than the threshold
value. Hence, it showed that there existed a long-run co-integration relationship between these variables.

Regarding the existence of structural breaks in the data series, we also employed the Westerlund
panel co-integration test methodology, as proposed by Westerlund, to verify the evidence of the
co-integration nexus among all variables. The details of the Westerlund panel co-integration test
methodology can be referred to in [59]. The null hypothesis of the Westerlund panel co-integration
test methodology is co-integration. According to the results listed in Table 5, the probability of the
test statistic was 0.8971, which means that the null hypothesis of co-integration cannot be rejected.
Therefore, it verified that a co-integration relationship exists between all variables.

Step 4: Identifying the model form
After verifying that a long-term co-integration relationship existed among all variables, we

identified the model form to establish an appropriate panel data model. First, the random effect or
fixed effect of model was examined by the LR and Hausman examination approaches, the results of
which are illustrated in Table 6. The probability statistics of the LR examination were less than 1%,
which demonstrates that the model should be fixed effect. The results of the cross-section random and
probability statistics with regard to various variables in the Hausman examination also illustrate that
the model was fixed effect.

Next, we needed to determine the model type from Equations (5)–(7), and the F-test was utilized
to select the proper model type, and the results are presented in Table 7. To calculate the F-statistics,
three RSS values of Equations (5)–(7) expressed by S1, S2, and S3 should first be obtained. Then, the F1

and F2 statistics can be computed in terms of Equations (8) and (9). After that, the model type can
be identified by comparing the F1 and F2 statistics with the threshold values. If the F2 statistic is less
than the threshold value F2,α((N − 1)(K + 1),(NT − N(K + 1)), the model can be written as Equation (5).
If not, the F1 statistic needs to be examined. If the F1 statistic is greater than the threshold value F1,α((N
− 1)K,(NT − N(K + 1)), the model can be expressed as Equation (7), otherwise, the model is in the form
of Equation (6). Considering the results of the F-statistics, both the F1 and F2 statistics were greater
than the threshold values at the supposed confidence level. Hence, the estimated model was a varied
intercepts and coefficients model.

Table 7. F-test results.

S1 S2 S3 F1 F2

0.04372 0.69041 0.87660 7.64326 7.87508
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Step 5: Estimating the panel data model
In terms of the fundamental examinations above, the model was established based on the fixed

effect with varied coefficients and intercepts taking PM2.5 concentration as the dependent variable, and
GDP per capita, urbanization rate, economic structure, and the number of civil vehicles as explanatory
variables for the 31 Chinese provinces. The evaluated coefficients and t-statistics listed in brackets are
shown in Table 8. As implied from the t-statistics, all coefficients were significant at the 1% (represented
by a) or 5% (represented by b) significance level. The R2 value was 0.9926, which indicates that the
fitting effect of the established model was relatively high. The F-statistic was 131.86, higher than
the threshold value, which indicates that the evaluated coefficients were significant. Therefore, the
established model was verified to be significant and effective.

Table 8. The evaluated coefficients for the panel data model.

Provinces
Variables

lnGDPPC lnur lnes lnve

North China

Beijing 0.1312 0.1243 0.0987 0.0767
(4.2389) a (3.5256) b (4.0967) a (4.8048) a

Tianjin 0.1302 0.1198 0.0912 0.0699
(4.0823) a (3.0278) b (3.8923) a (4.5623) a

Hebei
0.1218 0.0834 0.1064 0.0653

(4.0174) a (3.6571) b (4.9937) a (3.8971) a

Shanxi
0.0912 0.0821 0.0812 0.0621

(3.5467) b (3.8901) a (3.9937) a (3.4127) b

Inner Mongolia 0.1178 0.0701 0.0756 0.0598
(3.4412) b (3.7029) b (3.6912) b (3.4567) b

Northeast
China

Liaoning 0.1134 0.0917 0.0859 0.0723
(3.4268) b (3.7924) a (3.7529) b (3.9716) a

Jilin 0.1067 0.0851 0.0872 0.0662
(3.3987) b (3.2496) b (3.8196) a (3.5917) b

Heilongjiang 0.0927 0.0819 0.0692 0.0701
(3.4927) b (3.7624) a (3.7219) a (3.4103) b

East China

Shanghai 0.1301 0.1299 0.0701 0.0512
(3.8219) a (4.1716) a (3.8129) a (6.1714) a

Jiangsu 0.1288 0.0988 0.0867 0.0836
(3.7918) a (4.0102) a (3.4186) b (4.5129) a

Zhejiang 0.1256 0.0964 0.0859 0.0825
(3.6216) b (3.9921) a (3.6927) b (4.0321) a

Anhui
0.0889 0.0811 0.1102 0.0619

(3.4356) b (3.7291) a (3.6927) a (3.4641) b

Fujian 0.1112 0.0976 0.0979 0.0561
(3.5621) b (3.6215) b (3.5729) b (3.5743) b

Jiangxi 0.0877 0.0814 0.1083 0.0501
(3.4218) b (4.0291) a (3.6420) b (3.9204) a

Shandong 0.1109 0.0902 0.0923 0.0868
(3.6109) b (3.9413) a (3.7124) a (4.0371) a

Central China

Henan
0.1217 0.0812 0.0843 0.0818

(3.5192) b (3.4982) b (4.0327) a (3.9947) a

Hubei
0.1163 0.0859 0.0798 0.0721

(3.6492) b (3.6132) b (3.7986) b (3.6125) b

Hunan
0.1098 0.0727 0.0782 0.0726

(3.5617) b (3.4697) b (3.6961) b (3.8219) a



Int. J. Environ. Res. Public Health 2019, 16, 2926 11 of 18

Table 8. Cont.

Provinces
Variables

lnGDPPC lnur lnes lnve

South China

Guangdong 0.1068 0.1001 0.0767 0.0871
(3.9031) a (3.6952) b (3.5829) b (4.2069) a

Guangxi 0.0801 0.0785 0.0782 0.0514
(3.8129) a (3.7934) b (3.6027) b (4.0204) a

Hainan
0.0712 0.0602 0.0501 0.0329

(3.8041) b (3.7549) b (3.5123) b (3.8024) b

Northwest
China

Shaanxi
0.1132 0.0835 0.1083 0.0753

(4.0348) a (3.8157) a (3.8927) a (4.0128) a

Gansu
0.0757 0.0631 0.0746 0.0479

(4.1279) a (3.6218) b (4.0182) a (3.9629) b

Qinghai 0.0769 0.0717 0.0859 0.0388
(3.5938) b (4.0225) a (3.8864) a (4.0031) a

Ningxia 0.1071 0.0874 0.0821 0.0425
(3.9082) b (3.9205) a (3.9764) a (3.7059) a

Xinjiang 0.1049 0.0789 0.0725 0.0633
(4.5128) a (4.2981) a (3.8094) a (3.9421) a

Southwest
China

Chongqing 0.1147 0.0911 0.0767 0.0614
(4.2571) a (4.4468) a (3.9647) a (3.8733) b

Sichuan
0.0908 0.0803 0.0808 0.0744

(3.9044) b (4.3781) a (4.1163) a (3.9917) b

Guizhou
0.0745 0.0647 0.0733 0.0609

(3.9256) a (3.9862) a (3.8022) b (3.6865) b

Yunnan
0.0724 0.065 0.0719 0.0715

(4.0322) a (3.8874) b (3.7906) b (3.7162) b

Tibet
0.073 0.0401 0.0688 0.0299

(4.1175) a (3.6549) b (3.5853) b (3.6104) b

Since all of the variables are written in the logarithm form, the coefficients indicate elasticities
which can demonstrate the contributions of various explanatory variables to PM2.5 concentration.
Through comparatively analyzing the coefficients, we obtained several conclusions:

(1) Generally, the coefficients of the explanatory variables for the provinces in North China, Central
China, and East China were much larger than that of the other provinces. Since some of the provinces
in North China, Central China, and East China are megacities with a high urbanization rate and large
population, and some of the provinces’ development depends on heavy industry and manufacturing
industry, the selected anthropogenic factors were all deemed as the critical driving forces of high PM2.5

concentrations. The higher the level these factors realize, the greater contributions they will make
to the increase in PM2.5 concentration. Therefore, compared with the relatively backward provinces
located in Northwest China and Southwest China, the contributions of the anthropogenic factors of
these provinces make greater contributions to the PM2.5 concentration.

(2) By comparing the coefficients of different variables of the corresponding provinces, it can be
concluded that GDP per capita makes the largest contribution to PM2.5 concentration, the number of
civil vehicles had the least impact on PM2.5 concentration, and the contribution degree of urbanization
and economic structure relied on the urbanization progress and industrialization progress of different
provinces. For Hebei, Inner Mongolia, Anhui, Henan, and Hunan, which have a relatively high
proportion of secondary industry and a low level of urbanization, given that the economic development
in these provinces depends highly on the secondary industry, thus leading to a high level pollutant
emissions, the coefficients of the urbanization rate were less than that of economic structure. In contrast,
for Beijing, Tianjin, Shanghai, and Guangdong, which have high levels of urbanization and a relatively
large scale of tertiary industry, the contributions of urbanization in these provinces were much greater
than that of industrialization on PM2.5 concentration.
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(3) By comparing the coefficients of the same variable with regard to different provinces, it could
be seen that when considering one anthropogenic factor, if the development of this factor for one
province reaches a correspondingly high level, then the contribution of this anthropogenic factor to
PM2.5 concentration would be relatively great. Taking GDP per capita as an example, the GDP per
capita of Beijing, Tianjin, Shanghai, Jiangsu, and Zhejiang ranked the top five among the 31 provinces,
and the contributions of GDP per capita of these five provinces to PM2.5 concentration also ranked in
the top five when compared with other provinces.

Step 6: Examining the Granger causal nexus
The Ganger causal nexus examination results are illustrated in Figure 2. As can be seen in

Figure 2, for all 31 provinces in China, the bi-directional Granger causal nexus existed between PM2.5

concentration and GDP per capita, and between PM2.5 concentration and urbanization rate. For Beijing,
Tianjin, and Shanghai, there was a uni-directional causal nexus from economic structure to PM2.5

concentration. For Hainan and Tibet, there existed uni-directional causality from economic structure to
PM2.5 concentration, and from the number of civil vehicles to PM2.5 concentration. For Qinghai and
Ningxia, a uni-directional causality existed from the number of civil vehicles to PM2.5 concentration.
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In terms of the Granger causal nexus examination results, it can be seen that:
(1) For all 31 provinces, a mutual influential relationship exists between PM2.5 concentration and

economic development, and between PM2.5 concentration and urbanization, which implies that the
accelerating development of economy and urbanization will lead to an increase in PM2.5 concentration,
while a decrease in PM2.5 concentration will bring about the deceleration of economic development
and urbanization progress.

(2) For provinces with a lower number of civil vehicles like Hainan, Tibet, Qinghai, and Ningxia
as well as provinces with a small scale of secondary industry like Beijing, Tianjin, and Shanghai,
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a uni-directional causal nexus running from economic structure or the number of civil vehicles to PM2.5

concentration exists.

6. Discussion and Policy Recommendations

The existing literature has illustrated that the growth in PM2.5 concentration is critically influenced
by anthropogenic forces [7]. Based on previous studies, this paper selected economic progress,
economic structure, urbanization, and the number of civil vehicles as the critical anthropogenic
factors that can reflect the developing tendency of the society and economy, and quantified the
contributions of these factors to PM2.5 concentration by employing the panel data model based
on the data from 31 provinces in China. The estimated coefficients indicate that by comparing the
coefficients of different variables, the GDP per capita had the largest contribution to PM2.5 concentration,
the number of civil vehicles had the least contribution to PM2.5 concentration, and the contributions
of urbanization and economic structure relied on the urbanization progress and industrialization
progress of different provinces. By comparing the coefficients of the same variable with regard to
different provinces, we observed that if the development of the factor for one province reached a
correspondingly high level, then the contribution of this anthropogenic factor to PM2.5 concentration
would be relatively great. These results are different from a previous study [33] that used the panel
data model to investigate the effect of economic growth, urbanization, and industrialization on PM2.5

concentration in China. In this study, industrialization was deemed as the most significant factor
influencing PM2.5 concentration in industry-oriented, service-oriented, and heavily PM2.5 polluted
provinces, and economic growth exerted more influence than the other factors on PM2.5 concentration
in agriculture-oriented provinces. The Granger causal nexus examination results implied that a
bi-directional causal relationship exists between PM2.5 concentration and economic development, and
between PM2.5 concentration and urbanization. However, in [33], a bi-directional causal relationship
existed between PM2.5 concentration and economic development in total panel, agriculture-oriented
provinces, and heavily PM2.5 polluted provinces, and a bi-directional causal relationship existed
between PM2.5 concentration and urbanization in the 31 provinces, except in heavily PM2.5 polluted
provinces. Additionally, for provinces with a lower number of civil vehicles like Hainan, Tibet,
Qinghai, and Ningxia as well as provinces with a small scale of secondary industry like Beijing,
Tianjin, and Shanghai, a uni-directional causal nexus running from economic structure or the number
of civil vehicles to PM2.5 concentration existed in these provinces. While in [33], a bi-directional
causal relationship existed between PM2.5 concentration and economic structure in all provinces.
Since econometrics methods are sensitive to data sequences, the differences in results are largely due to
the inconsistent selection of variables and the range of the data as well as different regional divisions.

Considering the empirical analysis results, we can deduce that if China’s provinces maintain their
current socio-economic developing pattern, the restriction of PM2.5 will exert undesirable influences
on the progress of the economy, urbanization, and industrialization due to the bi-directional causality
between these factors and PM2.5 concentration for most of the provinces in China. Therefore, policy
makers need to make an appropriate balance of the restriction in the increase in PM2.5 and the progress
of the economy, urbanization, and industrialization.

For the provinces with correspondingly large scales of secondary industry such as Hebei, Jilin,
Inner Mongolia, Shanxi, Liaoning, Jiangsu, Anhui, Zhejiang, Shandong, Fujian, Jiangxi, Hubei,
Henan, Guangdong, Hunan, Shaanxi, Guangxi, Ningxia, Qinghai, Chongqing, and Sichuan, of which
their economic development primarily relies on the economic output of heavy and manufacturing
industries, the contributions of economic structure in these provinces are relatively high. The high
correlation between PM2.5 concentration, economic progress, and economic structure in these provinces
urgently requires provincial governments to explore a novel developing pathway to adjust the economic
development pattern from one pattern that consumes massive resources and energy with slow economic
progress and a large amount of pollutants, to another pattern that relies on innovation technologies with
less resource consumption, thus accelerating economic development and reducing pollution emissions.
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Furthermore, in consideration of the serious situation of the overcapacity of heavy industries leading
to large pollutant emissions and the requirement of sustainable development, China’s industrial
development pattern will have to be adjusted in the foreseeable future. Although the transformation
of an industrial development pattern may be a difficult way, the following strategies to accelerate
the transformation process can be taken: (1) provincial governments should encourage enterprises
to increase investment into the research and development of high and novel technologies so that the
industrial progress drivers can be converted from conventional resources and energy consumption to
innovation and high technologies; (2) provincial governments should accelerate the elimination of
backward production capacity; (3) the PM2.5 discharging standard of industrial enterprises should be
improved to encourage enterprises to improve their pollutant treatment techniques; and (4) provincial
governments should accelerate the adjustment of economic structure and prompt the development of
the third industry.

For provinces with a high urbanization rate such as Beijing (achieving 86.50% in 2016), Tianjin
(realizing 82.93% in 2016), and Shanghai (reaching 87.90% in 2016), the contributions of the urbanization
rate of these provinces make greater contributions to the PM2.5 concentration when compared with
provinces with a relatively low level of urbanization. Existing studies have demonstrated that cities with
a correspondingly high level of urbanization usually have large PM2.5 concentrations [33]. Considering
the urbanization process goal for China to achieve 60% in 2020 [60], we cannot decelerate the progress
of urbanization to curb PM2.5 concentrations. Instead, provincial governments can restrict immigration
to urban areas that are intensive and encourage residents to move into urban areas with low levels of
urbanization so that the pressure of provinces with a high urbanization rate can be relieved, and the
PM2.5 concentrations of these provinces can be restricted to increase. Additionally, the urbanization
rate of backward provinces can be appropriately improved, so that the urbanization progress goal for
the whole of China can be realized.

For provinces with a large number of civil vehicles, although the contribution of the number of
civil vehicles was the least when compared with GDP per capita, economic structure, and urbanization
rate, the contribution of the number of civil vehicles in provinces with a large a number of civil
vehicles is greater than that of provinces with small numbers of civil vehicles. Since the exhaust gas
from vehicles contains NOx, black carbon, and various pollutants that are critical sources of PM2.5,
provincial governments should restrict the increase of vehicles to reduce PM2.5 and relieve traffic stress.
Therefore, provincial governments need to control the proportion for vehicle licenses and promote the
development of electric vehicles as a substitute for petrol vehicles.

7. Conclusions

With the accelerating development of China’s economy, urbanization and industrialization, the
environmental problems are increasingly prominent. Atmospheric pollution, especially PM2.5, has
gained wide attention from the population and governments given the adverse influences on human
health. Since the growth of PM2.5 concentration is mainly caused by anthropogenic drivers, this paper
selected several significant anthropogenic forces and explored the nexus between these factors and
PM2.5 concentration to provide effective recommendations for policy makers to curb PM2.5. GDP per
capita, economic structure, urbanization rate, and the number of civil vehicles were chosen as the
explanatory variables to represent the social and economic situation of China. The panel data model
was estimated by integrating these variables and taking PM2.5 concentration as the dependent variable
based on the data of 31 Chinese provinces from 2000 to 2016. In light of the estimated coefficients in
the model, we can conclude that: (1) In general, the coefficients of the explanatory variables for the
provinces in North China, Central China, and East China were larger than that of the other provinces;
(2) By comparing the coefficients of the different variables of the corresponding province, the GDP
per capita made the largest contribution to PM2.5 concentration, the number of civil vehicles made
the least contribution to PM2.5 concentration, and the contributions of urbanization and economic
structure relied on the urbanization progress and industrialization progress; and (3) By comparing the
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coefficients of the same variable with regard to different provinces, it was seen that if the development
of an anthropogenic factor of one province reached a correspondingly high level, then the contribution
of this factor to PM2.5 concentration would be relatively great. In terms of the Granger causal
nexus examination, we can conclude that: (1) bi-directional Granger causality exists between PM2.5

concentration and economic development, and between PM2.5 concentration and urbanization for all
31 provinces in China; and (2) for provinces with a lower number of civil vehicles like Hainan, Tibet,
Qinghai, and Ningxia as well as provinces with a small scale of secondary industry like Beijing, Tianjin,
and Shanghai, a uni-directional causal nexus from economic structure or the number of civil vehicles
to PM2.5 concentration existed in these provinces.

In terms of the empirical discussion, the following policy recommendations are proposed:
(1) For provinces with a correspondingly large scale of secondary industry including Hebei,

Shanxi, Inner Mongolia, and some other provinces, provincial governments are urgently required to
explore a novel development pathway to adjust the economic development pattern from an extensive
pattern of consumption of massive resources and energy with slow economic progress and large
amounts of pollutants to an intensive pattern relying on innovation technologies with less resource
consumption, thus accelerating economic development and reducing pollution emissions;

(2) To adjust the industrial development pattern for provinces with a large scale of secondary
industry, the following strategies can be taken to accelerate the transformation process:

• Provincial governments should encourage enterprises to increase investment into the research and
development of high and novel technologies so that the industrial progress drivers can be converted
from conventional resources and energy consumption to innovation and high technologies;

• Provincial governments should accelerate the elimination of backward production capacity;
• The PM2.5 discharging standard of industrial enterprises should be improved to encourage

enterprises to improve the pollutant treatment techniques; and
• Provincial governments should accelerate the adjustment of economic structure and prompt the

development of tertiary industry.

(3) For provinces with a high urbanization rate such as Beijing, Tianjin, and Shanghai, provincial
governments could restrict immigration to urban areas and encourage residents to move into urban
areas with low levels of urbanization.

(4) For provinces with large numbers of civil vehicles, provincial governments need to control
the proportion of vehicle licenses and promote the development of electric vehicles as a substitute for
petrol vehicles.

It is worth noting that the results calculated based on future data may be quite different from
the current results. This is partly due to the sensitiveness of econometric models to data sequences
and partly to the different stages of China’s development. China, like other developed countries, will
step into a new economic state, where people will no longer be willing to migrate to large crowded
cities and heavy industries will no longer fuel economic growth, which means that economic growth
will gradually depend on lighter industries, and finally, the services industries. The change in the
economic state will result in a change in the causality nexus between PM2.5 concentration and other
anthropogenic factors. Therefore, with the different development stages of China’s economy, we need
to use the latest data sequences to explore the nexus between PM2.5 concentration and significant
anthropogenic factors so that policy makers can formulate appropriate strategies to control the increase
of PM2.5 concentrations.

One limitation of this investigation is that the empirical analysis was based on a provincial level,
which is a large spatial scale. Different areas of a province may have various PM2.5 concentrations,
particularly in rural areas and urban areas. However, it is difficult to obtain data of PM2.5 concentrations
and anthropogenic factors for a panel of a refined spatial unit. Hence, if the data can be collected from
PM2.5 observation stations, the study would be more helpful in future investigations. Moreover, future
studies will focus on researching the causality nexus between PM2.5 concentration and other related
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factors such as exports and dust pollution. Some references [7,8] have provided evidence that exports
and the development of construction industries, metal production sectors, and cement production
sectors can exacerbate PM2.5 discharge.
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